
Predicate Interpretation Analysis Based on Soot

Chunrong Fang, Qingkai Shi, Yang Feng, Zicong Liu, Xiaofang Zhang, Baowen Xu∗

State Key Laboratory for Novel Software Technology, Nanjing University

Nanjing 210093, China

∗Email: bwxu@nju.edu.cn

Abstract—Symbolic execution maintains a path condition pc

for every possible path of a program. It is challenging to construct
a pc if some complex issues are involved in the path. A predicate
interpretation pi is a subexpression of a pc and a pc of a path
is a conjunction of all pis in the path. Predicate interpretation
has been widely used in theoretical analysis on domain testing
and related fields. It recently emerges new impact on software
testing by using partial path constraints to generate test data. In
this paper, we propose an approach to produce pis in a program.
A tool for predicate interpretation analysis for Java programs is
implemented based on the data-flow framework of Soot. Most
of Java features can be handled in our tool. Moreover, a formal
rule of predicate interpretation analysis is presented for more
applications in the future. The experimental results show that
our tool can produce pis of a program effectively and efficiently.

I. INTRODUCTION

Predicates play a key role in programs to fulfill functionali-

ties with different execution paths. Predicate analysis on paths

have shown increasing significance in software testing and

debugging. Symbolic execution is a commonly used technique

to construct path conditions (pc) as constraints, which hold

the execution of a path in a program [7]. However, there are

some challenges to make it practical in industry. One of the

challenges is to effectively construct a pc of a path involving

some complex issues in a program [2].

Predicate interpretation (pi) [10] is a subexpression of a

pc. That is, a pi is a partial path constraint and a pc is a

conjunction of all pis in the path. A pi is a predicate with only

input variables. pis on a branch may be different because it

may appear on different execution paths. pi has been widely

used in theoretical analysis on domain testing and related

fields. Recently, pi emerges new impact on software testing by

using partial path constraints to generate test data, as pis are

more practical than a pc involving some complex issues. This

inspires us to build an effective tool for predicate interpretation

analysis on modern programming languages, such as Java.

Data-flow analysis is an important method of program static

analysis [6], which provides the theoretical basis of predicate

interpretation analysis. Soot [8], a well-known framework for

analyzing or optimizing Java byte-code, based on which many

analysis tools have been implemented1. A key feature of the

Soot framework is its excellent support for implementing intra-

procedural data-flow analysis. In addition, Soot includes call-

graph information and pointer analysis framework, which help

deal with some complex issues in our approach.

1http://www.sable.mcgill.ca/soot/

In this paper, we propose an approach of predicate in-

terpretation analysis based on data-flow framework of Soot.

Our approach collects appropriate predicates respectively and

replaces variables according to assignment statements along

with the corresponding data flows. A novel feature of our

approach is using loop induction to reduce the search space

and improve the speed of analysis. A formal rule of predicate

interpretation produced by the tool is presented for further

uses. Additionally, a preliminary experiment was conducted.

The experimental results show that our tool can produce pis

of programs effectively and efficiently.

II. APPROACH

A. Data-flow Framework

In this section, we adopt a unified data-flow analysis

framework based on lattice [6] to support PI analysis. The

framework (D, V , ∧, F) [1] is described as follows. (1) A

direction of the data flow D, which is either FORWARDS

or BACKWARDS. (2)A semi-lattice, including a domain of

values V and a merge operator ∧. A semi-lattice has a top

element, denoted ⊤, such that for all x ∈ V , ⊤ ∧ x = x. (3)

A family F of transfer functions from V to V . A function in

F, such as fs, is a transfer function of the statement s.

We denote the data-flow values before and after each

statement s by IN[s] and OUT[s], respectively. Given a data-

flow graph and a backward data-flow problem, the unified

algorithm [1] is shown in Figure 1.

initialize a value set: v ;
IN [EXIT] = v ;
for (each statement s other than EXIT) IN[s] = T;
while (changes to any IN occur)
 for (each statement s other than EXIT) {
 OUT[s] = ∧m a successor of s IN[m] ;
 IN[s] = f s (OUT[s]);
 }

Fig. 1. Algorithm of backward data-flow

Data-flow values of every point in the data-flow graph are

initialized firstly. An iteration from the exit to the entry of

the graph is followed by the initialization. Each time we pass

by a statement s. The transfer function of the statement will

be used. If two data-flow values meet at a point, they will be

merged in accordance with the merge operation.

DOI reference number: 10.18293/SEKE2017-052

B. Predicate Interpretation

A predicate interpretation (pi) is a predicate that only

contains parameters of a program [10]. If a predicate can

be represented by expressionΘ0, where Θ is a relational

operator and expression is a common arithmetic expression,

the corresponding pi is expression only with parameters Θ0.

PI analysis uses BACKWARDS data-flow technique. The

value domain V is the set of predicates, and the merge oper-

ation ∧ is union ∪. Some key points of data-flow framework

for PI analysis are summarized in Table 1. It is a monotonic

and distributive [6] data-flow framework which implies the

solution of the problem is the maximum fixed point solution

to the data-flow equations. We can apply these framework

elements in Table 1 to the algorithm in Figure 1 to obtain

the result of PI analysis.

TABLE I
PREDICATE INTERPRETATION ANALYSIS

Elements PI Analysis

Domain Set of predicates
Direction Backwards

Transfer Function (1)(2)(3)
Boundary IN[EXIT]=Ø
Merge (∧) ∪

Data-flow IN[s]= f(OUT[s]),
Equations OUT[s]= ∧p,succ(s)IN[p]

Initialize IN[s]=Ø, for each s.

Transfer functions in Table 1 are important for PI analysis.

We explain the transfer functions in detail as follows.

(1) If a statement s is a branch statement, the transfer

function of s will be

fs(x) = x ∪ gens (1)

where x is the pi set before the statement and gens is a set

of predicates in the statement s.

(2) If a statement s is an assignment statement of variable

v. Suppose the statement is v = g(v, y0, y1, y2, · · ·), where

g is a function about variables v and yi, i = 0, 1, 2, · · · . The

transfer function is

∀pi(v) ∈ x, fs(pi(v)) = pi(g(v, y0, y1, y2, · · ·)) (2)

which means variable v in every predicate in x, the pi set be-

fore statement s, will be substituted with g(v, y0, y1, y2, · · ·).
In the equation, pi(v) means a predicate containing the vari-

able v.

(3) For others, transfer function is an identity function I

about the domain value x, such that

I(x) = x (3)

C. An Example

We introduce a simple example to explain our approach in

detail. Figure 2(a) shows a control-flow graph.
If we define a partial order ≤ of a semi-lattice, such that

∀x, y ∈ V, x ≤ y iff. x ∧ y

the partial order ≤ of PI analysis semi-lattice will be ⊇
because the merge operation is ∪. Following by the definition,

we can draw the domain V as a lattice diagram in Figure 2(b).

ENTRY

EXIT

s4: return 1 s5: return 0

s3: b>0

s2: b=b+1

s1: a>b

(a) A control-flow graph

{ }

{a>b, b+1>0, b>0}

{a>b} {b+1>0} {b>0}

{a>b, b+1>0} {a>b, b>0} {b+1>0, b>0}

(b) Lattice diagram

Fig. 2. An Example

The edges are all downward. From the diagram, we can get

the result of merge operation easily.

Before the statement s3: b > 0, OUT[s5]={} due to the ini-

tial condition and using the identity transfer function. After s3,

IN[s3]=fs3(OUT[s3]) = {} ∪ {b > 0} = {b > 0}. It uses the

transfer function (1), and OUT[s2]=OUT[s1]=IN[s3]={b >

0}.

When analysis passes assignment statement s2, using trans-

fer function (2), we replace variable b with b + 1, such that

IN[s2] = {b+1 > 0}. IN[s2] and IN[s3] will meet at the exit

of statement s1, where we use the merge operation according

to the red edges from Figure 2(b), such that, OUT[s1]=IN[s2]

∪ IN[s3]= {b+ 1 > 0, b > 0}.

Finally, we can obtain the resulting set of pis, which equals

to IN[ENTRY]={a > b, b+ 1 > 0, b > 0}.

III. IMPLEMENTATION

The framework of our tool for PI analysis based on

Soot is illustrated in Figure 3. It is made up of four

main parts:(1) Jimple Parser transforms Java byte code to

Jimple code, which is provided by Soot. (2) Transformer

transforms the input Jimple code, with our two new trans-

formers: MethodsInliner for inlining some user-defined

methods. StaticFieldInitializer for initialize some

static fields. (3) Data-flow Analysis is built on the data-flow

framework of Soot. (4) Filter is used to filter some redundant

expressions.

A. Transformer

Transformers accept Jimple codes of a program body as

input, and then transform them by two new body transformers.

The first one is MethodsInliner, which is used to inline

methods. In default case, our tool will inline all user-defined

methods and Java library methods will remain. The second

one is StaticFieldsInitializer, which is used to

initialize static fields of a class.

In most cases, MethodsInliner firstly inlines all

user-defined methods, and obtain some classes whose

static fields have been used in the program body.

Transformer
Data-flow
Analysis

Java
Byte
Code

Jimple
Code

Transformed
Jimple Code

Result
Bofore
Filtering

Result
PI Set

class files

MethodsInliner

StaticFieldInitializer

Jimple
Parser

Filter

configure files

Fig. 3. Framework

Secondly, StaticFieldsInitializer adds methods

<clinit>() of the classes, which are collected from the first

step, to the head of program body. Lastly, MethodsInliner

inlines those <clinit>() methods.

An example of a class called Example is shown in Figure

5. In the class, method f calls g, and g uses a static field of

this class. With the last two transformations, the final predicate

interpretation set is {@parameter0 ≤ 10}. Otherwise it

will be {@parameter0 ≤ <Example: int CONST>},

which is not as elegant as the former.

int f(int){
 ……
 i0 := @parameter0: int;
 virtualinvoke
 r0.<Example: int g(int)>(i0);
 ……
}

int f(int){
 ……
 i0 := @parameter0: int;
 $i3 = <Example: int CONST>;
 if i0 <= $i3 goto label0;
 ……
 label0:
 ……
}

int f(int){
 ……
 i0 := @parameter0: int;
 staticinvoke
 <Example: void <clinit>()>();
 $i3 = <Example: int CONST>;
 if i0 <= $i3 goto label0;
 ……
 label0:
 ……
}

int f(int){
 ……
 i0 := @parameter0: int;
 <Example: int CONST> = 10;
 $i3 = <Example: int CONST>;
 if i0 <= $i3 goto label0;
 ……
 label0:
 ……
}

(A) Before Transformation (B) After 1st MethodsInliner

(C) After StaticFiledsInitializer (D) After 2nd MethodsInliner

Fig. 4. Transformation

Comparing similar primitive approach in Soot,

MethodsInliner have two significant advantages,

(1) MethodsInliner uses a recursion algorithm to inline

all methods that need to be inlined in the program body. (2)

MethodsInliner takes polymorphism into account. For

example, there is an invoke statement like child.<Super:

void func()>() where child is an instance of a class

whose super class is Super. In this situation, we firstly get

the type of child, and redirect the method to the child class.

B. Data Flow Analysis

Data flow analysis is the main part of our tool. We de-

fine PIAnalysis extending BackwardFlowAnalysis of

Soot. The input of this part is a TrapUnitGraph of the

transformed Jimple code which adds edges from every trapped

unit to the trap’s handler unit.
PIAnalysis overrides several key methods, four of

which are: flowThrough() corresponding to Data-

Flow Equation, merge() corresponding to Merge(∧),

entryInitialFlow() corresponding to Boundary,

newInitialFlow() corresponding to Initialize in Table

1.
The most important method is flowThrough(), in which

we handle fifteen kinds of statements of Jimple [9]. Most of

them need not do anything, because they use the identity trans-

fer function. However, three kinds of them should be dealt with

by ourselves using the transfer function (1) and (2). The first is

branch statements including IfStmt and SwitchStmt. The

second includes IdentityStmt and AssignStmt. And

another one is InvokeStmt. In addition, induction is used

for loops to reduce search spaces and improve the speed of

analysis.
1) Branch Statement: Every IfStmt consists of a predi-

cate and a goto statement. The predicate will be added to the

set of pis according to the transfer function (1).
SwitchStmts have many branches. The tool creates a

predicate for each value of switch statement. For instance,

switch(key){ case v1: · · ·; case v2: · · ·; · · · },

and {key == v1, key == v2, · · · } will be added to the

pi set.
2) Identity Statement and Assignment Statement: There

is only one item in the two sides of the connector :=

in IdentityStmt. Given an identity statement which

defines variable i0 as the integer parameter, i0 :=

@parameter0: int, we use the transfer function (2) to

replace an item with the other.
The most complex case is the AssignStmt. We must deal

with many kinds of expressions on the two sides of =, such as

BinopExpr, ArrayRef, InvokeExpr, etc. We must pay

attention to two cases of them.
The first case is when the left side of = is an ArrayRef.

In many earlier researches, arrays were considered as com-

mon objects whose fields were labeled with integer indexes.

However, they ignored a big difference. Fields of a common

object have fixed names, but if we consider an array as an

object, the names of its fields will change at any time (e.g.

modifying array[i] sometimes implies that array[j] is

also changed if i equals to j). Figure 5(A) gives an example

to explain how to deal with them. If we substitute array[i]

with 6 according to the name, the condition expression will

be 6 == 7. However, if i equals to j during runtime, the

condition expression will be 7 == 7. Therefore, we keep

the predicate instead of replacing the variable. For instance,

array[i]==7 will remain, and i can be considered as a

reference variable whose value can be determined by some

strategies (e.g. generating randomly, etc.) in further use.

The second case is when the right side of = is an

AnyNewExpr. We keep these assignment statements to avoid

confusion of different objects. Figure 5(B) presents an ex-

ample. If we substitute arr1 with new int[2], we won’t

be able to distinguish arr1 from arr2. In this example,

the sequence {arr1=new int[2], arr1[1]==7} will

remain.

func (int[] array, int i, int j){
 ……
 array[i] = 6;
 array[j] = 7;
 if (array[i] == 7) {
 ……
 }
 ……
 }

func (){
 int[] arr1 = new int[2];
 int[] arr2 = new int[2];
 ……
 if (arr1[1] == 7) {
 ……
 }
 ……
 }

(A) ArrayRef Example (B) AnyNewExpr Example

Fig. 5. Assignment Statement

3) Invoke Statement: Most InvokeStmts have been in-

lined into the program body except Java library methods in

default case. In most situations, inlining all methods is im-

possible and unnecessary, and some of the remaining methods

may affect the values of local variables. These methods will be

put into the result set with predicates, because in static analysis

we can’t judge whether they will change their arguments

or callers. For example, a sequence {aList.clear(),
aList.isEmpty() == 0} will be kept. With the in-

voke statement clear(), aList.isEmpty() == 0 will

be considered as an input-independent pi. On the other

hand, if we can confirm a method is insignificant, such as

println(Object), we will put them in a configuration

file so that the method can be filtered by textbfFilter.

4) Loops: Loop is an important issue which will lead to

producing too many similar pis like a > 0, a+1 > 0, a+2 > 0
and so on, and even infinite data-flow analysis. To avoid these

problems, we define some reference variables to help present

loop variables contained in loop conditions.

A predicate of a simple loop like the one shown in Figure

6(A) can be simply written as b + 4 ∗ i < 10 where i is

a reference variable. If a loop variable is modified in more

than one places in the loop body (e.g. Figure 6(B)), we will

define several reference variables for it. Assume the loop in

Figure 6(B) is executed i times and the first branch of the

if statement is executed j times, then the other branch must

be executed i − j times. The predicate for the loop will be

written as a + 2 ∗ j + 3 ∗ (i − j) + 1 ∗ i < 10 where i and

j are reference variables that can’t be determined in static

analysis. If we nest the simple loop in Figure 6(A) to the end

of the loop in Figure 6(B), the pis of the nested loops will be

{b+4∗m∗n < 10, a+2∗ j+3∗ (n− j)+1∗n < 10} where

the simple loop executes m times, the outer loop executes n

times, and the first branch of “if” executes j times.

In summary, induction for loop variables cannot only sim-

plify the result set of pis, but also reflect the program structure

more precisely.

while (b<10){
 b=b+4;
}

(A) A simple loop (B) A complex loop

while (a<10){
 a=a+1;
 if(...) a=a+2;
 else a=a+3;
}

Fig. 6. Loop

C. Filter

We obtain a set of pis after the data-flow analysis part.

Some expressions in the pi set are redundant which should

be removed. We implemented a filter to improve the results

by filtering four kinds of expressions: (1) Reduandante pis

defined as Opposite predicates or same predicates. For exam-

ple, a > b and b < a are the same predicate in semantics,

while a > b and a ≤ b are opposite, however, reflecting the

same program structure. (2) Input-independent pis, which

are relations between constants, such as 2 == 3 which

must be false.(3) Useless invoke statements. For example,

a method set(Local) may change a local variable, but a

method System.out.print() is insignificant. The latter

is “useless” and can be ignored. (4) Useless assignment

statements. If a remaining assignment statement has nothing

to do with pis in the result set, it can be deleted.

D. Output rule

It is important to make our tool work with different related

tools, such as constraint solvers. In order to be convenient to

transform results to other input format, we have established a

grammar for the result expressions. Figure 7 shows the main

part of the grammar where we define three result forms: (1)

pi stmt for pis. This is the main part of the final result set.

(2) new stmt for remaining assignment statements whose

right side is AnyNewExpr. These expressions are used to

distinguish different objects. It is explained in section 3.2.2.

(3) invoke stmt for remaining invoke statements which is

described in section 3.2.3.

IV. PRELIMINARY EXPERIMENT

We designed and conducted a preliminary experiment to

verify our tool on two subject programs, jtcas and ordset,

from SIR [3]. The common characteristics of the programs are

a few of numerical or string inputs and simple data structure.

It can help present the analysis results clearly.

The experiment was conducted in the default case which

means Java library methods will not be inlined into the

program body. A classic pi from the experiment is as follows

staticinvoke

<java.lang.Integer : int parseInt(java.lang.String)>

(@parameter0 : java.lang.String[][11]) <= 0

where a Java library method, parseInt(), is kept. The first

parameter of the analyzed program is a character string array.

stmt = pi_stmt | new_stmt | invoke_stmt

pi_stmt = expr rel_op expr;
rel_op = ">" | "<" | ">=" | "<=" | "==" | "!=";

new_stmt = local "=" any_new_expr;
any_new_expr = new_array_expr | new_multi_array_expr
 | new_expr;

invoke_stmt = instance_invoke_expr | static_invoke_expr;
instance_invoke_expr = "instanceinvoke" immediate
 ".<" method_signature ">(" expr_list ")";
static_invoke_expr = "staticinvoke"
 "<" method_signature ">(" expr_list ")";

expr = immdiate | arithmetic operation between expr

immediate = constant | local | param_ref | instance_field_ref
 | static_field_ref | array_ref | invoke_stmt;
param_ref = "@parameter" int_constant ":" type
instance_field_ref = immediate ".<" field_signature ">";
static_field_ref = "<" field_signature ">";

Fig. 7. Parts of the grammar for expressions

If the 11th element is parsed as an integer, the value will be

greater than or equal to 0.

The main method in jtcas and a test driver method of

ordset was analyzed. The main method in jtcas accepts a

character string array as input. These command line arguments

are transformed to integers and they are handled with complex

logic to avoid traffic collision. The test driver method of

ordset creates two ordered sets, and some operations, like

union, adding elements, are completed on them.

The statistics results of the experiment are shown in Table

2. These pis have been divided into three types, each of which

results in a markedly different effect on the domain boundary

[10] in domain testing: Equalities(=), Inequalities (<, >, ≤,

≥) and Non-equalities(6=).

TABLE II
EXPERIMENTAL RESULTS

statistic results
jtcas ordset

percent # percent
Equalities 0 0% 7 2.8%

Inequalities 17 70.8% 189 75.0%
Non-equalities 7 29.2% 56 22.2%

Total 24 100% 252 100%
Redundant # 86 – 133 –

Preprocessing Time (ms) 330 610
Analysis Time (ms) 60 430

We can acquire some conclusions according to the statistic

results as follows. (1) In-equalities (<, >, ≤, ≥) of a common

program have a large proportion among all pis. The proportion

is about 70%, even more. The final result pi set contains only

a few equalities (=). (2) There are a large number of redundant

pis before filtering. This result suggests that the filter part is

necessary, and it can simplify the results greatly. (3) The time

cost of PI analysis is collected to demonstrate the efficiency

of our tool. It can produce all pis within several seconds for

most common programs.

V. RELATED WORK AND DISCUSSION

(pi) can be considered as a simplified version of path con-

dition. pi focuses on the local structure information instead of

the global. The compromise makes it more practical, especially

in domain testing [10]. Jeng [4] integrated domain testing and

data-flow testing which applied the pi to def-use chains in

data-flow testing. Jeng and Weyuker [5] proposed a simplified

domain testing strategy which was not limited to linear pis any

longer. In addition, Zhao [11] presented a method to generate

domain boundary for character strings.
PI analysis can also be done by forward data-flow anal-

ysis called symbolic analysis [1] which is regularly used in

traditional optimizing compilers. The main idea of symbolic

analysis is using parameters as reference variables to present

local variables in the program body. However, if it is used

in our approach, many resources will be wasted to analyze

unconcerned variables, which may not be used in predicates

later. Thus, our approach adopts backward data-flow analysis

to get predicates firstly, and then analyze the related variables

without any waste.

VI. CONCLUSION

In this paper, we introduce an approach for predicate

interpretation analysis based on data-flow analysis. Besides,

we implement a predicate interpretation analysis tool, which

incorporates loop induction to reduce the search space and

improve the speed of analysis. Further we conducted an

experiment and the results show that our tool can produce

pis of programs effectively and efficiently.

ACKNOWLEDGEMENT

This work was partially supported by the National Basic Re-

search Program of China (973 Program 2014CB340702), the

National Natural Science Foundation of China (No. 61373013,

61170067), HPI and HPI Research School, Program B for

Outstanding PhD Candidate of Nanjing University.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers–Principles,

Techniques, and Tools. Addison-Wesley Publishing Company, 2006.
[2] C. Cadar, P. Godefroid, and etc. Symbolic execution for software

testing in practice–preliminary assessment. In ICSE’11, pages 1066–
1071, 2011.

[3] G. R. Group et al. Software-artifact infrastructure repository (sir), 2009.
[4] B. Jeng. Toward an integration of data flow and domain testing. Journal

of Systems and Software, 45(1):19–30, 1999.
[5] B. Jeng and E. J. Weyuker. A simplified domain-testing strategy. ACM

Transactions on Software Engineering and Methodology, 3(3):254–270,
1994.

[6] G. Kildall. A unified approach to global program optimization. In
PLDI’73, pages 194–206, 1973.

[7] J. C. King. Symbolic execution and program testing. Communications

of the ACM, 19(7):385–394, 1976.
[8] R. Vallee-Rai, P. Co, E. Gagnon, and etc. Soot–a java bytecode

optimization framework. In CASCON’99, pages 125–135, 1999.
[9] R. Vallee-Rai and L. J. Hendren. Jimple: Simplifying java bytecode for

analyses and transformations. Technical report, 1998.
[10] L. J. White and E. I. Cohen. A domain strategy for computer program

testing. IEEE Transactions on Software Engineering, 6(3):247–257,
1980.

[11] R. Zhao, M. R. Lyu, and Y. Min. Domain testing based on character
string predicate. In ATS’03, pages 96–101, 2003.

