

A Reinforced Hungarian Algorithm for Task

Allocation in Global Software Development

Xiao Yu

State Key Lab. of Software Engineering,

Computer School, Wuhan University,

 Wuhan, China

xiaoyu_whu@yahoo.com

Man Wu

School of Computer Science and Information Engineering,

HuBei University,

 Wuhan, China

wuman_1@qq.com

Xiangyang Jia*

State Key Lab. of Software Engineering,

Computer School, Wuhan University,

 Wuhan, China

Corresponding author email: jxy@whu.edu.cn

Ye Liu

School of Computer Science and Information Engineering,

HuBei University,

 Wuhan, China

liuye061@qq.com

Abstract—The allocation of software development tasks is a

critical management activity in distributed development projects.

One of the most important problem is to find the lowest-cost way

to assign tasks in global software development, which can be

solved by Hungarian algorithm. However, the original

Hungarian algorithm only assume that a task can only be solved

by one development site. The assumption is not agreed with the

actual case where a software development task is usually be

solved through a collaboration among several sites. To address

such an issue, this paper proposes a reinforced Hungarian

algorithm (RHA) for task assignment in global software

development. RHA consists of three major stages. First, RHA

transforms a n×m cost matrix into two n×n cost matrix by adding

(2n-m) virtual development sites. Second, RHA performs the

original Hungarian algorithm on the two n×n cost matrix to get

the optimal assignment results. Finally, RHA removes the (2n-m)

virtual development sites and gets the final optimal assignment

result for m tasks. Simulation results indicate that RHA is a

viable approach for the task assignment problem in global

software development.1

Keywords—task allocation; global software development;

Hungarian algorithm

I. INTRODUCTION

As global and distributed software development is
becoming a norm in the software industry [1-2], a tight budget
and a shortage of resources and time have motivated many
software enterprises to start looking for outside partners. With
the advent of big data era [3-4] and the development of
network technology [5-6], known as global software
development (GSD), the allocation of software development
tasks over several sites, which may be spread across different
countries, has become a common practice in industrial software
engineering [7-8].

1 DOI reference number: 10.18293/SEKE2017-042

Software development task assignment is one of the core
steps to reasonably allocate limited development resources and
effectively exploit the capabilities of the development sites in
global software development. However, task allocation is still
one of the major challenges in global software development.

A large number of possible combinations for task
assignment makes the process more complicated. For example,
if a software development project consists of five different
tasks which need to be assigned among four development sites,
theoretically there are 45=1024 different combinations
available for task assignment [9]. It is evident that evaluating
all possibilities is impossible and it needs an approach to assign
the task to the available development sites.

There are several possible strategies for allocating tasks
that use different criteria for allocation.

Bass et.al [10] state that in practice, allocating task to low-
cost countries has become a cost-saving strategy for many
organizations. Therefore, one of the most important problem is
to find the lowest-cost way to assign tasks in global software
development, which usually be solved by Hungarian algorithm
[11]. However, the original Hungarian algorithm solves the
problem that the project manager allocates n tasks to n sites
with the least total cost by performing all operations on a n×n
cost matrix. It only assumes that the number of tasks is equal to
the number of sites and a task can only be solved by one
development site. The assumption is not agreed with the actual
case where the number of tasks and the number of site are not
equal in general, and a software development task is usually be
solved through a collaboration among several sites.

To address such an issue, this paper proposes a reinforced

Hungarian algorithm (RHA) for task assignment in global

software development. The algorithm solves the problem that

the project manager allocates n tasks to m sites at the least

total cost by performing all operations on a n×m matrix. RHA

consists of three major stages. First, RHA transforms a n×m

matrix into two n×n matrix by adding (m-n) virtual tasks.

Second, RHA performs the original Hungarian algorithm on

the two n×n cost matrix to get the optimal assignment for 2n

tasks. Finally, RHA removes the (m-n) virtual tasks and gets

the final optimal assignment for m tasks.

The effectiveness of RHA is demonstrated by comparing it

with the expansion matrix method [12]. Simulation results

indicate that RHA can get the optimal assignment with the

lowest cost in global software development.

The remainder of this paper is organized as follows. Section
II reviews the Hungarian algorithm. Section III describes the
proposed reinforced Hungarian algorithm (RHA) for task
assignment in global software development and Section IV
shows the operational process of the algorithm by an example.
Section V demonstrates the experimental results. Section VI
presents the related work. Finally, Section VII addresses the
conclusion and points out the future work.

II. HUNGARIAN ALGORITHM

In this section, we first give the problem definition. Then,
we briefly review the Hungarian algorithm.

A. Problem definition

The usual assignment problem is defined as follows: assign
n tasks to n development sites with the least total cost, if task i
is assigned to site j with a non-negative integer cost cij. This
problem is a special case of the linear programming problem,
defined as follows:

Min S=∑ ∑ 𝑐ij𝑥𝑖j
n
j=1

n
i=1 (1)

Subject to ∑ 𝑥𝑖j = 1𝑛
𝑖=1 (j=1, 2, ..., n), (2)

∑ 𝑥ij = 1𝑛
𝑗=1 (i=1, 2, ..., n), (3)

xij=1 or 0. (4)

where xij= 1 means task i is assigned to site j, otherwise xij=0,
task i is not assigned to site j. The costs cij form a cost matrix,
denoted C.

Theorem 1: If a number is added to or subtracted from all
of the entries of any one row or column of a cost matrix C, then
the optimal assignment for the resulting cost matrix C’ is also
an optimal assignment for the original cost matrix C.

Proof: Assume that ui is subtracted from all of the entries
in each row and vj is subtracted from all of the entries in each
column from the original cost matrix C. For the resulting cost
matrix C’, the problem is defined as follows:

Min S′ = ∑ ∑ (𝑐𝑖𝑗 − 𝑢𝑖 − 𝑣𝑗)𝑛
𝑗=1

𝑛
𝑖=1 × 𝑥𝑖𝑗 (5)

 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 − ∑ ∑ 𝑢𝑖𝑗𝑥𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 −

 ∑ ∑ 𝑣𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

Because ∑ 𝑥𝑖𝑗 = 1 𝑛
𝑖=1 (j=1,2,3…,n) and ∑ 𝑥𝑖𝑗 = 1 𝑛

𝑗=1

(i=1,2,3…,n),

then

Min S′ = ∑ ∑ 𝑐𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 × 𝑥𝑖𝑗 − ∑ 𝑢𝑖

𝑛
𝑖=1 − ∑ 𝑣𝑗

𝑛
𝑗=1

 = Min S − ∑ 𝑢𝑖
𝑛
𝑖=1 − ∑ 𝑣𝑗

𝑛
𝑗=1

Since ∑ 𝑢𝑖
𝑛
𝑖=1 + ∑ 𝑣𝑗

𝑛
𝑗=1 is a constant number, the optimal

assignment for the resulting cost matrix C’ is also an optimal
assignment for the original cost matrix C

B. The Hungarian algorithm

The Hungarian algorithm applies the above mathematical
model and theorem 1 to a given cost matrix to find an optimal
assignment.

Step 1. Subtract the smallest entry in each row from all the
entries of its row.

Step 2. Subtract the smallest entry in each column from all
the entries of its column.

 Step 3. Draw lines through appropriate rows and columns
so that all the zero entries of the cost matrix are covered and
the minimum number of such lines is used.

Step 4. Test for Optimality: (1) If the minimum number of
covering lines is, an optimal assignment of zeros is possible
and we are finished. (2)If the minimum number of covering
lines is less than, an optimal assignment of zeros is not yet
possible. In that case, proceed to Step 5.

Step 5. Determine the smallest entry not covered by any
line. Subtract this entry from each uncovered row, and then add
it to each covered column. Return to Step 3.

C. Example

A software development project consists of four different

tasks: Task 1, Task 2, Task 3 and Task 4. There are four

development sites: S1, S2, S3, and S4. They each demand

different pay for various tasks. The problem is to find the

lowest-cost way to assign the tasks. The 4×4 cost matrix of

this problem is shown as follows.

9 4 4 8 5 8 2

9 6 10 6 4 8 8

6 6 11 8 7 6

8 2 8 4 5 8 2

 
 
 
 
 
 

. . .

. . .

. .

. . .

Step 1. Subtract 4.8 from Row 1, 6.4 from Row 2, 6.6

from Row 3, and 5 from Row 4. The resulting matrix is as

follows.

4 6 0 0 2 3 4

3 2 3 6 0 2 4

0 4 4 1 4 1

3 2 3 4 0 3 2

 
 
 
 
 
 

. . .

. . .

. .

. . .

Step 2. Subtract 1 from Column 4. The resulting matrix

is as follows.

4 6 0 0 2 2 4

3 2 3 6 0 1 4

0 4 4 1 4 0

3 2 3 4 0 2 2

. . .

. . .

. .

. . .

 
 
 
 
 
 

Step 3. Cover all the zeros of the matrix with the minimum

number of horizontal or vertical lines.

4 6 0 0 2 2 4

3 2 3 6 0 1 4

0 4 4 1 4 0

3 2 3 4 0 2 2

. . .

. . .

. .

. . .

 
 
 
 
 
 

Step 4. Since the minimal number of lines is less than 4,

we have to proceed to Step 5.

Step 5. Note that 1.4 is the smallest entry not covered by

any line. Subtract 1.4 from each uncovered row. The resulting

matrix is as follows.

4 6 0 0 2 2 4

1 8 2 2 1 4 0

0 4 4 1 4 0

1 8 2 1 4 0 6

 
 


 
 
 

 

. . .

. . .

. .

. . .

Now add 1.4 to each covered column. The resulting

matrix is as follows.

4 6 0 1 6 2 4

1 8 2 2 0 0

0 4 4 2 8 0

1 8 2 0 0 6

 
 
 
 
 
 

. . .

. .

. .

. .

Now return to Step 3.

Step 3. Cover all the zeros of the matrix with the

minimum number of horizontal or vertical lines.

4 6 0 1 6 2 4

1 8 2 2 0 0

0 4 4 2 8 0

1 8 2 0 0 6

 
 
 
 
 
 

. . .

. .

. .

. .

Step 4. Since the minimal number of lines is 4, an

optimal assignment of zeros is possible and we are finished.

4 6 0 1 6 2 4

1 8 2 2 0 0

0 4 4 2 8 0

1 8 2 0 0 6

 
 
 
 
 
 

. . .

. .

. .

. .

Since the total cost for this assignment is 0, it must be an

optimal assignment. Here is the same assignment made to the

original cost matrix

9 4 4 8 5 8 2

9 6 10 6 4 8 8

6 6 11 8 7 6

8 2 8 4 5 8 2

 
 
 
 
 
 

. . .

. . .

. .

. . .

So we should assign Task 1 to Site 2, Task 2 to Site 4,

Task 3 to Site 1, and Task 4 to Site 3.

III. RHA

In this section, we first give the problem definition. Then,
we present our RHA method for task allocation in global
software development.

A. Problem definition

The original Hungarian algorithm only assume that the
number of tasks is equal to the number of sites and a task can
only be solved by one development site and a task can only be
solved by one development site. The assumption is not agreed
with the actual case in global software development where the
number of tasks and the number of site are not equal in general,
and a software development task is usually be solved through a
collaboration among several sites.

Therefore, the task assignment problem in global software
development is defined as follows: assign n tasks to m
development sites with the least total cost (m>n), if task i is
assigned to site j with a non-negative integer cost cij. This
problem is a special case of the linear programming problem,
defined as follows:

Min S=∑ ∑ 𝑐ij𝑥𝑖j
n
j=1

m
i=1 (6)

Subject to ∑ 𝑥𝑖j = 1𝑚
𝑖=1 (j=1, 2, ..., n), (7)

∑ 𝑥ij = 1𝑛
𝑗=1 (i=1, 2, ..., m), (8)

xij=1 or 0. (9)

For this case, we need to find an optimal assignment given
a n×m cost matrix.

Theorem 2: If a n×m matrix is transformed into two n×n
matrix by adding (2n-m) virtual sites with the zero entries, then
an optimal assignment for the resulting cost matrixes is also an
optimal assignment for the original cost matrix.

Proof: For the resulting cost matrix C’, the problem is
defined as follows:

Min S′′ = ∑ ∑ 𝑐′𝑖𝑗 ×2𝑛
𝑗=1

𝑛
𝑖=1 𝑥′𝑖𝑗 (10)

Subject to ∑ 𝑥′𝑖𝑗 = 1 (𝑗 = 1,2, … ,2𝑛)𝑛
𝑖=1 (11)

∑ 𝑥′𝑖𝑗 = 1 (𝑖 = 1,2, … , 𝑛)𝑛
𝑗=1 (12)

∑ 𝑥′
𝑖𝑗 = 1 (𝑖 = 1,2, … , 𝑛)2𝑛

𝑗=𝑛+1 (13)

𝑥′𝑖𝑗 = 1 𝑜𝑟 0 (i = 1,2, … , n; j = 1,2, … ,2n) (14)

Min S′′ = ∑ ∑ 𝑐′𝑖𝑗 ×2𝑛
𝑗=1

𝑛
𝑖=1 𝑥′𝑖𝑗

= ∑ ∑ 𝑐′𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 𝑥′𝑖𝑗 + ∑ ∑ 𝑐′𝑖𝑗

2𝑛
𝑗=𝑚+1

𝑛
𝑖=1 𝑥′𝑖𝑗

Because c′𝑖𝑗 = 0 (𝑖 = 1,2, … , 𝑛; 𝑗 = 𝑚 + 1, 𝑚 + 2, … ,2𝑛)

Then Min S′′ = ∑ ∑ 𝑐′
𝑖𝑗 ×2𝑛

𝑗=1
𝑛
𝑖=1 𝑥′

𝑖𝑗 + 0

 =∑ ∑ 𝑐′
𝑖𝑗 ×2𝑛

𝑗=1
𝑛
𝑖=1 𝑥′

𝑖𝑗

 = Min S′

B. The RHA method

The following algorithm applies the above mathematical
model and theorem 2 to a given n×m cost matrix to find an
optimal assignment. Algorithm 1 presents the pseudo-code of
our proposed RHA method.

IV. EXAMPLE

In this section, we illustrate the execution of RHA by an
example.

Example 1: A software development project consists of
four different tasks: Task 1, Task 2, Task 3 and Task 4. There
are six development sites: S1, S2, S3, S4, S5, and S6. They
each demand different pay for various tasks. The problem is to
find the lowest-cost way to assign the tasks. The 6×8 cost
matrix of this problem is shown as follows.

𝐸𝑖𝑗=

9 4 4 8 5 8 2 12 7 4

9 6 10 6 4 8 8 8 8 9

6 6 11 8 7 6 7 6 6 6

8 2 8 4 5 8 2 6 4 8 6

. . . .

. . . .

. . . .

.

 
 
 
 
 
 

Step 1. Subtract 4.8 from Row 1, 6.4 from Row 2, 6.6

from Row 3, and 5 from Row 4. The resulting matrix is as

follows.

4 6 0 0 2 3 4 7 2 2 6

3 2 3 6 0 2 4 2 4 2 6

0 4 4 1 4 1 3 4 0

3 2 3 4 0 3 2 1 4 3 6

.

.

. . .

.

 
 
 
 
 
 

Step 2. Subtract 1 from Column 4, and 1.4 from Column

5. The resulting matrix is as follows.

4 6 0 0 2 2 4 5 8 2 6

3 2 3 6 0 1 4 1 2 6

0 4 4 1 4 0 2 0

3 2 3 4 0 2 2 0 3 6

.

. . . .

. .

. . . .

 
 
 
 
 
 

Step 3. Transform 6×4 matrix into two 4×4 matrix by

adding 2 virtual sites with the zero entries. The resulting

matrixes are as follows.

The first matrix:

4 6 0 0 2 2 4

3 2 3 6 0 1 4

0 4 4 1 4 0

3 2 3 4 0 2 2

. . .

. . .

. .

. . .

 
 
 
 
 
 

The second matrix:

5 8 2 6 0 0

1 2 6 0 0

2 0 0 0

0 3 6 0 0

. .

.

.

 
 
 
 
 
 

Step 4. Performs the original Hungarian algorithm on the
two 4×4 cost matrix. The assignment result of the first cost
matrix is as follows:

Task1--->S2

Task2--->S4

Task3--->S1

Task4--->S3

The assignment result of the second cost matrix is as
follows:

Task1--->S7

Task2--->S8

Task3--->S6

Task4--->S5

Step 5.Removes the 2 virtual development sites and output
the final assignment result:

Task1--->S2

Task2--->S4

Task3--->S1,S6

Task4--->S3,S5

V. EXPERIMENTS

In this section, we evaluate our proposed reinforced
Hungarian algorithm (RHA) for task assignment empirically.
We first introduce the performance measures. Then, in order to
investigate the performance of RHA, we perform some
empirical experiments.

Algorithm 1. RHA approach

Input: n×m cost matrix

Output: optimal assignment result

1. Subtract the smallest entry in each row from all the
entries of its row;

2. Subtract the smallest entry in each column from all the
entries of its column;

3. Transform n×m matrix into two n×n matrix by adding
(2n-m) virtual sites with the zero entries;

4. Performs the original Hungarian algorithm on the two
n×n cost matrix;

5. Removes the (2n-m) virtual development sites ;

6. return optimal assignment result;

A. Performance measures

In the experiment, we employ one commonly used
performance measures, i.e, successful allocation rate. It is
defined and summarized as follows.

● Successful allocation rate (SAR) is the measure of tasks
that are successfully allocated to development sites. The
SAR=Ms/M, where Ms is the number of cost matrixes that are
successfully allocated and M is the number of all cost matrixes.
The higher the value of successful allocation rate, the more
effective the algorithm is.

B. Experimental results

In this experiment, we analyze the effectiveness of RHA
with different number of development sites. Here we fix the
number of tasks to 4 and evaluate the performance of the
evaluated algorithms by increasing the number of development
sites from 6 to 12 with an increment of 2. Therefore, we
generated four sets of matrix data, which contains 100 4×6
matrixes, 100 4×8 matrixes, 100 4×10 matrixes and 100 4×12
matrixes, respectively.

 Result Analysis: As we can see in Fig.1, the successful
allocation rate of RHA is always 1. The successful allocation
rate of the expansion matrix method goes up when the number
of development sites increases. It shows that RHA can
effectively allocate tasks to development sites with the lowest
cost when the number of development sites changes.

Fig. 1. SAR performances with different number of development sites

Experiment 2: In this experiment, we analyze the
effectiveness of RHA with different number of tasks. Here we
fix the number of development sites to 4 and evaluate the
performance of the evaluated algorithms by increasing the
number of tasks from 4 to 10 with an increment of 2. Therefore,
we generated four sets of matrix data, which contains 100 4×4
matrixes, 100 4×6 matrixes, 100 4×8 matrixes and 100 4×10
matrixes, respectively.

 Result Analysis: As we can see in Fig.2, the successful
allocation rate of RHA is always 1. The successful allocation
rate of the expansion matrix method decreases when the
number of tasks increases It shows that RHA can effectively
allocate tasks to development sites with the lowest cost when
the number of tasks changes.

Fig. 2. SAR performances with different number of tasks

VI. RELATED WORK

In this section, we briefly review the existing task
assignment methods [13-26] in global software distribution.

Geographically distributed development creates new
questions about how to coordinate muhi-site work. Grinter
proposes four methods product development organizations to
coordinate muhi-site work. He finds that no matter what model
is used, it is difficulty to acquire expertise and the distribution
of project mass may be unequal [13-14].

Lamersdorf et.al think that distributed development is often
driven by some factors which are not distinguished, such as
risks, workforce capabilities, the innovation potential of
different regions, and cultural factors. They discuss about these
factors and find a lack of empirically-based multi-criteria
distribution models [15]. A qualitative study aiming to identify
and understand the criteria used in practice was conducted by
Lamersdorf, et al. The results show that the sourcing strategy
and the type of software to be developed have a significant
effect on the applied criteria [16]. The criteria and causal
relationships were identified in a literature study and refined in
a qualitative interview study. Lamersdorf et.al introduce a
model which aims at improving management processes in
globally distributed projects by giving decision support for task
allocation that systematically regards multiple criteria [18]. A
planning tool to identify task assignment based on multiple
criteria and weighted project goals was developed by
Lamersdorf and Munch. The model is called TAMRI (Task
Allocation based on Multiple cRIteria) and its implementation
is based on Bayesian networks. The application of the tool
requires a large amount of knowledge on casual relationships
in distributed development. [17].

Though these process models have helped companies to
achieve global standards, some social aspects are not
considered. Amrit proposes a methodology to test a hypothesis
based on how social networks can be used to improve
coordination in software industry [21]. Setamanit describes
GSD-a hybrid computer simulation model of the software
development process in order to identify the practices of work
distribution and try to classify criteria [22]. Marques presents a

domain ontology to represent concepts related to task
allocation in distributed teams in his paper. This method deals
with the lack of standardized vocabulary and achieve
knowledge acquisition and sharing [23].

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the issue of how to find the
lowest-cost way to allocate tasks among development sites. We
propose a reinforced Hungarian algorithm (RHA) for task
assignment in global software development. RHA consist of
two stages. In the first stage, the n×m matrix are transformed
into two n×n matrix by adding virtual development sites. In the
second stage, the two n×n matrix are solved by the original
Hungarian algorithm. Finally, the virtual tasks are removed to
get the optimal assignment results. We conduct experiments on
the synthetic datasets to evaluate the performance of the
proposed algorithm. The experimental results indicate that the
proposed algorithm can effectively allocate tasks to
development sites with the lowest cost.

In the future, we would like to validate the generalization
ability of our method on available real-world datasets. In
addition, we plan to investigate the task assignment method
based on social data [24-25].

ACKNOWLEDGMENT

This work is partly supported by the grants of National
Natural Science Foundation of China (No.61572374,
No.U163620068, No.U1135005) and the Academic Team
Building Plan from Wuhan University and National Science
Foundation (NSF) (No. DGE-1522883).

REFERENCES

[1] Taylor P S, Greer D, Sage P, et al. Do agile GSD experience reports
help the practitioner?[C]//Proceedings of the 2006 international
workshop on Global software development for the practitioner. ACM,
2006: 87-93.

[2] DeLone W, Espinosa J A, Lee G, et al. Bridging global boundaries for
IS project success[C]//System Sciences, 2005. HICSS'05. Proceedings
of the 38th Annual Hawaii International Conference on. IEEE, 2005:
48b-48b.

[3] Xu Z, Liu Y, Mei L, et al. Semantic based representing and organizing
surveillance big data using video structural description technology[J].
Journal of Systems and Software, 2015, 102: 217-225.

[4] Liu J, Yu X, Xu Z, et al. A cloud‐based taxi trace mining framework
for smart city[J]. Software: Practice and Experience, 2016.

[5] Liu Z, Wei C, Ma Y, et al. UCOR: an unequally clustering-based
hierarchical opportunistic routing protocol for WSNs[C]//International
Conference on Wireless Algorithms, Systems, and Applications.
Springer Berlin Heidelberg, 2013: 175-185.

[6] Liu Z, Niu X, Lin X, et al. A Task-Centric Cooperative Sensing
Scheme for Mobile Crowdsourcing Systems[J]. Sensors, 2016, 16(5):
746.

[7] Huda N, Nahar N, Tepandi J, et al. Key barriers for global software
product development organizations[C]//Management of Engineering &

Technology, 2009. PICMET 2009. Portland International Conference
on. IEEE, 2009: 1081-1087.

[8] Šmite D, Borzovs J. Managing uncertainty in globally distributed
software development projects[J]. University of Latvia, Computer
Science and Information Technologies, 2008, 733: 9-23.

[9] Wickramaarachchi D, Lai R. A method for work distribution in global
software development[C]//Advance Computing Conference (IACC),
2013 IEEE 3rd International. IEEE, 2013: 1443-1448.

[10] Bass M, Paulish D. Global software development process research at
Siemens[C]//Third International Workshop on Global Software
Development. 2004: 8-11.

[11] Jonker R, Volgenant T. Improving the Hungarian assignment
algorithm[J]. Operations Research Letters, 1986, 5(4): 171-175.

[12] Yexin S, Mianyun C, Shuhong Z. An efficient algorithm for solving
two multi-object generalized assignment problems and its application[J].
JOURNAL-HUAZHONG UNIVERSITY OF SCIENCE AND
TECHNOLOGY CHINESE EDITION, 2001, 29(1): 70-72.

[13] Grinter R E, Herbsleb J D, Perry D E. The geography of coordination:
Dealing with distance in R&D work[C]//Proceedings of the
international ACM SIGGROUP conference on Supporting group work.
ACM, 1999: 306-315.

[14] Edwards H K, Kim J H, Park S, et al. Global software development:
Project decomposition and task allocation[C]//International Conference
on Business and Information. 2008.

[15] Lamersdorf A, Münch J, Rombach D. Towards a multi-criteria
development distribution model: An analysis of existing task
distribution approaches[C]//Global Software Engineering, 2008. ICGSE
2008. IEEE International Conference on. IEEE, 2008: 109-118.

[16] Lamersdorf A, Munch J, Rombach D. A survey on the state of the
practice in distributed software development: Criteria for task
allocation[C]//Global Software Engineering, 2009. ICGSE 2009. Fourth
IEEE International Conference on. IEEE, 2009: 41-50.

[17] Lamersdorf A, Munch J. TAMRI: a tool for supporting task distribution
in global software development projects[C]//Global Software
Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference
on. IEEE, 2009: 322-327.

[18] Lamersdorf A, Münch J, Rombach D. A decision model for supporting
task allocation processes in global software
development[C]//International Conference on Product-Focused
Software Process Improvement. Springer Berlin Heidelberg, 2009: 332-
346.

[19] Lamersdorf A. Empirically-Based Decision Support for Task
Allocation in Global Software Development[C]//ICGSE. 2009: 281-284.

[20] Damian D, Moitra D. Guest editors' introduction: Global software
development: How far have we come?[J]. IEEE software, 2006, 23(5):
17-19.

[21] Amrit C. Coordination in software development: the problem of task
allocation[C]//ACM SIGSOFT Software Engineering Notes. ACM,
2005, 30(4): 1-7.

[22] Setamanit S, Wakeland W, Raffo D. Using simulation to evaluate
global software development task allocation strategies[J]. Software
Process: Improvement and Practice, 2007, 12(5): 491-503.

[23] Marques A B, Carvalho J R, Rodrigues R, et al. An ontology for task
allocation to teams in distributed software development[C]//Global
Software Engineering (ICGSE), 2013 IEEE 8th International
Conference on. IEEE, 2013: 21-30.

[24] Xu Z, Mei L, Lu Z, et al. Multi-modal Description of Public Security
Events using Surveillance and Social Data[J]. IEEE Transactions on
Big Data, 2017.

[25] Xu Z, Zhang H, Hu C, et al. Building knowledge base of urban
emergency events based on crowdsourcing of social media[J].
Concurrency and Computation: Practice and Experience, 2016.

