
SnippetGen:
Enhancing the Code Search via Intent Predicting

Qing Huang1, Xudong Wang2, Yangrui Yang3, Hongyan Wan1, Rui Wang1, Guoqing Wu1∗,
1 State Key Laboratory of Software Engineering, Computer School,Wuhan University, Wuhan, China

2 International School of Software, Wuhan University, Wuhan, China
3 College of Information Engineering of North China University of Water Resources

and Electric Power, Zhengzhou, China
Email:1{qh, why0511, wangrui1989, wgq}@whu.edu.cn, 2hsu@whu.edu.cn, 3yangyangrui@ncwu.edu.cn

Abstract—To enable the cod sarch results to run immediately
without any subsequent modification, an intent-enhanced code
search approach (IECS) is proposed. It has the ability of intent
predicting to guess what else a user might do after obtaining
the search results. Based on the intent-relevant semantic and
structural matches, IECS improves the performance of code
search by incorporating the intent for expansion. To perform
IECS, the code search tool SnippetGen is implemented. Com-
pared with CodeHow and Google Code Search (CS), SnippetGen
outperforms them by 28.5% with a precision score of 0.846 (i.e.,
84.6% of the first results are relevant).

Keywords-Code search; Intent predicting; Query expansion

I. INTRODUCTION

To reuse the existing method, many code search tools are
proposed. Early code search engines, e.g., Google1, Krugle2

and Koders3, offered only the keyword-based search with low
precision. The later work did semantic search to enhance the
accuracy of the search results, e.g., signature matching, type
matching [15], [10]. But these approaches were impractical,
because they required too little or too much specification. The
current work supports query expansion to promise the better
usability, such as CodeHow [2]. It considers the impact of the
APIs and expands the query with the APIs. Although these
existing code search tools seem to yield correct matches, the
search results could not meet the user demands directly and
need to be modified [3]. One major reason is that these tools
lack the ability of intent predicting to guess what else a user
might do after obtaining the search results.

Example: Given a query “access data in excel”, “the method
ExcelToDataSet” could be returned by the standard Boolean
model [1], because the method contains all the query terms
with the highest term frequency such as “ Excel8.0; ” and “Fill
(dataset) ”. Unfortunately this method is always modified,
because it only accesses the data from the outdated excel2003
but fails in the most frequently-used excel2007. In this case, a
user changes this method from (“Microsoft.Ace.OLEDB.4.0”,
“Excel8.0”) to (“Microsoft.Ace.OLEDB.12.0”, “Excel12.0”).
If search engine could anticipate this intent, it can generate

1codesearch.google.com
2krugle.org
3koders.com

an expansion query “Microsoft.Ace.OLEDB.12.0 Excel12.0
access data excel” and retrieve the modified method. This
example shows that through intent predicting , more accurate
code search could be achieved.

In this paper, we propose an intent-enhanced code search
approach (IECS) using the intent to enhance the search. Figure
1 presents the overall structure containing intent-enriched,
intent-first and intent-expanded component . In the intent-
enriched component (as shown in Fig.1a), code modifications
are recorded through the code version tracking service .
Then an intent extraction algorithm is proposed to exploit
the intents from modifications. This algorithm refines the
commonly-used intents, extracts the intent-relevant context
and enriches methods with the intents and context in turn. In
the intent-first component, results are retrieved by computing
the semantic and structural similarity scores between the intent
and the query , and combining the two similarity scores (as
shown in Fig.1b). If the results cannot match the query, the
intent-expanded component is triggered to expand a query by
considering both the intent and the text similarity (as shown in
Fig.1c). Finally, the Extended Boolean model [17] is adopted
to retrieve the more relevant results.

queryUI

 Code Base

Open Source &

Local Projects

(c) Intent-Expanded

intent

text

similarity

relevant code snippets

(a) Intent-Enriched

record

exploit

intent

modification

(b) Intent-First

semantic

similarity

structural

similarity

rank rankN

Y

Fig. 1. Similar changes to three methods

An IECS-supported code search tool SnippetGen is imple-
mented. The front-end is a visual studio 2010 extension. The
backend is a codebase which is constructed by collecting 2,151

*Corresponding author
DOI reference number:10.18293/SEKE2017-037

projects from Github4 and indexing 1.16 million C# methods
using Lucene5. SnippetGen is compared with CodeHow [2]
and Google Code Search (CS) [16] by performing 70 real-
world queries. The results show that SnippetGen achieves a
precision score of 0.846 which outperforms them by 28.5%
when the top 1 results are inspected. The results con?rm the
effectiveness of SnippetGen in programming practices.

The contributions of this paper are as follows:
• An intent-enhanced code search approach (IECS) is pro-

posed. It contains an intent extraction algorithm to exploit
the potential intents of the method.

• IECS performs code retrieval preferentially within the
intent scope based on semantic and structural matches,
which is more effective than within the complete method
scope.

• SnippetGen, that performs IECS, is implemented. The
experiment results show that SnippetGen outperforms
CodeHow and CS by 28.5% with a precision score of
0.846.

II. INTENT-ENRICHED COMPONENT

An intent extraction algorithm is proposed to extract the
intents from the past modifications. Algorithm 1 describes this
process procedurally in the four steps. Note that each method
may have much intent. If SnippetGen incorporates all intent
for expansion, it may produce worse results than not expanding
the query. Thus the refinement strategy is considered to ensure
the intents that benefit the code search.

Step 1: Identifying modifications. For each method mi,
SnippetGen employs ChangeDistiller [11] to compare the AST
of the mi’s old and new versions from the past modifications.
Then SnippetGen characterizes modifications as a sequence of
node operations ∆i consisting of node insertions, deletions,
updates and moves.

Step 2: Refining modifications. SnippetGen uses the modi-
fied Longest Common Edit Operation Subsequence (LCEOS)
algorithm [18] to identify the common node operations pairs
∆c =

∩n
i=1 ∆i, such that ∀1 ≪ i ≪ n,∆ci ⊆ ∆i,

by iteratively comparing the node operations pairwise. In
these common node operations pairs, if one or more concrete
instances of types, methods, variables and constants have the
same edit type or inheriting type, despite of the different name,
SnippetGen thinks they are abstract equivalent. Then it gener-
alizes these concrete instances with abstract identifiers $t, $m,
$v and $c, so as to enforce a consistent naming. Meanwhile,
it records the mapper between the abstract identifiers and the
concrete instances. If some subsequent node operations pairs
are inconsistent with the current mapper, they are omitted.

Step 3: Extracting Intents. SnippetGen extracts the intents
from the mapper. Meantime, it extracts the intent-relevant con-
text with control, data and containment dependence analysis.
This context comprises the unchanged AST nodes that depend
on the node operations or on which node operations depend
in common node operations ∆c.

4https://github.com/explore
5http://lucene.apache.org/

Algorithm 1 IntentExtraction
Input: Original Version O, a set of Modified Version M
Output: Intents
/* step 1: identify modificaion */
foreach mi in M
| ∆i=mi-o //obtain the i-th modifications(∆i)
| add ∆i to ∆s; // obtain all modifications(∆s)

end
/* step 2: refine modification */
// identify the common modifications
∆c=

∩n
i=1 ∆i such that ∀1 ≤ i ≤ n ∆ci ⊆ ∆i

foreach ∆ci in ∆c

| // obtain the node operations pairs(nop) from ∆ci

| ∆ci → nop:
| // obtain the concrete instances(ci) of types, methods,
| variables and constants from nop
| nop→ ci
| if abstractMatch(ci) is true
| | // ci’s edit type or inheriting type is equivalent
| | if ci is inconsistent with the mapper
| | | omit nop;
| | | continue;
| | end
| | ci=ai;//substitute the abstract identifiers(ai) for ci
| | build the mapper(ai,ci);
| end

end
/* step 3 extract intents */
mapper→ intents; //extract the intents from the mapper
method = method+intents; //enrich the method with the
intents
Return intents

Step 4: Having obtaining intents, SnippetGen enriches each
method with the intents and intent-relevant context.

Example: Given the method ExcelToDataSet’s original
version O, there are two modified versions F , S. SnippetGen
employs ChangeDistiller to input (O,F) and output ∆F =
{Update (O1 F1)}, which shows the variable “Provider”
and the variable “Extended Properties” (line1) are
changed to “OleDb.12.0” and “Excel12.0; HDR=NO”
respectively (as shown in Fig.2a). Similarly, SnippetGen
inputs (O,S) and outputs ∆B={Update (O1 S1)}
(as shown in Fig.2b). Thus SnippetGen identifies
the longest common node operations pairs, such that
∆c=∆F∩∆S={pair1 (Update (O1 F1) ,Update (O1 S1))}. In
these common node operations pairs, SnippetGen substitutes
the abstract identifiers $v1 and $v2 for (“Microsoft.ACE.OLE
DB.12.0”, “Excel12.0; HDR=NO”) in ∆A,(“Microsoft.ACE.
OLEDB.12.0”, “Excel12.0;”) in ∆B (as shown in Fig.2c).
Meanwhile, it records the mapper ($v1, $v2)={(“Microsoft.
Ace.OleDb.12.0”, “Excel12.0; HDR=NO”), (“Microsoft.Ace.
OleDb.12.0”, “Excel12.0”). Finally, SnippetGen extracts the
intent from this mapper , such that Intent=(“Microsoft.ACE.
OLEDB.12.0, Excel12.0; HDR=NO”).

DataSet ExcelToDataSet(string Path) {
UPDATE:
1. string strConn=string.Format("Provider={0};Data
Source={1};Extended Properties=

{2};","Microsoft.Ace.OleDb.4.0",Path, "Excel8.0;");

TO (First modification F)
1’. string strConn=string.Format("Provider={0};Data
Source={1};Extended Properties=

{2};","Microsoft.Ace.OleDb.12.0",Path,
"Excel12.0;HDR=NO;");

TO (Second modification S)

1’. string strConn=string.Format("Provider={0};Data
Source={1};Extended Properties=

{2};","Microsoft.Ace.OleDb.12.0",Path, "Excel12.0");

To (Common abstract modification)

1’ string strConn=string.Format("Provider={0};Data
Source={1};Extended Properties={2};",$v1,Path,$v2);

2. OleDbConnection conn = new OleDbConnection(strConn);

3. conn.Open();

4. OleDbDataAdapter myCommand = new

OleDbDataAdapter("select * from [Sheet1$]", strConn);
5. Dataset ds = new DataSet();

6. myCommand.Fill(ds, "table1");
7. return ds;}

a

b

c

Fig. 2. Similar changes to three methods

III. INTENT-FIRST COMPONENT

To retrieve the relevant methods preferentially within the
method’s intent scope, SnippetGen computes the semantic
similarity between the query and the intents as well as the
structural similarity between the query and the intent-relevant
contexts, combines the two similarity values, and finally re-
turns the relevant code. In this process, we define two method
scores and an operation.

Definition 1 (Semantic Score). For each method mi,
SnippetGen views the query and mi

′s intents, as a bag of
words, computes their textual similarity score md

i . score using
VSM6 [9], and returns the top i semantic method scores
denoted as md:

md =
{
md

1, md
2, · · · , md

i

}
In VSM, the query and the mi

′s intent are represented
by a vector. The term frequency (tf) and inverse document
frequency (idf) are calculated based on the frequency of words.

Definition 2 (Structural Score). For each method mi,
SnippetGen views the query and mi

′s intent-relevant context
as a bag of function calls, computes their structural similarity
score ms

i . score using VSM, and returns the top i structural
method scores denoted as ms:

ms = {ms
1, ms

2, · · · ,ms
i}

In VSM, the query and the method are represented by a
vector. Tf and idf are calculated based on the frequency of
the function being called.

Definition 3 (Score Combination). Let the methods ap-
pearing in both md and ms as moverlap, and let the methods

6https://github.com/hcutler/tf-idf/tree/c505c72af7f3eb6e3dd5b10d9e8f
54c08e1434d3

appearing only in md or ms as mnotoverlap. Given md
i and

ms
i , the combination as follows:

mi.score =
md

i .score +ms
i .score (if mi ∈ moverlap)

MinOverlapScore ×m
d/s
i .score

maxNotOverlapScore+ ∝
(if mi /∈ moverlap)

(1)
where MinOverlapScore is the minimum score of all methods
in moverlap; maxNotOverlapScore is the maximum score of all
methods in mnotoverlap. If mi only appears in md, md/s

i .score
equals to md

i .score. If mi only appears in ms, m
d/s
i .score

equals to ms
i .score. The parameter ∝ is an adjustment factor

to make sure that the score of moverlap is larger than that of
mnotoverlap. Empirically, we set ∝ to 0.1.

Actually, Equation (1) says that, if mi appears in both md

and ms, its score is the sum of the two scores. Otherwise, its
score is calculated based on the similarity score in md or ms.
SnippetGen computes the scores in above way and obtains the
top i potentially relevant methods:

mrelevant = {m1,m2, · · · ,mi}

Example: for the query “access data in excel”, the semantic
relevant methods md with similarity scores are {Excel2007
ToDateSet=0.5, AccessToDateSet=0.4, ExcelTo DateSet=0.4}.
The structural methods ms with similarity scores are
{OleDbDataAdapter.Fill=0.9, Excel2007ToDateSet=0.6, Ex-
celToDateSet=0.5}.

The overlapping methods moverlap are “Excel2007To Date-
Set” and “ExcelToDateSet”. We compute their score as 0.5 +
0.6 = 1.1, and 0.4 + 0.5 = 0.9, respectively.

The non-overlapping methods mnotoverlap are “OleDb-
DataAdapter.Fill” and “AccessToDateSet”. We get Min Over-
lapScore value 0.9 and maxNotOverlapScore value 0.9. Thus
the scores for “OleDbDataAdapter.Fill” and “AccessToDate-
Set” are 0.81 and 0.36, respectively. Finally, the rank of
potentially relevant methods mrelevant are as follows:

• “Excel2007ToDateSet” (score=1.1);
• “ExcelToDateSet” (score=0.9);
• “OleDbDataAdapter.Fill” (score=0.81);
• “AccessToDateSet” (score=0.36).

IV. INTENT-EXPANDED COMPONENT

If the methods retrieved by intent-first component cannot
match the query, following the query expansion option [7],
SnippetGen expand a query with intents to retrieve the relevant
methods.

A query Qt containing n terms is defined as:

Qt = (t1, · · · tn)

For a method, three features is defined as:

F = (f1, f2, f3)

where f1 stands for the intent ; f2 stands for the FQN; f3
stands for the method body .

A query can be expressed in terms of fi: ti where ti ∈ Qt

and fi ∈ Ft. It means to search for methods that contains
the term ti in a field fi. SnippetGen constructs a Boolean
query expression for retrieving methods that match the query
in terms of text similarity:

qtext = (f2 : t1 ∨ f3 : t1) ∧ · · · ∧ (f2 : tn ∨ f3 : tn)

This query expression searches for methods that contain the
terms t1, . . . , tn in fields f2 (FQN) and f3 (Method Body).

After the intent-first component, SnippetGen gets k poten-
tially relevant methods mrelevant. For each method mi in
mrelevant, SnippetGen tokenizes the intent to get a keyword
list Ai. Then it constructs Boolean query expressions as
follows:

qmi = f1 : intenti ∧ (f2 : t1 ∨ f3 : t1)

∧ · · · ∧ (f2 : tn ∨ f3 : tn)

where mi ∈ mrelevant and tk ∈ (Qt − Ai). Note that we
remove the terms that appear in Ai from the query Qt, since
the impact of these terms have been considered in the mi’s
intent . This query searches for the methods that contain the
intenti in fields f1(intent) as well as other query terms in fields
f2(FQN) and f3(Method Body).

A method may be retrieved by more than one query
expressions defined above . SnippetGen combines the query
expressions into an expanded query for retrieving methods:

qexpand = (qm1 , qm2 , · · · , qmk
, qtext)

Given the query: “access data in excel”, the query terms
Qt=(access, data, excel). The potentially relevant method’s
intent is (“Microsoft,Ace,OleDb,12.0,Excel12.0,HDR=N
O”). The comprehensive query expressions are as follows:

qm1=(f1:Microsoft, Ace,OleDb, 12.0, Excel12.0
HDR = NO) ∧(f2:access ∨ f3 : access)
∧(f2 : data∨ f3 : data)

qtext=(f2 : access ∨ f3 : access)∧(f2 : date∨ f3 : date)
∧(f2 : excel ∨ f3 : excel)

To retrieve relevant methods given the queries, we adopt
the Extended Boolean model (EBM) [17], which combines
the characteristics of the VSM and Boolean model. Given a
query expression qexpand = (qm1 , · · · , qmk

, qtext), it is easy
to implement EMB by using Lucene7.

V. EXPERIMENT

A. Setup

First, a codebase as the backend of SnippetGen is construct-
ed by collecting 2,151 projects downloaded from Github and
indexing 1.16 million C# methods by using Lucene. Second,
70 real-world queries are employed by Portfolio’s author [8].
All these queries are formulated as set of keywords to address
some programming tasks reported in Portfolio’s user study.
Third, the front-end of SnippetGen as a Microsoft Visual
Studio 2010 extension is implemented.

7https://lucene.apache.org/core/2 9 4/scoring.html

To investigate the effectiveness of our approach, 20 par-
ticipants are employed. Six participants are graduate students
who have at least of two years of C# programming experience.
The others are PhD students who have 3-6 years of C#
programming experience. Each participant runs SnippetGen,
CodeHow and Google Code Search (CS) to address 3-4
queries and inspect the top 20 results for each query to judge
whether they are relevant or not.

CodeHow is the latest query-expanded code search tool [2].
To reprogram it, we index the online MSDN8 document as
expansion library using Lucene. Participants use CodeHow and
enter the query directly to retrieve the results. CS represents
conventional keywords-based code search web applications.
Participants should go to the website, look for implementations
and extract them by copying and pasting results into the
workspace.

B. Evaluation Metrics

To evaluate the effectiveness of SnippetGen, we make use
of the Precision@k9:

Precision@k =
1

|Q|

|Q|∑
i=1

relevanti,k
k

(2)

where relevanti,k represents the relevant methods for query
i in the top k results, Q is a set of queries. Precision@k takes
an average on all queries whose relevant answers could be
found by inspecting the top k(k = 1, 5, 10, 20) results. A better
code search tool allows developers to discover the needed code
by examining fewer results. The higher the metric value, the
higher the accuracy is.

We also make use of Normalized Discounted Cumulative
Gain (NDCG)10 [12] to measure the ranking capability of the
code search based on the graded relevance of the results of a
set of queries. It varies from 0.0 to 1.0, with 1.0 representing
the ideal ranking of the results. The higher the NDCG value
, the better the ranking capability is.

C. Experimental Results

We compare SnippetGen with CodeHow and CS by per-
forming the 70 queries. As Table I shows, when the top 1
results are inspected, SnippetGen achieves a precision score of
0.846, which means that 84.6% of the first results are relevant
methods without any subsequent modification. When the top 5
results are inspected, SnippetGen achieves a precision score of
0.861. These results are considered satisfactory . Note that only
the results, which both receive relevant feedback and need not
to be modified subsequently, are labeled as relevant. Thus the
precision of CodeHow and CS is lower than previous papers,
such as ref [2], [10].

We pick out CodeHow for comparative analysis, as it is the
latest code search tool proposed in 2015. As Table I shows,

8https://msdn.microsoft.com/en-us/library
9https://github.com/jcnewell/MyMediaLiteJava/blob/master/src/org/my

medialite/eval/measures/PrecisionAndRecall.java
10https://github.com/jcnewell/MyMediaLiteJava/blob/master/src/org/my

medialite/eval/measures/NDCG.java

CodeHow achieves a score of 0.658 when the top 1 results
are inspected. SnippetGen achieves 28.5%, 66.2%, 70.3%, and
89.5% improvements in terms of Precision@1, Precision@5,
Precision@10, and Precision@20 , respectively. In terms of
NDCG, SnippetGen obtains a score of 0.873, which also
outperforms the CodeHow (0.712) by 22.6%. In the same way,
SnippetGen performs better than CS.

TABLE I
THE COMPARISON AMONG SNIPPETGEN, CODEHOW AND CS

SnippetGen CodeHow CS
Precision@1 0.846 0.658 0.421
Precision@5 0.861 0.518 0.368
Precision@10 0.792 0.465 0.346
Precision@20 0.762 0.402 0.283

NDCG 0.873 0.712 0.682

Figure 3 shows the percentage of queries that SnippetGen
performs better/worse than CodeHow. When the top 1 results
are examined, SnippetGen wins in 36% of the queries and
loses in 18% of the queries. In terms of the top 5 results,
SnippetGen wins in 61% of the queries and loses in only 7% of
the queries. The results confirm that the improvement achieved
by SnippetGen is significant.

Fig. 3. The mechanism of change pattern

Fig. 4. The mechanism of change pattern

To analyze the reason for the lost cases, we continue
to explore what factors are correlated with the accuracy of
SnippetGen. We depict the two lost cases (i.e., T1 “Convert
utc time to local time” and T2 “How to get Color from
Hexadecimal color code”) as shown in Fig.4a. They show that
the more past modifications provided, the less common subset
is likely to be shared among these modifications. This results

in that the accuracy goes down. For the draw, the methods
are never modified. In this case, SnippetGen should be similar
to what other tools could achieve. Different from Fig.4a, we
depict the two promising cases (i.e., T3 “access data from
excel” and T4 “find regular LINQ expressions”) as shown in
Fig.4b. They show that the more past modifications provided,
the higher accuracy is. It illustrates when methods are similar,
adding modifications may not decrease the number of common
modifications, but may induce more identifier abstraction and
produce more sufficient intents.

These results illustrate that the accuracy of SnippetGen
varies with the similarity and number of past modifications.
Even the similarity takes precedence over the number. Too
many modifications or too few is not good for the accuracy.
The more similar modifications are, the higher accuracy is.

VI. DISCUSSIONS

Intent Source: The intent is extracted from each method’s
past modifications. No modifications, no intent to occu r.
It results in SnppetGen not matching semantic similarity
between the query and the method’s intent, as well as not
matching structural similarity between the query and the
method’s intent-relevant context. According to our user study,
the methods without intent make up 25.7% to 38.4% of
methods’ volume in codebase. If the method carries no intent,
SnippetGen uses the original FQN and Method Body.

Intent Sensitivity: The intent is closely related to past
modifications, but the intent varies inconsistently with the
number of the modifications. The more modifications are
provided, the fewer common subset is likely to be shared,
which results in the problems of over generalization. The
fewer modifications are provided, the more common subset is,
which results in the problems of over specification. Actually,
instead of the number of the modifications, the intent strictly
depends on the similarity among them. If the modifications are
diverse, SnippetGen extracts the fewer common modifications
and obtains the insufficient intent. If the modifications are
similar, SnippetGen extracts the more common modifications
and obtains the sufficient intent.

To reach the maximum similarity, we try two ways. First,
we apply the heuristic algorithm to pick out the similar modifi-
cations from all modifications, so that the intent becomes more
sufficient despite a big difference between a few modifications.
Second, we use the threshold in LCEOS (as shown in the pro-
cess of identifying common intent) to tolerate inexact matches
among modifications. For example, if SnippetGen fails to find
any common edit operation between two modifications, it
generalizes all concrete instances of types, methods, variables
and constants with abstract identifiers to match edit type or
inheriting type.

VII. RELATED WORK

Early code search engines are the keywords-based informa-
tion retrieval techniques [4]. For example , Google, Koders
and Krugle allow a user to input keywords and perform the
file-level retrieval. However, Myers [16] observed that these

code search engines always achieve inaccurate search results,
because they are not designed to support programming tasks.
To improve the accuracy, later work did semantic search.
Originally, the work by Wing looked at matching function
signatures [15]. Then it was extended to match more complete
formal semantics using λ prolog and Larch-based [19]. But
these techniques were impractical because either they attempt-
ed to do too little or too much. Recently, to promise better
usability, several approaches have been proposed to improve
the effectiveness of free-text code search via query expansion.
For a vague input, adding one or more synonyms of the words
appearing in the query can enhance the precision of search re-
sults. McMillan proposed Portfolio that takes natural language
descriptions as “synonyms” and outputs a list of functions
or code fragments along with corresponding call graphs [6].
Wang et al. [5] proposed an active code search approach which
incorporates user feedback as “synonyms” to refine the query.
Fei et al. [2] propose a latest code search technique that could
understand the APIs a user query refers to and considers both
text similarity and potential APIs. In addition, there are other
query expansions either by using an appropriate ontology [20],
natural language [14], or collaborative feedback [13].

These existing code search tools seem to yield semantically
correct matches, but the search results might be too complex
or too slow to meet the user needs. These results still has to
be modified. But SnippetGen can retrieve the more relevant
methods without any subsequent modification. Although our
work is viewed as a query expansion, we differ from them. We
give the code search engine the ability of intent predicting to
guess what else the user might do after he obtains the search
results. We incorporate intent as “synonyms” for expansion
and consider the impact of both potential intents and text
similarity on code search. Besides, we propose the refinement
strategy in the intent extraction algorithm. This strategy can
pick out the appropriate intents to benefit the code search.

VIII. CONCLUSION

In this paper, an intent-enhanced code search approach
(IECS) is proposed. Based on the intent-relevant semantic and
structural matches, it exploits the intent before performing
code retrieval and allows a user to retrieve the relevant code
by expanding the query with the intent. In the future, we
plan to address the issues discussed in Section VII. For
example, in the intent-enriched component, we either improve
similarityCchoosing heuristic algorithm to ensure a sufficient
intent, or employ the deep learning approach to make the intent
become self-improvement.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Projects No. 61373039,
No. 61170022, No. 61003071 and No. 91118003.

REFERENCES

[1] H. Niu, I. Keivanloo, and Y. Zou, “Learning to rank code examples for
code search engines,” Empirical Software Engineering, pp. 1-33, 2016.

[2] F. Lv et al., “CodeHow: Effective Code Search Based on API Under-
standing and Extended Boolean Model (E).” IEEE/ACM International
Conference on Automated Software Engineering pp. 260-270.2015

[3] J. Galenson et al., “CodeHint: dynamic and interactive synthesis of
methods.” International Conference on Software Engineering pp. 653-
663.2014

[4] P. Fafalios, and Y. Tzitzikas, “Post-analysis of Keyword-Based Search
Results Using Entity Mining, Linked Data, and Link Analysis at Query
Time.” IEEE International Conference on Semantic Computing pp. 36-
43.2014

[5] S. Wang, D. Lo, and L. Jiang, “Active code search: incorporating user
feedback to improve code search relevance.” Acm/ieee International
Conference on Automated Software Engineering pp. 677-682.2014

[6] C. Mcmillan et al., “Portfolio: Searching for relevant functions and their
usages in millions of lines of code,” Acm Transactions on Software
Engineering & Methodology, vol. 22, no. 4, pp. 402-418, 2013.

[7] C. Carpineto, and G. Romano, “A Survey of Automatic Query Expansion
in Information Retrieval,” Acm Computing Surveys, vol. 44, no. 1, pp.
159-170, 2012.

[8] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu.
Portfolio: finding relevant functions and their usage. In ICSE, 2011.

[9] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The
Concepts and Technology behind Search. Addison-Wesley, 2011.

[10] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, “Program
understanding and the concept assignment problem.” Communications
of the Acm pp. 482-498.2010

[11] B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall. “Change distillingł
tree differencing for fine-grained source code change extraction. IEEE
Transactions on Software Engineering”, 33 (11):18, November 2007.

[12] E. Linstead et al., “Sourcerer: mining and searching internet-scale
software repositories,” Data Mining & Knowledge Discovery, vol. 18,
no. 2, pp. 300-336, 2009.

[13] Taciana A. Vanderlei, Frederico A. Durao, Alexandre C. Martins,
Vinicius C. Garcia, Eduardo S. Almeida, and Silvio R. de L. Meira, “A
cooperative classification mechanism for search and retrieval software
components,” Proc SAC’07, pp. 866-871 (March 2007).

[14] Christopher G. Drummond, Dan Ionescu, and Robert C. Holte, “A
learning agent that assists the browsing of software libraries,” IEEE
Trans. on Software Engineering Vol. 26(12) pp. 1179-1196 (December
2000)

[15] A. M. Zaremski, and J. M. Wing, “Signature matching: a key to reuse,”
Acm Sigsoft Software Engineering Notes, vol. 18, no. 5, pp. 182-190,
1993.

[16] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval
approach for automatically constructing software libraries,” IEEE Trans-
actions on Software Engineering, vol. 17, no. 8, pp. 800-813, 1991.

[17] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information
retrieval,” Commun. ACM, vol. 26, pp. 1022C1036, 1983.

[18] J. W. Hunt and T. G. Szymanski. “A fast algorithm for computing longest
common subsequences”. CACM, 20 (5):350C353, 1977.

[19] 31. Eugene J. Rollins and Jeannette M. Wing, “Specifications as search
keys for software libraries,” Proc. 8th Intl. Conf. on Logic Programming,
pp. 173-187 (1991).

[20] Haining Yao and Letha Etzkorn, “Towards a semanticbased approach for
software reusable component classification and retrieval,” ACMSE’04,
pp. 110-115 (April 2004).

