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Abstract— Conceptual Integrity has been claimed to be the 
essence of high-quality software system design. On the other 
hand, it has been a rather elusive attribute of software systems, 
challenging various attempts of a clear-cut characterization. This 
paper evolves in this direction by two means: first, by analysis 
and clarification of open issues in architecture and abstraction 
terms; second, by pointing out to a mathematical formulation in 
algebraic terms. This paper also serves as a broad introduction to 
discussions on “Conceptual Integrity of Software Systems”.1 
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I.  INTRODUCTION 

Frederick Brooks [2], [3], based upon his extensive 
experience with system development, in particular the first 
families of OS/360 operating systems, proposed that 
Conceptual Integrity is essential for high-quality software 
system design. It takes some time to assimilate this idea, but 
even after reading about it once and again and having second 
and third thoughts, Conceptual Integrity remains attractive, but 
a quite elusive notion. 

The first task of this paper is to introduce the notion, its 
attractiveness and why it is still elusive. Then, we argue in 
favor of mathematical formalization, like in any respectable 
science. The overall purpose of this paper is to try to open and 
discuss deep issues on “Conceptual Integrity of Software 
Systems” and to point out to a formal solution to these issues. 

A. The Notion of Conceptual Integrity 

Software system design and development, as it is common 
practice nowadays, gives a superficial impression of 
unrestricted flexibility, where everything is allowed and 
nothing is forbidden. Often practitioners think that software 
design and development is an art, rather than a science. People 
exposing this opinion may express distaste for suggestions of 
mathematical description of the processes involved. 

The feeling of unrestricted flexibility and its artistic 
connotation is acquired from the first experiences with 
computer programs that one writes. Except for an apparent 
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arbitrariness of the programming language syntax, one has full 
confidence in the choice of the preferred programming 
construct – this is the unrestricted flexibility – and the program 
is supposed to run for sure. Then, happens the inevitable bug, 
demanding a subtle correction – this is the artistic connotation. 

A widespread rational response to the artistic flexibility is to 
introduce methodologies. If one is methodical, then the price of 
software design and development should decrease. This is the 
first encounter with elusiveness (cf. the word “Mythical” in the 
title of the earlier book by Brooks). Any experienced software 
developer knows that methodologies are not the panacea that 
they promise to be. They fail, sometimes miserably. 

Then, Conceptual Integrity, by Brooks, enters the stage. 
This is a deeper response to the software system development 
problem. We explain the notion in literally architecture terms, 
exactly as in Brooks’ books, while presenting open issues in 
section III. 

B. Paper Organization 

The remaining of the paper is organized as follows. Section 
II refers to related work. Section III introduces open issues of 
Conceptual Integrity in a broad context. Section IV focuses on 
architecture principles. Section V turns to abstraction 
principles. Section VI summarizes algebraic principles of 
software design. Section VII concludes with a discussion. 

II. RELATED WORK 

A. Conceptual Integrity Outside Software Systems 

This paper refers to Architecture of buildings in general, 
following Brooks’ metaphors used in his books to illustrate 
notions of Conceptual Integrity. In this context, we refer here to 
a few architecture-related modeling techniques and ontologies. 

DeLuca and co-authors [5] describe a generic formalism for 
semantic modeling of architectural elements, which compose 
buildings of historic interest in classical architecture. Doerr [8] 
reviews ontologies for cultural heritage; he emphasizes 
physical objects in archeology, including architecture. Quattrini 
et al. [22] describe modern computer-based techniques for 
semantically-aware 3D modeling of architecture.  



B. Conceptual Integrity Within Software Systems 

Conceptual Integrity is closely related to efforts regarding 
various development phases of software systems. These efforts 
are among others: requirements engineering, conceptual 
modeling, integrity verification, software system design, and 
software architecture planning. The relevant literature is very 
extensive, and we provide just a few representative pointers. 

Jackson and co-authors [6],[17],[18] analyzed widely used 
software systems, such as Git, in terms of Conceptual Integrity, 
suggesting design improvements. 

Insfran et al. [16] refer to conceptual modeling based on 
requirements engineering. For these authors conceptual 
modeling is an UML object-oriented approach rather than 
based on conceptual integrity. Nevertheless, there are 
similarities between these approaches, as discussed later on. 

Cabot and Teniente [4] refer to integrity checking of 
UML/OCL conceptual schemas. Integrity here means software 
state conditions that must be satisfied. Sometimes it 
specifically refers to avoidance of critical system malfunction. 
Conceptual schemas are basic relations between concepts 
within the general knowledge required by any information 
system (see also e.g. the book by Olive [21]). 

Kazman and Carriere [19] reconstruct a software system 
architecture using conceptual integrity as a guideline. Their 
goal is to achieve a restricted number of components connected 
in regular ways, with internally consistent functionality. 

C. Mathematical Conceptual Integrity of Software 

In this work we shall mainly refer to the Modularity Matrix 
[9],[10],[13] which is based upon linear algebra. Other matrices 
have been used for modular design. For instance, the Design 
Structure Matrix (DSM) is an integral part of the ‘Design 
Rules’ by Baldwin and Clark [1]. It has been applied for 
various kinds of systems, including software systems. DSM 
design quality is estimated by an external economic theory 
superimposed on the DSM matrix. 

Conceptual lattices, analyzed within Formal Concept 
Analysis (FCA) were introduced in Wille [24]. A generic 
review of its mathematical foundations is given by Ganter and 
Wille [14]. Conceptual Lattices have been shown to be 
equivalent to Modularity Matrices (e.g. Exman and Speicher 
[12]), linking the algebraic characteristics to conceptual ones. 

III.  OPEN ISSUES: ARCHITECTURE, ABSTRACTION, 
ALGEBRA 

We now consider the open issues of Conceptual Integrity in 
a wide context. We start by referring to it in architecture terms. 
Then we consider abstraction and algebraic formulations. 

A. Open Issues: Architecture 

In Brooks’ book “The Mythical Man-Month” [2] in front of 
the fourth chapter opening (page 41) there is a photo of the 
interior of the Reims cathedral, planned by Jean D’Orbais. An 
annotated sketch of the cathedral is seen in Fig. 1 in this paper. 
It has an imposing huge height relative to humans, as usual for 
medieval gothic cathedrals, implying the difficulty to actually 
build it.  

 
Figure 1. Reims Cathedral Interior: sketchy annotations – one can see the 
perfect symmetry of its elements: two rows of very high parallel columns 
(annotated by vertical blue color line segments), two stained glass rose 
windows (annotated by a pink background within a red circle), and above the 
columns the parallel gothic arches. 

Nonetheless, despite the incredible weight of its stones, it 
displays elegance, coherence, and symmetry of its component 
forms: e.g. long repetitive rows of identical very high columns 
and two symmetrical stained glass rose windows above the 
altar region. 

Another example is the renaissance cathedral of Firenze, 
whose symmetric dome with repetitive elements was designed 
by Brunelleschi. It is seen in Fig. 6-4 (page 75) in “The Design 
of Design” [3] book by Brooks. 

Thus, Conceptual Integrity in classical, medieval and 
renaissance architecture means that the overall structure is 
immediately recognized by its repetitive and symmetric 
components’ consistency, and is very attractive by its esthetics. 



 
Figure 2. Bilbao Museum by Frank Gehry: sketchy annotations – one perceives 
the intentional total absence of symmetry of its elements. It displays one very 
high column (annotated by two vertical blue linear segment bounds) in its 
entrance; compare its height with that of human visitors, which are pointed out 
by the (dark blue) arrow. The overall asymmetric structure should resemble a 
ship contour (annotated by red linear segments, of various sizes and non-
parallel directions). The outer metal structures reflect light by fish-like scales. 

The Guggenheim Museum in Bilbao, designed by the 
architect Frank Gehry, has been metaphorically referred to as a 
modern cathedral, due to its enormous size, in particular the 
huge height of its atrium [15]. Fig. 2 is an annotated sketch of 
it. Moreover, it seems to be very consistent, by the similarity of 
materials and forms, to resemble a ship – since Bilbao is a port. 
In fact, it was designed with the support of the Digital Project 
(see e.g. [7]), which itself is based upon CATIA a sophisticated 
software system used to plan modern aircraft. 

On the other hand, nothing is repetitive or symmetric in the 
Bilbao Museum. There are no two identical components in the 
Museum. We thought that we had the keys to the notion of 
Integrity, but, modern architecture breaks down the older keys. 
This is our second encounter with elusiveness. We are left with 
the open issue: 

 

 

 

 

 

 

Paradoxically one still could say that the Bilbao Museum 
displays an internal Conceptual Integrity – the ship outline – 
and even to the apparently dissimilar buildings of the city of 
Bilbao. Moreover, the outer titanium metal sub-structures 
reflect light like fish scales! But how is ship and fish related 
concepts? This is discussed in the next sub-section on 
Abstraction. 

B. Open Issues: Abstraction 

We shall refer to abstraction in two senses: first, geometric 
or image abstraction; second, conceptual abstraction. 

Regarding geometric abstraction, we mean that any 
considerations of Integrity are not taken with respect to the 
actual buildings referred to in the previous architecture sub-
section. Neither real stone blocks, nor titanium metal surfaces 
are necessary to perceive symmetry or the “ship” shape. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Reims Cathedral Geometric Abstraction: only sketchy annotations – 
this figure abstracts Fig. 1 to just the schematic representation of the rows of 
parallel columns (in blue) and the two stained glass rose windows (in red). 

 
 
 
 
 
 

 

 

Figure 4. Bilbao Museum Geometric Abstraction: only sketchy annotations – 
this figure abstracts Fig. 2 to just the schematic representation of the exactly 
copied contour segments (in red) and the column bounds  two vertical (light 
blue) segments. The contour segments were in addition linked by round (dark 
blue) lines, to facilitate our perception of the overall “ship” form. 

 
One performs quite complex abstraction operations in the 

human brain, which are simulated by computer image 
processing – noise elimination, segmentation, and object 
recognition – to extract just the lines needed to infer either 
symmetry as in Fig. 3 or a “ship” shape as in Fig. 4. 

Conceptual abstraction is a further step beyond geometric 
abstraction. In the cathedral case the relevant concepts are 
“columns” and “stained glass rose window”, together with the 
even more abstract concept of “symmetry”.  The next step in 
conceptual abstraction is the usage of architecture domain 
ontologies (see e.g. [8]). In the Bilbao Museum case, relevant 
concepts could be “port” of Bilbao, “ship” and “fish”. These 
could be found in Maritime domain ontologies (see e.g. [23]). 
But, the conceptual jump from these specific concepts to a 
Museum of modern art architecture is far from obvious. Then: 
 
 
 
 

Open Issue #1 – Conceptual Integrity in Architecture  
Despite symmetries being fundamental to physics – i.e. 
they correspond to conservation principles – and being 
important in classical architecture, symmetries are not 
ubiquitous in modern architecture.  
What is the generalization of symmetry that is common to 
Conceptual Integrity in all kinds of architecture?  

 

 

Open Issue #2 – Abstraction Conceptual Integrity 
Abstraction Conceptual Integrity seems to be intrinsically 
associative irrespective of the relevant domain. 
How to formally capture the associative character of 
abstraction Conceptual Integrity? 



C. Open Issues: Algebra 

Let us temporarily take for granted that Algebra is the 
mathematical basis of our formal approach to Conceptual 
Integrity – an approach extensively justified elsewhere (see e.g. 
[10], [11]), with respective arguments presented later on in this 
paper. In order to apply algebra to concepts we do not try to get 
an answer to Open Issue #2. Instead, we assume that the 
associative process of choosing sets of abstraction concepts – 
as discussed in the previous sub-section – is done by human 
software engineers, without any current attempt to formalize 
this process.  

The algebraic phase of Conceptual Integrity starts with the 
chosen sets of concepts that humans find necessary to build a 
desired software system. We have called the specific ontology 
relevant to a desired software system as “application 
ontology”. One can easily see that application ontologies have a 
striking similarity to UML class diagrams. Ontology concepts 
correspond to classes, and relationships among classes are of 
three kinds: inheritance (a sub-class is a type of class), 
composition (wholes are made of parts) and association (say 
usage of the functionality of another class). Thus, we deal with 
classes and their functionalities, and their respective 
generalizations. 

What is lacking in the above picture? The answer is: we 
lack criteria to verify that the choice of concepts is reasonable. 
This is the role of algebra. Thus: 

 

 

 

 

  

IV.  ARCHITECTURE PRINCIPLES 

The answer to the Open Issue #3 starts with the 
understanding that in any domain there are constraints limiting 
solutions. We start as in the previous section with principles of 
architecture. 

A. Structure: Buildings and Software 

The basic constraints obeyed by any building, either in 
antiquity or in modern times are first and foremost the laws of 
static – the branch of classical mechanics (itself a field of 
physics) dealing with structures which have no motion. One 
should have columns and beams to support structures of a 
building, a bridge over a bay or tunnels below a river. These 
columns and beams have a material composition, say concrete 
or steel, and suitable sizes and forms. Modern constructions 
have additional constraints, such as heating, acoustics, 
distribution of electricity and water tubing. 

Software structures, just as buildings, are hierarchical with 
classes and patterns – as sets of classes – being the relevant 
structural units. The relevant constraints are enforced by the 
above mentioned relationships already found in the application 
ontologies – viz. inheritance, composition and association. 

B. Behavior: Flying and Running Systems 

Physical systems displaying motion, such as airplanes, 
autonomous cars, robots, helicopters, boats and drones 
(unmanned aircraft systems) may fly, walk, navigate, etc. In 
addition to structural constraints, they have kinematic 
constraints limiting their motion in terms of speed and 
possible trajectories. 

Software systems when running also have constraints on 
their speeds, communication and memory usage. These are 
certainly affected by their structural constraints. With the 
increasing usage of autonomous systems, with embedded 
software, the software itself is also affected by the constraints 
of the containing physical systems.   

C. Modularity 

Modularity is an important consideration for any system, 
as it facilitates development, building and understanding of 
systems. Modularity is achieved by simplistic repetitive reuse 
of the same units again and again – such as the stones in the 
columns of the Reims cathedral, and wheels in mobile 
vehicles.   

Modularity maybe also achieved by more sophisticated 
means than strict repetition. The titanium metallic surfaces of 
the Bilbao Museum are each of them unique, but they are 
generated by a software system which reuses the same 
technology to obtain different shapes.  

Modularity is the result of complying with constraints, 
partially relaxing them as far as possible while minimizing 
undesirable effects. This is true in particular for software 
systems. 

V. ABSTRACTION PRINCIPLES 

In this section we deal with abstraction principles. 
Abstraction here is understood as conceptual abstraction for 
system design. We further focus only on embedded software or 
purely software system design. 

The abstraction principles express the necessary constraints 
which limit design to modular solutions. Concomitantly these 
provide the criteria to verify that design solutions are optimal 
under these constraints. In terms of the abstract concepts, this is 
the meaning of Conceptual Integrity. 

Conceptual abstraction principles were first formulated by 
Brooks in his books [3]. Here we succinctly review these 
principles. Note that all the three principles are formulated as 
negative expressions, i.e. “Do not…”, which are effectively 
constraining design and meaning.  

A. Abstract Propriety 

Brooks concisely formulates propriety as: “Do not 
introduce what is immaterial”.  

He explains this principle by an example of propriety in 
computers, viz. the representation of zero in twos-complement 
notation, which obeys the constraint of not attaching a sign to 
zero.  

In contrast, signed-magnitude and ones-complement 
representations do attach a sign to zero, which is extraneous 
and inconsistent with the original meaning of the “zero” 
concept. The consequence of these representations is addition 

Open Issue #3 – Algebraic Conceptual Integrity 
Assume that humans choose the needed concepts relevant 
to a desired software system, by a black-box algorithm. 
What are the criteria to verify that the concepts choice 
indeed comply with an idea of Conceptual Integrity for 
the desired software system? 



of artificial rules needed to characterize the behavior of zero in 
arithmetic operations. 

B. Abstract Orthogonality 

Brooks concisely formulates orthogonality as: “Do not link 
what is independent”.  

He explains this principle by a basic example of 
orthogonality in computers, viz. the operation of a (software or 
embedded) alarm clock. Two functionalities of such a clock are 
lighting and alarm. Orthogonality means that these two 
functionalities obey the constraint of actually being 
independent. 

In contrast, if the alarm would operate only when the clock 
is illuminated, it would violate orthogonality, since one is 
artificially linking two unrelated functionalities. 

C. Abstract Generality 

Brooks concisely formulates generality as: “Do not restrict 
what is inherent”.  

He explains this principle by a surprising example of 
generality of an operation in a processor, viz. the operation 
“ restart”. Its original purpose was to restart a process after an 
interruption. But the design generality enabled its use as 
returning from a subroutine. The obeyed constraint here is 
avoiding incidental restriction. 

In contrast, if it were strictly allowed only for the original 
purpose, one would clutter the design by introducing another 
almost overlapping concept for the second kind of usage. 

VI.  ALGEBRA: PRINCIPLES OF SOFTWARE DESIGN 

The power of a mathematical formalism is to express the 
abstract constraints in a precise way, enabling calculations 
upon the representation of a given software system design – 
e.g. of eigenvectors [11],[20] to obtain software modules –, and 
the verification whether the design comply with the imposed 
constraints. Moreover, one can improve the software design, 
based upon the verification results. 

The choice of linear algebra structures, such as the 
Modularity Matrix and its equivalents, is justified by the 
following reasons: 

• Expressivity – algebraic structures are expressive 
enough to represent the wide variability of 
software structures; 

• Constraints Nature – it is very natural to 
formulate Brooks’ abstraction constraints in 
algebraic terms, as will be seen in the following 
sub-sections; 

• Conceptual Meaning – since each Modularity 
Matrix of a software system is equivalent to its 
corresponding Conceptual Lattice, the Conceptual 
meanings are immediately taken into account. 

A. Algebraic Propriety 

The algebraic translation of Brooks’ Propriety is based 
upon the following ideas [10]. Instead of sets of classes (the 
concepts), one works with vectors of classes. Structors are 

generalized classes to all levels of the hierarchical software 
system.  Structors provide functionalities. Thus, one also has 
functional vectors.  

In order to avoid immaterial additions, i.e. the design goal 
is to minimize the representation of a software system, the 
algebraic Propriety constraint is: linear independence of all the 
structor vectors and of all the functional vectors in the 
Modularity Matrix of the given software system. Any 
dependent vector is superfluous and discarded. 

B. Algebraic Orthogonality 

The algebraic translation of Brooks’ Orthogonality is even 
more immediate. One literally uses exactly the same word 
orthogonality, but now with the exact algebraic meaning of 
“zero scalar product of a pair of vectors”.  

The algebraic Orthogonality constraint is: orthogonality of 
all structor vectors and all functional vectors inside a module to 
the respective vectors in all other modules in the Modularity 
Matrix of the given software system. Thus, different software 
modules actually deal with different concerns, literally having 
different conceptual meanings. 

C. Algebraic Generality 

The algebraic translation of Brooks’ Generality is that since 
the definition of a structor or its functionalities are not strictly 
repeated in another location of the same software system, one 
still can re-use these structors and their functionalities 
elsewhere in the same system by means of composition or by 
means of aspect-oriented design. 

The algebraic Generality constraint is: generality once 
again minimizes the number of appearances of structor vectors 
and functional vectors in various hierarchical levels of the 
Modularity Matrix of the given software system. On the other 
hand, in an aspect-oriented design fashion, one puts the general 
structors/functionals in a high enough hierarchical level, to be 
accessible from anywhere in the system. 

VII.  DISCUSSION 

We here summarize the important points of this paper. 
Brooks’ used architecture of cathedrals to justify his 
Conceptual Integrity principles. Indeed the architecture of 
buildings provides fruitful metaphors in our context, as we 
have seen that one obtains valuable concepts from the building 
abstractions. But, even more importantly, they lead to open 
issues challenging simplistic notions of Conceptual Integrity. 

A. Eliciting Concepts 

Concept elicitation from system stakeholders, using system 
sketches, drafts or early models, is an activity related to 
requirements engineering. It demands high human capabilities 
and in this paper this activity was left to the human engineers. 
We currently give up any effort to mathematical formalize this 
activity. It may well be that we shall return to this basic issue in 
future work. 

We deliberately assumed that one starts the Conceptual 
Integrity analysis from an initial list of concepts – translated 



into structor and functional vectors. This initial list may change 
along the design and development processes. 

B. Criteria for Integrity 

Brooks’ principles actually are constraints on the software 
system design solutions. Once this is understood, one can 
clearly express algebraic equivalent formulations of the same 
principles. 

The propriety and orthogonality constraints received a 
very natural translation to linear algebra notions. The 
generality principle seems to deserve further investigation. 

C. Main Contribution 

The main contribution of this paper is a set of open issues 
to be discussed within a Conceptual Integrity forum, and the 
clear understanding of its principles, as mathematical 
constraints on the design solution for a software system. 
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