
 Conceptual Integrity of Software Systems:
Architecture, Abstraction and Algebra

Iaakov Exman
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel
iaakov@jce.ac.il

Abstract— Conceptual Integrity has been claimed to be the
essence of high-quality software system design. On the other
hand, it has been a rather elusive attribute of software systems,
challenging various attempts of a clear-cut characterization. This
paper evolves in this direction by two means: first, by analysis
and clarification of open issues in architecture and abstraction
terms; second, by pointing out to a mathematical formulation in
algebraic terms. This paper also serves as a broad introduction to
discussions on “Conceptual Integrity of Software Systems”.1

Keywords: Conceptual Integrity; software system design;
architecture; abstraction; algebra; Linear Software Models;
Modularity Matrix; Conceptual lattice; plausibility criteria; design
constraints.

I. INTRODUCTION

Frederick Brooks [2], [3], based upon his extensive
experience with system development, in particular the first
families of OS/360 operating systems, proposed that
Conceptual Integrity is essential for high-quality software
system design. It takes some time to assimilate this idea, but
even after reading about it once and again and having second
and third thoughts, Conceptual Integrity remains attractive, but
a quite elusive notion.

The first task of this paper is to introduce the notion, its
attractiveness and why it is still elusive. Then, we argue in
favor of mathematical formalization, like in any respectable
science. The overall purpose of this paper is to try to open and
discuss deep issues on “Conceptual Integrity of Software
Systems” and to point out to a formal solution to these issues.

A. The Notion of Conceptual Integrity

Software system design and development, as it is common
practice nowadays, gives a superficial impression of
unrestricted flexibility, where everything is allowed and
nothing is forbidden. Often practitioners think that software
design and development is an art, rather than a science. People
exposing this opinion may express distaste for suggestions of
mathematical description of the processes involved.

The feeling of unrestricted flexibility and its artistic
connotation is acquired from the first experiences with
computer programs that one writes. Except for an apparent

DOI: 10.18293/SEKE2017-206

arbitrariness of the programming language syntax, one has full
confidence in the choice of the preferred programming
construct – this is the unrestricted flexibility – and the program
is supposed to run for sure. Then, happens the inevitable bug,
demanding a subtle correction – this is the artistic connotation.

A widespread rational response to the artistic flexibility is to
introduce methodologies. If one is methodical, then the price of
software design and development should decrease. This is the
first encounter with elusiveness (cf. the word “Mythical” in the
title of the earlier book by Brooks). Any experienced software
developer knows that methodologies are not the panacea that
they promise to be. They fail, sometimes miserably.

Then, Conceptual Integrity, by Brooks, enters the stage.
This is a deeper response to the software system development
problem. We explain the notion in literally architecture terms,
exactly as in Brooks’ books, while presenting open issues in
section III.

B. Paper Organization

The remaining of the paper is organized as follows. Section
II refers to related work. Section III introduces open issues of
Conceptual Integrity in a broad context. Section IV focuses on
architecture principles. Section V turns to abstraction
principles. Section VI summarizes algebraic principles of
software design. Section VII concludes with a discussion.

II. RELATED WORK

A. Conceptual Integrity Outside Software Systems

This paper refers to Architecture of buildings in general,
following Brooks’ metaphors used in his books to illustrate
notions of Conceptual Integrity. In this context, we refer here to
a few architecture-related modeling techniques and ontologies.

DeLuca and co-authors [5] describe a generic formalism for
semantic modeling of architectural elements, which compose
buildings of historic interest in classical architecture. Doerr [8]
reviews ontologies for cultural heritage; he emphasizes
physical objects in archeology, including architecture. Quattrini
et al. [22] describe modern computer-based techniques for
semantically-aware 3D modeling of architecture.

B. Conceptual Integrity Within Software Systems

Conceptual Integrity is closely related to efforts regarding
various development phases of software systems. These efforts
are among others: requirements engineering, conceptual
modeling, integrity verification, software system design, and
software architecture planning. The relevant literature is very
extensive, and we provide just a few representative pointers.

Jackson and co-authors [6],[17],[18] analyzed widely used
software systems, such as Git, in terms of Conceptual Integrity,
suggesting design improvements.

Insfran et al. [16] refer to conceptual modeling based on
requirements engineering. For these authors conceptual
modeling is an UML object-oriented approach rather than
based on conceptual integrity. Nevertheless, there are
similarities between these approaches, as discussed later on.

Cabot and Teniente [4] refer to integrity checking of
UML/OCL conceptual schemas. Integrity here means software
state conditions that must be satisfied. Sometimes it
specifically refers to avoidance of critical system malfunction.
Conceptual schemas are basic relations between concepts
within the general knowledge required by any information
system (see also e.g. the book by Olive [21]).

Kazman and Carriere [19] reconstruct a software system
architecture using conceptual integrity as a guideline. Their
goal is to achieve a restricted number of components connected
in regular ways, with internally consistent functionality.

C. Mathematical Conceptual Integrity of Software

In this work we shall mainly refer to the Modularity Matrix
[9],[10],[13] which is based upon linear algebra. Other matrices
have been used for modular design. For instance, the Design
Structure Matrix (DSM) is an integral part of the ‘Design
Rules’ by Baldwin and Clark [1]. It has been applied for
various kinds of systems, including software systems. DSM
design quality is estimated by an external economic theory
superimposed on the DSM matrix.

Conceptual lattices, analyzed within Formal Concept
Analysis (FCA) were introduced in Wille [24]. A generic
review of its mathematical foundations is given by Ganter and
Wille [14]. Conceptual Lattices have been shown to be
equivalent to Modularity Matrices (e.g. Exman and Speicher
[12]), linking the algebraic characteristics to conceptual ones.

III. OPEN ISSUES: ARCHITECTURE, ABSTRACTION,
ALGEBRA

We now consider the open issues of Conceptual Integrity in
a wide context. We start by referring to it in architecture terms.
Then we consider abstraction and algebraic formulations.

A. Open Issues: Architecture

In Brooks’ book “The Mythical Man-Month” [2] in front of
the fourth chapter opening (page 41) there is a photo of the
interior of the Reims cathedral, planned by Jean D’Orbais. An
annotated sketch of the cathedral is seen in Fig. 1 in this paper.
It has an imposing huge height relative to humans, as usual for
medieval gothic cathedrals, implying the difficulty to actually
build it.

Figure 1. Reims Cathedral Interior: sketchy annotations – one can see the
perfect symmetry of its elements: two rows of very high parallel columns
(annotated by vertical blue color line segments), two stained glass rose
windows (annotated by a pink background within a red circle), and above the
columns the parallel gothic arches.

Nonetheless, despite the incredible weight of its stones, it
displays elegance, coherence, and symmetry of its component
forms: e.g. long repetitive rows of identical very high columns
and two symmetrical stained glass rose windows above the
altar region.

Another example is the renaissance cathedral of Firenze,
whose symmetric dome with repetitive elements was designed
by Brunelleschi. It is seen in Fig. 6-4 (page 75) in “The Design
of Design” [3] book by Brooks.

Thus, Conceptual Integrity in classical, medieval and
renaissance architecture means that the overall structure is
immediately recognized by its repetitive and symmetric
components’ consistency, and is very attractive by its esthetics.

Figure 2. Bilbao Museum by Frank Gehry: sketchy annotations – one perceives
the intentional total absence of symmetry of its elements. It displays one very
high column (annotated by two vertical blue linear segment bounds) in its
entrance; compare its height with that of human visitors, which are pointed out
by the (dark blue) arrow. The overall asymmetric structure should resemble a
ship contour (annotated by red linear segments, of various sizes and non-
parallel directions). The outer metal structures reflect light by fish-like scales.

The Guggenheim Museum in Bilbao, designed by the
architect Frank Gehry, has been metaphorically referred to as a
modern cathedral, due to its enormous size, in particular the
huge height of its atrium [15]. Fig. 2 is an annotated sketch of
it. Moreover, it seems to be very consistent, by the similarity of
materials and forms, to resemble a ship – since Bilbao is a port.
In fact, it was designed with the support of the Digital Project
(see e.g. [7]), which itself is based upon CATIA a sophisticated
software system used to plan modern aircraft.

On the other hand, nothing is repetitive or symmetric in the
Bilbao Museum. There are no two identical components in the
Museum. We thought that we had the keys to the notion of
Integrity, but, modern architecture breaks down the older keys.
This is our second encounter with elusiveness. We are left with
the open issue:

Paradoxically one still could say that the Bilbao Museum
displays an internal Conceptual Integrity – the ship outline –
and even to the apparently dissimilar buildings of the city of
Bilbao. Moreover, the outer titanium metal sub-structures
reflect light like fish scales! But how is ship and fish related
concepts? This is discussed in the next sub-section on
Abstraction.

B. Open Issues: Abstraction

We shall refer to abstraction in two senses: first, geometric
or image abstraction; second, conceptual abstraction.

Regarding geometric abstraction, we mean that any
considerations of Integrity are not taken with respect to the
actual buildings referred to in the previous architecture sub-
section. Neither real stone blocks, nor titanium metal surfaces
are necessary to perceive symmetry or the “ship” shape.

Figure 3. Reims Cathedral Geometric Abstraction: only sketchy annotations –
this figure abstracts Fig. 1 to just the schematic representation of the rows of
parallel columns (in blue) and the two stained glass rose windows (in red).

Figure 4. Bilbao Museum Geometric Abstraction: only sketchy annotations –
this figure abstracts Fig. 2 to just the schematic representation of the exactly
copied contour segments (in red) and the column bounds two vertical (light
blue) segments. The contour segments were in addition linked by round (dark
blue) lines, to facilitate our perception of the overall “ship” form.

One performs quite complex abstraction operations in the

human brain, which are simulated by computer image
processing – noise elimination, segmentation, and object
recognition – to extract just the lines needed to infer either
symmetry as in Fig. 3 or a “ship” shape as in Fig. 4.

Conceptual abstraction is a further step beyond geometric
abstraction. In the cathedral case the relevant concepts are
“columns” and “stained glass rose window”, together with the
even more abstract concept of “symmetry”. The next step in
conceptual abstraction is the usage of architecture domain
ontologies (see e.g. [8]). In the Bilbao Museum case, relevant
concepts could be “port” of Bilbao, “ship” and “fish”. These
could be found in Maritime domain ontologies (see e.g. [23]).
But, the conceptual jump from these specific concepts to a
Museum of modern art architecture is far from obvious. Then:

Open Issue #1 – Conceptual Integrity in Architecture
Despite symmetries being fundamental to physics – i.e.
they correspond to conservation principles – and being
important in classical architecture, symmetries are not
ubiquitous in modern architecture.
What is the generalization of symmetry that is common to
Conceptual Integrity in all kinds of architecture?

Open Issue #2 – Abstraction Conceptual Integrity
Abstraction Conceptual Integrity seems to be intrinsically
associative irrespective of the relevant domain.
How to formally capture the associative character of
abstraction Conceptual Integrity?

C. Open Issues: Algebra

Let us temporarily take for granted that Algebra is the
mathematical basis of our formal approach to Conceptual
Integrity – an approach extensively justified elsewhere (see e.g.
[10], [11]), with respective arguments presented later on in this
paper. In order to apply algebra to concepts we do not try to get
an answer to Open Issue #2. Instead, we assume that the
associative process of choosing sets of abstraction concepts –
as discussed in the previous sub-section – is done by human
software engineers, without any current attempt to formalize
this process.

The algebraic phase of Conceptual Integrity starts with the
chosen sets of concepts that humans find necessary to build a
desired software system. We have called the specific ontology
relevant to a desired software system as “application
ontology”. One can easily see that application ontologies have a
striking similarity to UML class diagrams. Ontology concepts
correspond to classes, and relationships among classes are of
three kinds: inheritance (a sub-class is a type of class),
composition (wholes are made of parts) and association (say
usage of the functionality of another class). Thus, we deal with
classes and their functionalities, and their respective
generalizations.

What is lacking in the above picture? The answer is: we
lack criteria to verify that the choice of concepts is reasonable.
This is the role of algebra. Thus:

IV. ARCHITECTURE PRINCIPLES

The answer to the Open Issue #3 starts with the
understanding that in any domain there are constraints limiting
solutions. We start as in the previous section with principles of
architecture.

A. Structure: Buildings and Software

The basic constraints obeyed by any building, either in
antiquity or in modern times are first and foremost the laws of
static – the branch of classical mechanics (itself a field of
physics) dealing with structures which have no motion. One
should have columns and beams to support structures of a
building, a bridge over a bay or tunnels below a river. These
columns and beams have a material composition, say concrete
or steel, and suitable sizes and forms. Modern constructions
have additional constraints, such as heating, acoustics,
distribution of electricity and water tubing.

Software structures, just as buildings, are hierarchical with
classes and patterns – as sets of classes – being the relevant
structural units. The relevant constraints are enforced by the
above mentioned relationships already found in the application
ontologies – viz. inheritance, composition and association.

B. Behavior: Flying and Running Systems

Physical systems displaying motion, such as airplanes,
autonomous cars, robots, helicopters, boats and drones
(unmanned aircraft systems) may fly, walk, navigate, etc. In
addition to structural constraints, they have kinematic
constraints limiting their motion in terms of speed and
possible trajectories.

Software systems when running also have constraints on
their speeds, communication and memory usage. These are
certainly affected by their structural constraints. With the
increasing usage of autonomous systems, with embedded
software, the software itself is also affected by the constraints
of the containing physical systems.

C. Modularity

Modularity is an important consideration for any system,
as it facilitates development, building and understanding of
systems. Modularity is achieved by simplistic repetitive reuse
of the same units again and again – such as the stones in the
columns of the Reims cathedral, and wheels in mobile
vehicles.

Modularity maybe also achieved by more sophisticated
means than strict repetition. The titanium metallic surfaces of
the Bilbao Museum are each of them unique, but they are
generated by a software system which reuses the same
technology to obtain different shapes.

Modularity is the result of complying with constraints,
partially relaxing them as far as possible while minimizing
undesirable effects. This is true in particular for software
systems.

V. ABSTRACTION PRINCIPLES

In this section we deal with abstraction principles.
Abstraction here is understood as conceptual abstraction for
system design. We further focus only on embedded software or
purely software system design.

The abstraction principles express the necessary constraints
which limit design to modular solutions. Concomitantly these
provide the criteria to verify that design solutions are optimal
under these constraints. In terms of the abstract concepts, this is
the meaning of Conceptual Integrity.

Conceptual abstraction principles were first formulated by
Brooks in his books [3]. Here we succinctly review these
principles. Note that all the three principles are formulated as
negative expressions, i.e. “Do not…”, which are effectively
constraining design and meaning.

A. Abstract Propriety

Brooks concisely formulates propriety as: “Do not
introduce what is immaterial”.

He explains this principle by an example of propriety in
computers, viz. the representation of zero in twos-complement
notation, which obeys the constraint of not attaching a sign to
zero.

In contrast, signed-magnitude and ones-complement
representations do attach a sign to zero, which is extraneous
and inconsistent with the original meaning of the “zero”
concept. The consequence of these representations is addition

Open Issue #3 – Algebraic Conceptual Integrity
Assume that humans choose the needed concepts relevant
to a desired software system, by a black-box algorithm.
What are the criteria to verify that the concepts choice
indeed comply with an idea of Conceptual Integrity for
the desired software system?

of artificial rules needed to characterize the behavior of zero in
arithmetic operations.

B. Abstract Orthogonality

Brooks concisely formulates orthogonality as: “Do not link
what is independent”.

He explains this principle by a basic example of
orthogonality in computers, viz. the operation of a (software or
embedded) alarm clock. Two functionalities of such a clock are
lighting and alarm. Orthogonality means that these two
functionalities obey the constraint of actually being
independent.

In contrast, if the alarm would operate only when the clock
is illuminated, it would violate orthogonality, since one is
artificially linking two unrelated functionalities.

C. Abstract Generality

Brooks concisely formulates generality as: “Do not restrict
what is inherent”.

He explains this principle by a surprising example of
generality of an operation in a processor, viz. the operation
“ restart”. Its original purpose was to restart a process after an
interruption. But the design generality enabled its use as
returning from a subroutine. The obeyed constraint here is
avoiding incidental restriction.

In contrast, if it were strictly allowed only for the original
purpose, one would clutter the design by introducing another
almost overlapping concept for the second kind of usage.

VI. ALGEBRA: PRINCIPLES OF SOFTWARE DESIGN

The power of a mathematical formalism is to express the
abstract constraints in a precise way, enabling calculations
upon the representation of a given software system design –
e.g. of eigenvectors [11],[20] to obtain software modules –, and
the verification whether the design comply with the imposed
constraints. Moreover, one can improve the software design,
based upon the verification results.

The choice of linear algebra structures, such as the
Modularity Matrix and its equivalents, is justified by the
following reasons:

• Expressivity – algebraic structures are expressive
enough to represent the wide variability of
software structures;

• Constraints Nature – it is very natural to
formulate Brooks’ abstraction constraints in
algebraic terms, as will be seen in the following
sub-sections;

• Conceptual Meaning – since each Modularity
Matrix of a software system is equivalent to its
corresponding Conceptual Lattice, the Conceptual
meanings are immediately taken into account.

A. Algebraic Propriety

The algebraic translation of Brooks’ Propriety is based
upon the following ideas [10]. Instead of sets of classes (the
concepts), one works with vectors of classes. Structors are

generalized classes to all levels of the hierarchical software
system. Structors provide functionalities. Thus, one also has
functional vectors.

In order to avoid immaterial additions, i.e. the design goal
is to minimize the representation of a software system, the
algebraic Propriety constraint is: linear independence of all the
structor vectors and of all the functional vectors in the
Modularity Matrix of the given software system. Any
dependent vector is superfluous and discarded.

B. Algebraic Orthogonality

The algebraic translation of Brooks’ Orthogonality is even
more immediate. One literally uses exactly the same word
orthogonality, but now with the exact algebraic meaning of
“zero scalar product of a pair of vectors”.

The algebraic Orthogonality constraint is: orthogonality of
all structor vectors and all functional vectors inside a module to
the respective vectors in all other modules in the Modularity
Matrix of the given software system. Thus, different software
modules actually deal with different concerns, literally having
different conceptual meanings.

C. Algebraic Generality

The algebraic translation of Brooks’ Generality is that since
the definition of a structor or its functionalities are not strictly
repeated in another location of the same software system, one
still can re-use these structors and their functionalities
elsewhere in the same system by means of composition or by
means of aspect-oriented design.

The algebraic Generality constraint is: generality once
again minimizes the number of appearances of structor vectors
and functional vectors in various hierarchical levels of the
Modularity Matrix of the given software system. On the other
hand, in an aspect-oriented design fashion, one puts the general
structors/functionals in a high enough hierarchical level, to be
accessible from anywhere in the system.

VII. DISCUSSION

We here summarize the important points of this paper.
Brooks’ used architecture of cathedrals to justify his
Conceptual Integrity principles. Indeed the architecture of
buildings provides fruitful metaphors in our context, as we
have seen that one obtains valuable concepts from the building
abstractions. But, even more importantly, they lead to open
issues challenging simplistic notions of Conceptual Integrity.

A. Eliciting Concepts

Concept elicitation from system stakeholders, using system
sketches, drafts or early models, is an activity related to
requirements engineering. It demands high human capabilities
and in this paper this activity was left to the human engineers.
We currently give up any effort to mathematical formalize this
activity. It may well be that we shall return to this basic issue in
future work.

We deliberately assumed that one starts the Conceptual
Integrity analysis from an initial list of concepts – translated

into structor and functional vectors. This initial list may change
along the design and development processes.

B. Criteria for Integrity

Brooks’ principles actually are constraints on the software
system design solutions. Once this is understood, one can
clearly express algebraic equivalent formulations of the same
principles.

The propriety and orthogonality constraints received a
very natural translation to linear algebra notions. The
generality principle seems to deserve further investigation.

C. Main Contribution

The main contribution of this paper is a set of open issues
to be discussed within a Conceptual Integrity forum, and the
clear understanding of its principles, as mathematical
constraints on the design solution for a software system.

REFERENCES

[1] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of

Modularity, MIT Press, Cambridge, MA, USA, 2000.

[2] F.P. Brooks, The Mythical Man-Month – Essays in Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[3] F.P. Brooks, The Design of Design: Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

[4] J. Cabot and E. Teniente, “Incremental Integrity Checking of UML/OCL
Conceptual Schemas”, J. Systems and Software, Vol. 82, pp. 1459-
1478, Sept. 2009. DOI: http://doi.org/10.1016/j.jss.2009.03.009

[5] L. De Luca, P. Veron and M. Florenzano, “A generic formalism for the
semantic modeling and representation of architectural elements”, Visual
Computer, Feb. 2007. DOI: http://dx.doi.org/10.1007/s00371-006-0092-5

[6] S.P. De Rosso and D. Jackson, “What’s Wrong with Git? A Conceptual
Design Analysis”, in Proc. of Onward! Conference, pp. 37-51, ACM,
2013. DOI: http://dx.doi.org/10.1145/2509578.2509584.

[7] Digital Project, https://en.wikipedia.org/wiki/Digital_Project

[8] M. Doerr, “Ontologies for Cultural Heritage”, in Staab and Studer (eds.)
Handbook on Ontologies, Springer-Verlag, Berlin, 2009, DOI:
http://dx/doi/org/10.1007/978-3-540-92673-3

[9] I. Exman, “Linear Software Models”, Proc. 1st SEMAT Workshop on a
General Theory of Software Engineering, KTH Royal Institute of
Technology, Stockholm, Sweden, 2012. http://semat.org/wp-
content/uploads/2012/10/GTSE_2012_Proceedings.pdf. video of this
paper in the web site: http://www.youtube.com/watch?v=EJfzArH8-ls.

[10] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal of Software Engineering and

Knowledge Engineering, Vol. 24, pp. 183-210, 2014. DOI:
10.1142/S0218194014500089.

[11] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Matrix Eigenvectors”, Int. Journal of Software Engineering
and Knowledge Engineering, Vol. 25, pp. 1395-1426, 2015. DOI:
http://dx.doi.org/10.1142/S0218194015500308

[12] I. Exman and D. Speicher, “Linear Software Models: Equivalence of the
Modularity Matrix to its Modularity Lattice”, in Proc. 10th ICSOFT’2015
Int. Conference on Software Technology, pp. 109-116, ScitePress,
Portugal, 2015. DOI: 10.5220/0005557701090116

[13] I. Exman, “Linear Software Models: An Algebraic Theory of Software
Composition”, in Proc. 28th Int. Conf. on Software Engineering and
Knowledge Engineering, Keynote Abstract, KSI Research, Redwood
City, CA, USA, 2016.

[14] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, Berlin, Germany, 1998.

[15] Guggenheim Museum in Bilbao by Frank Gehry,
https://en.wikipedia.org/wiki/Guggenheim_Museum_Bilbao

[16] E. Insfran, O. Pastor and R. Wieringa, “Requirements Engineering-
Based Conceptual Modeling”, Requirements Eng. Vol. 7, pp. 61-72,
June 2002, DOI: http://dx/doi/org/10.1007/s007660200005

[17] D. Jackson, “Conceptual Design of Software: A Research Agenda”,
CSAIL Technical Report, MIT-CSAIL-TR-2013-020, 2013. URL:
http://dspace.mit.edu/bitstream/handle/1721.1/79826/MIT-CSAIL-TR-
2013-020.pdf?sequence=2

[18] D. Jackson, “Towards a Theory of Conceptual Design for Software”, in
Proc. Onward! 2015 ACM Int. Symposium on New Ideas, New
Paradigms and Reflections on Programming and Software, pp. 282-296,
2015. DOI: 10.1145/2814228.2814248.

[19] R. Kazman and S.J. Carriere, “Playing Detective: Reconstructing
Software Architecture from Available Evidence.” Technical Report
CMU/SEI-97-TR-010, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

[20] U. von Luxburg, “A Tutorial on Spectral Clustering”, Statistics and
Computing, 17 (4), pp. 395-416, 2007. DOI: 10.1007/s11222-007-9033-
z

[21] A. Olive, Conceptual Modeling of Information Systems, Springer-Verlag,
Berlin, 2007.

[22] R. Quattrini, E.S. Malinverni, P. Clini, R. Nespeca and E. Orlietti,
“From TLS to HBIM. High Quality Semantically-aware 3D Modeling of
Complex Architecture”, in 3D Virtual Reconstruction and Visualization
of Complex Architectures, pp. 367-374, Avila, Spain, Feb. 2015. DOI:
http://dx/doi/org/10.5194/isprsarchives-XL-5-W4-367-2015

[23] G. Santipantakis, K.I.Kotis and G.A. Vouros, “Ontology-Based Data
Integration for Event Recognition in the Maritime Domain”, WIMS ’15,
July 2015, Larnaca, Cyprus, DOI:
http://dx.doi.org/10.1145/2797115.2797133

[24] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts” In: I. Rival (ed.): Ordered Sets, pp. 445–470, Reidel,
Dordrecht-Boston, 1982.

