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Abstract— Sampling-based instrumentation is often used to make 

runtime monitoring of applications more efficient. AOP has long 

been used for monitoring but does not have the ability to support code 

sampling in its current form. In this paper, we present an 

implementation of two new pointcut designators in a static weave 

form intended to be used as code sampling tools. The implementation 

is created as an extension using the aspect bench compiler (abc). 

These two new pointcut designators serve as additions to the family 

of joinpoints in AOP for the purpose of code sampling. 

I. INTRODUCTION  

Aspect Oriented Programming (AOP) is mainly concerned 
with the separation of cross-cutting concerns; the design of AOP 
was dedicated to separate the program main logic functionally 
from secondary yet; imperative code additions that otherwise 
make the code weak or susceptible to break [9]. Take for 
example the code needed for a student to register in a class. The 
basic logic of this code is simple; first make sure that the class 
still has seating space for the student. If so, add the student to 
class roster. Now creating the code for the above logic is 
straight-forward, but does not represent reality. In real life, there 
should be a segment in the code that always checks to 
authenticate the user during the session. There should be as well 
code that logs any transactions to some database. These two 
actions are not part of the basic program logic but should be 
incorporated to validate the program and the actions of the user. 

Another major example is code based exceptions. The mere 
semantics of an exception is to catch some behavior that is not 
covered and does not meet the basic program logic. The simple 
example of “DivideByZero” exception shows the importance of 
having such cross-cutting concerns implemented in code.  

The concept of cross-cutting concerns in AOP has been also 
utilized in other arenas. The research shows much usage of AOP 
in domain specific languages [6, 7]. This usage spanned from 
expressing constraints on the behavior and structure of a 
program all the way to parallel dynamic analysis of multicores 
[2]. The growth of AOP has itself been extended to include more 
sophisticated tools in aiding code development. This paper 
describes two new sampling designators, their main 
functionality, their implementation, and how they are used. It 
also presents a performance analysis compared to other 
designators. 

 

 

II.   RELATED AND BACKGROUND WORK 

Since AOP was established, the notion to extend the set of 
pointcut designators was defined [3, 13]. AOP introduces a 
modular approach in helping to separate crosscutting concerns 
by an Aspect. An aspect relies on the concept of weaving; the 
instrumentation of crosscutting code into the main program code 
logic. A typical aspect module contains several fundamental 
components; the first component is the pointcut designator. 
Pointcut designators are features in the program execution where 
the advice of an aspect can be weaved in. A composition 
language allows a pointcut expression to combine and constrain 
these to define a pointcut (execution occurrences of the program 
features) that satisfies the expression and where the advice will 
be executed1. The advice represents the code to be weaved at 
locations defined by the pointcut expression.    

The code below shows an example of an after advice that is 
weaved after every time the method openSocket is executed. The 
advice will print out the reflective information about, where in 
the code the particular execution has occurred. Note that in this 
particular example, the advice will apply on any method that 
begins with “openSocket” regardless of the return type and the 
number of parameters.  

 

after() execution(* openSocket*(..)) { 

    //Advice to be woven 

    System.out.println("socket open at"+ 

    thisJoinPoint.getSourceLocation()); 

} 

 

The amount of AOP integration within a system depends on 
the way it is implemented. It could simplify the base code and 
the semantics of the program or it could do the opposite by 
introducing too much coupling among different aspects. The 
latter defeats the purpose of AOP. A well-known study examines 
the interactions between aspects and methods and identifies 
classes of interactions that enable modular reasoning about the 
crosscut program [12]. 

AOP has been implemented to be used in several languages. 
One of the most used is AspectJ; an implementation of AOP for 
the Java language [8].  An alternative to AspectJ is the aspect 
bench compiler (abc) [3]. The main difference between AspectJ 
and abc is that abs is designed for extensibility and modification 
by creating extensions. The extension of abc includes 
introducing new grammar to the language, followed by 
introducing new rules for the semantics and code needed for 
abstract syntax trees. Adding advice includes defining how code 

1. AOP literature uses the term joinpoint to refer to a point in the code 
execution. We feel that the term “pointcut designator” has a more abstract 
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should be generated to invoke that advice and where in the 
joinpoint shadow this code should go. The Shadow pointcuts 
pick out a specific joinpoint shadow within a method body (i.e. 
enables to shadow every executable statement in the code). 

Sampling could be defined as a general utility of 
summarization for a broad spectrum of analytical tasks [4]. In 
the world of computer science, sampling research is usually 
conceived to target data sampling techniques. An example is 
sampling big data and graph, and network sampling. BlinkDB,is 
a well-known approximate query engine on large quantities of 
data used for sampling [1, 4].  

The use of the term code sampling is generally found in 
compiler research [5]. Code sampling is used to determine many 
aspects of the code such as unreachable code fragments (with the 
help of code coverage), dead-code elimination, and the 
replacement of frequent accessed code segments with other 
faster segments.   

III. WHAT TO SAMPLE 

The first set of questions the think of are, A) which locations 
or points in a program should be selected for sampling? B) what 
exactly should be sampled? And C) how often should it be done? 
These three questions were at the basic design of the new 
pointcut designators. The following is a discussion for each 
question: 

A. Which locations or points in a program should be 

selected? 

AOP defines a joinpoint as a point in the execution of the 
program. The abstract norm of the word “point” refers to a 
location in code. That location could be a decision structure or a 
loop back-edge or any executable statement. In previous work, 
we defined the point to be three possibilities [10]: Code: In this 
case, the weaving is based on a particular point or set of points 
that exist in code. Time: Using time as a point means that 
sampling is controlled by some kind of timing theme. This could 
be relative time or wall-clock time. Data: Using data as the 
definition of a point means that sampling would be over some 
data space and weaving runs when this data are accessed and the 
sampling criteria is met. In this paper, the focus is on code space 
sampling since sampling is done in a static manner (at compile 
time).  

B. What exactly should be sampled? 

The sampling process in general can occur in one of two 
ways; the first is static sampling. This means that the selection 
of the actual points (locations) in code for sampling is going to 
happen at compile level.  This could so abstract and general; for 
example, sampling for every nth executable statement in code. It 
could be more detailed by picking every 30% of switch 
statements in the code. The second type of sampling is dynamic 
sampling, which will weave code that matches some point of 
execution at runtime (while the program is running). That is the 
weaving itself happens at runtime. There is no predetermined 
location in the code to be examined. Dynamic sampling will 
incur some overhead. This overhead is due to the selection point 
and the weaving process. The focus in this paper is only on static 
weaving as dynamic weaving was discussed in other work.  

C. How often should it be done? 

Since static weaving is the choice, one has to be careful on the 

frequency on selecting the weaving points in code. The 

decision whether or not to instrument a particular point in the 

program is made at program compile time.   

IV. STATIC WEAVING 

In static sampling the decision whether or not to instrument 
a particular point in the program is made at program generation 
time. In AOP this translates to weaving-time decisions about 
whether a joinpoint shadow should match the pointcut 
expression or not. Our sampling pointcuts essentially take the set 
of joinpoint shadows that would match the non-sampled pointcut 
expression and reduce it by the selected mechanism. In this 
section we introduce two new static weaving pointcut 
designators; weaveProbability(p) and sliceOf(N,M). 

A. The weaveProbability Pointcut Designator 

The first new static pointcut designator is 

weaveProbability(P) 

This designator controls whether weaving at a statically 
matching joinpoint shadow occurs. With probability P the advice 
will be woven, while with probability 1-P it will be skipped and 
not woven. This will then correspond to a sampling of the 
joinpoints at runtime, but where all joinpoints of a given shadow 
will be executed or not, depending on the compile-time 
probabilistic decision. Since this is a compile-time decision, the 
probability used does not automatically correspond to an equal 
expected runtime reduction. Only if the execution of the 
joinpoint shadows is relatively uniform will the static probability 
actually result in a similar dynamic probability. If a small 
number of joinpoint shadows incur most of the advice execution 
for a particular pointcut expression, then the runtime overhead 
will vary greatly, depending on how many of those high-
execution shadows have been probabilistically selected. 

This pointcut designator is simple and efficient, and is useful 
for reducing monitoring cost where there is a reasonably large 
number of static joinpoint shadows and the expected behavior 
over them is mostly uniform. If there are only a few shadows 
(e.g., say a program has three sites that match call(Table.insert)), 
then this sampling pointcut designator would probably not be 
useful 

B. The sliceOf Pointcut Designator 

The more involved, and perhaps more useful, static pointcut 
designator is 

sliceOf(N,M) 

This designator, rather than being probabilistic and thus 
uncontrollable, is deterministic in its sampling behavior. This 
designator selects the Mth fraction of joinpoint shadows, of size 
1

𝑁
|𝐽𝑃𝑆𝑒𝑡| In other words, of the total number of shadows that 

match the pointcut expression, this selects 1/N of them, and the 
slice that it selects is the Mth one. For example, if 100 joinpoint 
shadows match a pointcut, then sliceOf(10,1) will select the first 
10, sliceOf(10,2) will select the second 10, and sliceOf(10,10) 
will select the last 10. Fig. 1 shows the sampling of the first 10% 



of shadow matches that could be used to study the behavior of 
program startup 

 

Figure 1:  sliceOf(10,1) of a 100 shadow matches applied  

with the basicblock designator  

This pointcut designator allows control over how the 
distribution of sampling will occur. It enables the creation of N 
versions of the application, over which it is guaranteed that all 
shadows that match the pointcut expression are covered, and 
thus all joinpoints that occur in execution are also covered. 
These versions can then be deployed and used, and the data 
collected be used in aggregate to understand some aspect of the 
program in its entirety. 

This designator requires knowledge of how many joinpoints 
match the pointcut expression in order to slice properly. In the 
abc framework this is not known until the end of compilation, 
and so this pointcut designator requires a 2-phase 
implementation. When the program and aspect is first compiled, 
it will generate a data file that contains the count of joinpoint 
shadows. On a re-compile it then uses the data file to perform 
the slicing and weave the correct shadow sample. 

This type of instrumentation is typical of schemes devised 
for end-user remote application monitoring, where there are 
competing desires to monitor the whole program but also to not 
affect the performance for any one user [11]. By distributing 
different versions of the instrumented program to different users, 
and collecting and aggregating the obtained data, information 
about the whole program can be obtained. This scheme also 
serves to provide some level of privacy assurance to users, since 
for any particular user only a small portion of application 
behavior might be recorded.  

V. BASELINE MEASUREMENTS AND EVALUATION 

The program Image2Html was used as a small example to 
first demonstrate sampling and to obtain baseline performance 
measurements. This program converts a JPEG image into textual 
HTML-enhanced “ASCII art”. 

This test used the basicblock designator [10] combined with 
one of the sampling designators; e.g., the pointcut expression is 
like “before: basicblock() && weaveProbability(.3)”. The 
advice is a simple basic block profiler that counts how many 
times each block has executed  

Fig. 2 shows these results from Image2Html The horizontal 
lines are baselines of performance of the program with full 
instrumentation (no sampling) and with no instrumentation. In 
the fully instrumented version, advice gets executed 3,588,277 
times over 411 basic blocks in the program. The three linearly 

increasing lines on the graph are three dynamic sampling 
designators which are not in the scope of this paper. 

The static sampling shows good and expected performance. 
The Figure shows datapoints for weaveProbability of 0.15, 0.25, 
and 0.6; and shows data points for sliceOf for N = 2, N = 4, and 
N = 8. Since runtime costs for static weaving can change when 
the weaving is re-applied, each data point shows an average time 
plus error bars indicating the minimum and maximum observed 
run times. For weaveProbability, the configuration was 
compiled and ran four times, and for sliceOf the configuration 
was compiled and ran for each possible M value (e.g., for N = 8, 
with 8 tests, with M = 1, 2, 3, ...8). The N = 8 data point is at the 
12.5% sampling position on the X axis, while the N = 2 data 
point is at the 50% sampling position. 

Because sampling decisions are made statically, with no 
runtime check, their performances are in general better than 
dynamic sampling. As predicted, however, static sampling can 
suffer from high variation in runtime costs. In this program, 
weaveProbability does not incur too high of a variation, but 
sliceOf does. One configuration in N = 8 incurs almost half of 
the full instrumentation cost, while other incur almost no cost. 
The range of runtime costs for N = 4 span almost the full range 
between the no instrumentation and full instrumentation 
baselines. Finally, the two runs for N = 2 (one being the 
minimum and one being the maximum) are also quite far apart 
in runtime cost. 

 

VI. IMPLEMENTATION ISSUES 

The AspectJ documentation separates the fundamental 
pointcut designators into three categories: kinded, scoping and 
context [8]. Their documented definitions are: Kinded 
designators are those which select a particular kind of join point; 
for example: execution, get, set, call, handler. Scoping 
designators are those which select a group of join points of 
interest (of probably many kinds); for example: within, 
withincode. Contextual designators are those that match (and 

Figure 2: Basic block sampling performance for Image2Html. Error 

bars on the static pointcut designators (static probability and slice of) 

show the minimum and maximum of the averaged values 



optionally bind) based on context; for example: this, target, 
@annotation. 

Each of the three categories above can select a set of 
joinpoints to execute the advice on, although in practice pointcut 
expressions usually have at least one kinded pointcut designator. 
Our sampling pointcut designators are different in that they are 
meant to operate on an already selected set of joinpoints. The 
static sampling designators are expected to effect the size of this 
set, but only in a negative manner: they reduce the given set by 
some amount. 

Typically, new pointcut designators created using abc would 
perform their own “shadow matching” where they selected some 
execution points (joinpoint shadows) to include in the joinpoint 
set (thus including all joinpoints which occur at those shadows). 
The internal pointcut expression evaluator would then combine 
with the shadows from other parts of the expression to compute 
the actual set of joinpoint shadows for the given pointcut 
expression. 

For our sampling extensions, we did not add any shadow 
matching in the extension, but rather we hook into the 
optimization phase of pointcut expression evaluation, and it is in 
this phase that we apply the desired sampling effect. This is 
achieved by the removal of some of the joinpoint shadows from 
the selected set. 

VII. FUTURE WORK 

The basic sampling mechanisms we presented in this paper 
can be extended in a variety of directions. For the static sampling 
pointcut designator sliceOf, a better mechanism to control 
expected runtime costs is needed. One way to do this is with 
profiling information delivered to the compilation phase. A fully 
instrumented version could be generated, and under test 
conditions an expected profile of per-joinpoint-shadow 
execution costs could be obtained. This would then be used to 
allocate the expected higher cost shadows among different 
slices, which should help alleviate the high variation in the 
performance of the different slices. 

Another useful extension would be that of linked sampling, 
where for example, if probabilistic sampling chose to execute 
the advice on a top-level method, then all advice 
(instrumentation) on code that is invoked from that method 
should be executed as well. For example, if the top-level method 
invocation represents the handling of one transaction in a TPS, 
then we could implement sampling on transaction, where all 
instrumentation would execute for a selected transaction, and not 
for others. 

VIII. CONCLUSION 

We presented new pointcut designators for AspectJ with the 
use of the aspect bench compiler that allow the creation of 
sampling-based instrumentation, a common need in program 
monitoring scenarios. With sampling, AOP can be used for 
efficient monitoring instrumentation even on heavily used code 
that would otherwise be prohibitive to monitor. Our research 
goal for this line of work is to enable the high-level formalisms 

of AOP to be useable for the wide variety of low-level sampling 
needs. As the future work discussion shows, there is still work 
left to be done in this venue, but the sampling pointcut 
designators described in this paper are a significant contribution 
in this direction. 

It is likely that the sampling designators could be useful for 
other application and system needs. One example would be to 
sample transaction information of an ecommerce to obtain a 
real-time statistical profile of user requests. It is likely that 
developers could think up wide and novel uses for AOP with 
sampling. 
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