
Dedicated Static Sampling Pointcut Designators

Amjad Nusayr

University of Houston Victoria

Victoria, TX, 77904, USA

Email: nusayra@uhv.edu

Abstract— Sampling-based instrumentation is often used to make

runtime monitoring of applications more efficient. AOP has long

been used for monitoring but does not have the ability to support code

sampling in its current form. In this paper, we present an

implementation of two new pointcut designators in a static weave

form intended to be used as code sampling tools. The implementation

is created as an extension using the aspect bench compiler (abc).

These two new pointcut designators serve as additions to the family

of joinpoints in AOP for the purpose of code sampling.

I. INTRODUCTION

Aspect Oriented Programming (AOP) is mainly concerned
with the separation of cross-cutting concerns; the design of AOP
was dedicated to separate the program main logic functionally
from secondary yet; imperative code additions that otherwise
make the code weak or susceptible to break [9]. Take for
example the code needed for a student to register in a class. The
basic logic of this code is simple; first make sure that the class
still has seating space for the student. If so, add the student to
class roster. Now creating the code for the above logic is
straight-forward, but does not represent reality. In real life, there
should be a segment in the code that always checks to
authenticate the user during the session. There should be as well
code that logs any transactions to some database. These two
actions are not part of the basic program logic but should be
incorporated to validate the program and the actions of the user.

Another major example is code based exceptions. The mere
semantics of an exception is to catch some behavior that is not
covered and does not meet the basic program logic. The simple
example of “DivideByZero” exception shows the importance of
having such cross-cutting concerns implemented in code.

The concept of cross-cutting concerns in AOP has been also
utilized in other arenas. The research shows much usage of AOP
in domain specific languages [6, 7]. This usage spanned from
expressing constraints on the behavior and structure of a
program all the way to parallel dynamic analysis of multicores
[2]. The growth of AOP has itself been extended to include more
sophisticated tools in aiding code development. This paper
describes two new sampling designators, their main
functionality, their implementation, and how they are used. It
also presents a performance analysis compared to other
designators.

II. RELATED AND BACKGROUND WORK

Since AOP was established, the notion to extend the set of
pointcut designators was defined [3, 13]. AOP introduces a
modular approach in helping to separate crosscutting concerns
by an Aspect. An aspect relies on the concept of weaving; the
instrumentation of crosscutting code into the main program code
logic. A typical aspect module contains several fundamental
components; the first component is the pointcut designator.
Pointcut designators are features in the program execution where
the advice of an aspect can be weaved in. A composition
language allows a pointcut expression to combine and constrain
these to define a pointcut (execution occurrences of the program
features) that satisfies the expression and where the advice will
be executed1. The advice represents the code to be weaved at
locations defined by the pointcut expression.

The code below shows an example of an after advice that is
weaved after every time the method openSocket is executed. The
advice will print out the reflective information about, where in
the code the particular execution has occurred. Note that in this
particular example, the advice will apply on any method that
begins with “openSocket” regardless of the return type and the
number of parameters.

after() execution(* openSocket*(..)) {

 //Advice to be woven

 System.out.println("socket open at"+

 thisJoinPoint.getSourceLocation());

}

The amount of AOP integration within a system depends on
the way it is implemented. It could simplify the base code and
the semantics of the program or it could do the opposite by
introducing too much coupling among different aspects. The
latter defeats the purpose of AOP. A well-known study examines
the interactions between aspects and methods and identifies
classes of interactions that enable modular reasoning about the
crosscut program [12].

AOP has been implemented to be used in several languages.
One of the most used is AspectJ; an implementation of AOP for
the Java language [8]. An alternative to AspectJ is the aspect
bench compiler (abc) [3]. The main difference between AspectJ
and abc is that abs is designed for extensibility and modification
by creating extensions. The extension of abc includes
introducing new grammar to the language, followed by
introducing new rules for the semantics and code needed for
abstract syntax trees. Adding advice includes defining how code

1. AOP literature uses the term joinpoint to refer to a point in the code
execution. We feel that the term “pointcut designator” has a more abstract

meaning and usage. DOI reference number: 10.18293/SEKE2017-175

should be generated to invoke that advice and where in the
joinpoint shadow this code should go. The Shadow pointcuts
pick out a specific joinpoint shadow within a method body (i.e.
enables to shadow every executable statement in the code).

Sampling could be defined as a general utility of
summarization for a broad spectrum of analytical tasks [4]. In
the world of computer science, sampling research is usually
conceived to target data sampling techniques. An example is
sampling big data and graph, and network sampling. BlinkDB,is
a well-known approximate query engine on large quantities of
data used for sampling [1, 4].

The use of the term code sampling is generally found in
compiler research [5]. Code sampling is used to determine many
aspects of the code such as unreachable code fragments (with the
help of code coverage), dead-code elimination, and the
replacement of frequent accessed code segments with other
faster segments.

III. WHAT TO SAMPLE

The first set of questions the think of are, A) which locations
or points in a program should be selected for sampling? B) what
exactly should be sampled? And C) how often should it be done?
These three questions were at the basic design of the new
pointcut designators. The following is a discussion for each
question:

A. Which locations or points in a program should be

selected?

AOP defines a joinpoint as a point in the execution of the
program. The abstract norm of the word “point” refers to a
location in code. That location could be a decision structure or a
loop back-edge or any executable statement. In previous work,
we defined the point to be three possibilities [10]: Code: In this
case, the weaving is based on a particular point or set of points
that exist in code. Time: Using time as a point means that
sampling is controlled by some kind of timing theme. This could
be relative time or wall-clock time. Data: Using data as the
definition of a point means that sampling would be over some
data space and weaving runs when this data are accessed and the
sampling criteria is met. In this paper, the focus is on code space
sampling since sampling is done in a static manner (at compile
time).

B. What exactly should be sampled?

The sampling process in general can occur in one of two
ways; the first is static sampling. This means that the selection
of the actual points (locations) in code for sampling is going to
happen at compile level. This could so abstract and general; for
example, sampling for every nth executable statement in code. It
could be more detailed by picking every 30% of switch
statements in the code. The second type of sampling is dynamic
sampling, which will weave code that matches some point of
execution at runtime (while the program is running). That is the
weaving itself happens at runtime. There is no predetermined
location in the code to be examined. Dynamic sampling will
incur some overhead. This overhead is due to the selection point
and the weaving process. The focus in this paper is only on static
weaving as dynamic weaving was discussed in other work.

C. How often should it be done?

Since static weaving is the choice, one has to be careful on the

frequency on selecting the weaving points in code. The

decision whether or not to instrument a particular point in the

program is made at program compile time.

IV. STATIC WEAVING

In static sampling the decision whether or not to instrument
a particular point in the program is made at program generation
time. In AOP this translates to weaving-time decisions about
whether a joinpoint shadow should match the pointcut
expression or not. Our sampling pointcuts essentially take the set
of joinpoint shadows that would match the non-sampled pointcut
expression and reduce it by the selected mechanism. In this
section we introduce two new static weaving pointcut
designators; weaveProbability(p) and sliceOf(N,M).

A. The weaveProbability Pointcut Designator

The first new static pointcut designator is

weaveProbability(P)

This designator controls whether weaving at a statically
matching joinpoint shadow occurs. With probability P the advice
will be woven, while with probability 1-P it will be skipped and
not woven. This will then correspond to a sampling of the
joinpoints at runtime, but where all joinpoints of a given shadow
will be executed or not, depending on the compile-time
probabilistic decision. Since this is a compile-time decision, the
probability used does not automatically correspond to an equal
expected runtime reduction. Only if the execution of the
joinpoint shadows is relatively uniform will the static probability
actually result in a similar dynamic probability. If a small
number of joinpoint shadows incur most of the advice execution
for a particular pointcut expression, then the runtime overhead
will vary greatly, depending on how many of those high-
execution shadows have been probabilistically selected.

This pointcut designator is simple and efficient, and is useful
for reducing monitoring cost where there is a reasonably large
number of static joinpoint shadows and the expected behavior
over them is mostly uniform. If there are only a few shadows
(e.g., say a program has three sites that match call(Table.insert)),
then this sampling pointcut designator would probably not be
useful

B. The sliceOf Pointcut Designator

The more involved, and perhaps more useful, static pointcut
designator is

sliceOf(N,M)

This designator, rather than being probabilistic and thus
uncontrollable, is deterministic in its sampling behavior. This
designator selects the Mth fraction of joinpoint shadows, of size
1

𝑁
|𝐽𝑃𝑆𝑒𝑡| In other words, of the total number of shadows that

match the pointcut expression, this selects 1/N of them, and the
slice that it selects is the Mth one. For example, if 100 joinpoint
shadows match a pointcut, then sliceOf(10,1) will select the first
10, sliceOf(10,2) will select the second 10, and sliceOf(10,10)
will select the last 10. Fig. 1 shows the sampling of the first 10%

of shadow matches that could be used to study the behavior of
program startup

Figure 1: sliceOf(10,1) of a 100 shadow matches applied

with the basicblock designator

This pointcut designator allows control over how the
distribution of sampling will occur. It enables the creation of N
versions of the application, over which it is guaranteed that all
shadows that match the pointcut expression are covered, and
thus all joinpoints that occur in execution are also covered.
These versions can then be deployed and used, and the data
collected be used in aggregate to understand some aspect of the
program in its entirety.

This designator requires knowledge of how many joinpoints
match the pointcut expression in order to slice properly. In the
abc framework this is not known until the end of compilation,
and so this pointcut designator requires a 2-phase
implementation. When the program and aspect is first compiled,
it will generate a data file that contains the count of joinpoint
shadows. On a re-compile it then uses the data file to perform
the slicing and weave the correct shadow sample.

This type of instrumentation is typical of schemes devised
for end-user remote application monitoring, where there are
competing desires to monitor the whole program but also to not
affect the performance for any one user [11]. By distributing
different versions of the instrumented program to different users,
and collecting and aggregating the obtained data, information
about the whole program can be obtained. This scheme also
serves to provide some level of privacy assurance to users, since
for any particular user only a small portion of application
behavior might be recorded.

V. BASELINE MEASUREMENTS AND EVALUATION

The program Image2Html was used as a small example to
first demonstrate sampling and to obtain baseline performance
measurements. This program converts a JPEG image into textual
HTML-enhanced “ASCII art”.

This test used the basicblock designator [10] combined with
one of the sampling designators; e.g., the pointcut expression is
like “before: basicblock() && weaveProbability(.3)”. The
advice is a simple basic block profiler that counts how many
times each block has executed

Fig. 2 shows these results from Image2Html The horizontal
lines are baselines of performance of the program with full
instrumentation (no sampling) and with no instrumentation. In
the fully instrumented version, advice gets executed 3,588,277
times over 411 basic blocks in the program. The three linearly

increasing lines on the graph are three dynamic sampling
designators which are not in the scope of this paper.

The static sampling shows good and expected performance.
The Figure shows datapoints for weaveProbability of 0.15, 0.25,
and 0.6; and shows data points for sliceOf for N = 2, N = 4, and
N = 8. Since runtime costs for static weaving can change when
the weaving is re-applied, each data point shows an average time
plus error bars indicating the minimum and maximum observed
run times. For weaveProbability, the configuration was
compiled and ran four times, and for sliceOf the configuration
was compiled and ran for each possible M value (e.g., for N = 8,
with 8 tests, with M = 1, 2, 3, ...8). The N = 8 data point is at the
12.5% sampling position on the X axis, while the N = 2 data
point is at the 50% sampling position.

Because sampling decisions are made statically, with no
runtime check, their performances are in general better than
dynamic sampling. As predicted, however, static sampling can
suffer from high variation in runtime costs. In this program,
weaveProbability does not incur too high of a variation, but
sliceOf does. One configuration in N = 8 incurs almost half of
the full instrumentation cost, while other incur almost no cost.
The range of runtime costs for N = 4 span almost the full range
between the no instrumentation and full instrumentation
baselines. Finally, the two runs for N = 2 (one being the
minimum and one being the maximum) are also quite far apart
in runtime cost.

VI. IMPLEMENTATION ISSUES

The AspectJ documentation separates the fundamental
pointcut designators into three categories: kinded, scoping and
context [8]. Their documented definitions are: Kinded
designators are those which select a particular kind of join point;
for example: execution, get, set, call, handler. Scoping
designators are those which select a group of join points of
interest (of probably many kinds); for example: within,
withincode. Contextual designators are those that match (and

Figure 2: Basic block sampling performance for Image2Html. Error

bars on the static pointcut designators (static probability and slice of)

show the minimum and maximum of the averaged values

optionally bind) based on context; for example: this, target,
@annotation.

Each of the three categories above can select a set of
joinpoints to execute the advice on, although in practice pointcut
expressions usually have at least one kinded pointcut designator.
Our sampling pointcut designators are different in that they are
meant to operate on an already selected set of joinpoints. The
static sampling designators are expected to effect the size of this
set, but only in a negative manner: they reduce the given set by
some amount.

Typically, new pointcut designators created using abc would
perform their own “shadow matching” where they selected some
execution points (joinpoint shadows) to include in the joinpoint
set (thus including all joinpoints which occur at those shadows).
The internal pointcut expression evaluator would then combine
with the shadows from other parts of the expression to compute
the actual set of joinpoint shadows for the given pointcut
expression.

For our sampling extensions, we did not add any shadow
matching in the extension, but rather we hook into the
optimization phase of pointcut expression evaluation, and it is in
this phase that we apply the desired sampling effect. This is
achieved by the removal of some of the joinpoint shadows from
the selected set.

VII. FUTURE WORK

The basic sampling mechanisms we presented in this paper
can be extended in a variety of directions. For the static sampling
pointcut designator sliceOf, a better mechanism to control
expected runtime costs is needed. One way to do this is with
profiling information delivered to the compilation phase. A fully
instrumented version could be generated, and under test
conditions an expected profile of per-joinpoint-shadow
execution costs could be obtained. This would then be used to
allocate the expected higher cost shadows among different
slices, which should help alleviate the high variation in the
performance of the different slices.

Another useful extension would be that of linked sampling,
where for example, if probabilistic sampling chose to execute
the advice on a top-level method, then all advice
(instrumentation) on code that is invoked from that method
should be executed as well. For example, if the top-level method
invocation represents the handling of one transaction in a TPS,
then we could implement sampling on transaction, where all
instrumentation would execute for a selected transaction, and not
for others.

VIII. CONCLUSION

We presented new pointcut designators for AspectJ with the
use of the aspect bench compiler that allow the creation of
sampling-based instrumentation, a common need in program
monitoring scenarios. With sampling, AOP can be used for
efficient monitoring instrumentation even on heavily used code
that would otherwise be prohibitive to monitor. Our research
goal for this line of work is to enable the high-level formalisms

of AOP to be useable for the wide variety of low-level sampling
needs. As the future work discussion shows, there is still work
left to be done in this venue, but the sampling pointcut
designators described in this paper are a significant contribution
in this direction.

It is likely that the sampling designators could be useful for
other application and system needs. One example would be to
sample transaction information of an ecommerce to obtain a
real-time statistical profile of user requests. It is likely that
developers could think up wide and novel uses for AOP with
sampling.

REFERENCES

[1] Albattah, W. 2016. The Role of Sampling in Big Data Analysis.
Proceedings of the International Conference on Big Data and Advanced
Wireless Technologies (New York, NY, USA, 2016), 28:1--28:5.

[2] Ansaloni, D., Binder, W., Villazón, A. and Moret, P. 2010. Parallel
Dynamic Analysis on Multicores with Aspect-Oriented Programming.
2010 Conference on Aspect-Oriented Software Development (AOSD)
(2010), 1–12.

[3] Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J.,
Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G. and Tibble, J. 2005.
Abc: An Extensible AspectJ Compiler. Proceedings of the 4th
International Conference on Aspect-oriented Software Development
(New York, NY, USA, 2005), 87–98.

[4] Cormode, G. and Duffield, N. 2014. Sampling for Big Data: A Tutorial.
Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York, NY, USA, 2014),
1975.

[5] Debray, S.K., Evans, W., Muth, R. and De Sutter, B. 2000. Compiler
Techniques for Code Compaction. ACM Trans. Program. Lang. Syst. 22,
2 (Mar. 2000), 378–415.

[6] Hadas, A. and Lorenz, D.H. 2015. First-class Domain Specific Aspect
Languages. Companion Proceedings of the 14th International Conference
on Modularity (New York, NY, USA, 2015), 29–30.

[7] Hadas, A. and Lorenz, D.H. 2016. Toward Disposable Domain-specific
Aspect Languages. Companion Proceedings of the 15th International
Conference on Modularity (New York, NY, USA, 2016), 83–85.

[8] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W.G. 2001. An Overview of AspectJ. Proceedings of the 15th
European Conference on Object-Oriented Programming (London, UK,
UK, 2001), 327–353.

[9] Mens, K., Lopes, C.V., Tekinerdogan, B. and Kiczales, G. 1998. Aspect-
Oriented Programming Workshop Report. Proceedings of the Workshops
on Object-Oriented Technology (London, UK, 1998), 483–496.

[10] Nusayr, A. and Cook, J. 2009. Using AOP for detailed runtime monitoring
instrumentation. Proceedings of the 7th International Workshop on
Dynamic Analysis -- WODA’09. (2009), 8–14.

[11] Orso, A., Liang, D., Harrold, M.J. and Lipton, R. 2002. Gamma System:
Continuous Evolution of Software After Deployment. Proceedings of the
2002 ACM SIGSOFT International Symposium on Software Testing and
Analysis (New York, NY, USA, 2002), 65–69.

[12] Rinard, M., Salcianu, A. and Bugrara, S. 2004. A Classification System
and Analysis for Aspect-oriented Programs. SIGSOFT Softw. Eng. Notes.
29, 6 (Oct. 2004), 147–158.

[13] Ubayashi, N. 2004. An AOP Implementation Framework for Extending
Join Point Models. Proceedings of ECOOP 2004 Workshop on
Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04
(2004), 71–81.

