
DOI reference number: 10.18293/SEKE2017-162

A Method to Analyze High Level Petri Nets using
SPIN Model Checker

Dewan Mohammad Moksedul Alam
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA

dalam004@fiu.edu

Xudong He
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA

hex@cis.fiu.edu

Abstract— High level Petri nets (HLPNs) are a formal method
for studying concurrent and distributed systems and have been
widely used in many application domains. However, their strong
expressive power hinds their analyzability. In this paper, we
present a new transformational analysis method for analyzing a
special class of HLPNs – predicate transition (PrT) nets. This
method extends and improves our prior results by covering more
PrT net features including full first order logic formulas and
exploring additional alternative translation schemes. This new
analysis method is supported by a tool chain – front end PIPE+ for
creating and simulating PrT nets and back end SPIN for model
checking safety and liveness properties. We have applied this
method to two benchmark systems used in annual Petri net model
checking contest 2015. We discuss several properties and show the
detailed model checking results of two properties in one system.

Keywords— formal methods; high level Petri nets; temporal
logic; model checking; SPIN

I. INTRODUCTION

High level Petri nets (HLPNs) are a powerful formal method
for modeling concurrent and distributed systems. HLPNs
provide a graphical representation of systems to make them
easier to understand. HLPNs offer strong expressive power
through rich data abstraction, and algebraic expressions and
logic formulas for defining system functionality. Furthermore,
the dynamic semantics of HLPNs supports model level
simulation. As a result, HLPNs are being used widely in system
modeling in many application domains.

However, due to the expressive power of HLPNs, they are
difficult to analyze. This is especially critical when we need to
study the safety and liveness properties of highly dependable
systems modeled in HLPNs. In recent years, a variety of new
analysis techniques based on model checking have been
proposed to analyze high level Petri nets in addition to
traditional techniques such as simulation. These new analysis
techniques fall into two general categories: (1) developing
tailored model checking algorithms for particular types of
HLPNs, or (2) leveraging existing general model checkers
through model translation where a HLPN is transformed into an
equivalent form suitable for the target model checker.

Although tailored model checkers for HLPNs may take
advantages of the unique features of the underlying HLPNs and
perform specific optimizations to improve performance, they

often lack the full-fledged features provided by the well-known
general model checkers and are not easily adaptable.
Furthermore, there are no convincing experiments yet to show
tailored model checkers have performance advantages over
using general model checkers. Several tools supporting direct
model checking of HLPNs participated in the annual Petri net
model checking contest, but had very limited success.

An alternative way of analyzing HLPNs leverages existing
well-known general purpose model checkers. A translation
method is needed to generate a state transition system from a
given HLPN. Model translations have been used and explored
for many years [1]. The key of a translation method is to ensure
the behavioral equivalence of the source model and target
model. It is quite straightforward to obtain a state transition
system from a given HLPN with the loss of true concurrency.
Fortunately, safety and liveness properties are preserved from
all known Petri net semantics – causal (partial order), maximal
concurrency, interleaving set, and interleaving. In our prior work
([2], [3], [4]), we developed methods to translate a particular
type of HLPNs – predicate transition nets (PrT nets) into the
input models of several well-known model checkers including
SMV [5] and SPIN [6] with various limitations. In this paper,
we present a new and more general method to translate PrT nets
to SPIN. This method includes the following new contributions:
(1) eliminating many limitations such as no set variables on arc
label in our prior work, (2) supporting advanced features
including quantifiers in full first order logic formulas, (3)
combining transition enabling testing and firing to improve
performance, and (4) offering an additional process based
translation scheme. These new features have been implemented
in our enhanced PIPE+ environment previously reported in [7].
We demonstrate the application of our method through two
benchmark systems used in the annual model checking contest
of Petri net tools 2015 [8].

II. PREDICATE TRANSITION NETS

In the following sections, we give a brief introduction to PrT
nets. More detailed definitions of PrT nets can be found in [9].

A. The Syntax and Static Semantics of PrT Nets

A PrT net is a tuple (N, Spec, ins) where N = (P, T, F) is a
net structure, in which (1) P and T are disjoint nonempty finite
sets (the sets of places and transitions of N respectively), (2) F
⊆ P × T ∪ T × P is a flow relation (the arcs of N). Spec = (S,

Op, Eq) is the underlying algebraic specification, and consists of
a signature Σ = (S, Op) and a set Eq of Σ-equations. Signature
Σ includes a set of sorts S and a family ܱ = of (௦ଵ,௦ଶ…௦;௦ܱ)
sorted operations for s1, . . . , sn, s ∈ S. For ݏ ∈ ܵ, we use Cons
to denote Op;s (the 0-ary operation of sort s), i.e. the set of
constant symbols of sort s. The Σ-equations in Eq define the
meanings and properties of operations in Op. Spec is a meta-
language to define the tokens, labels, and constraints of a PrT
net. Tokens of a PrT net are ground terms of signature Σ, written
MConS. The set of labels is denoted by LabelS(X) (X is the set of
sorted variables disjoint with Op). Each label can be a simple
variable or a set expression of the form {ݔଵ, ,ଶݔ … , {ݔ .
Constraints of a PrT net are a subset of first order logic formulas
(where the domains of quantifiers are finite and any free variable
in a constraint appears in the label of some connecting arc of the
transition). The subset of first order logical formulas contains
the Σ-terms of sort Bool over X, denoted as ܶ݁݉ݎ(ை;)(ܺ).

ݏ݊ܫ = (߮, ,ܮ ܴ,) is a net inscription that associates a netܯ
element in N with its denotation in Spec. ߮ ∶ ܲ → ℘(S) is the
data definition of N and associates each place p in P with a
subset of sorts in S. L : F → LabelS(X) is a sort-respecting
labeling of PrT net. We use the following abbreviation in the
following definitions: ܮത(ݔ, (ݕ = ,ݔ)ܮ (ݕ if (ݔ, (ݕ ∈ ܨ or
,ݔ)തܮ (ݕ = Ø if (ݔ, (ݕ ∉ ܨ . ܴ ∶ ܶ → (ܺ)(ை;)݉ݎ݁ܶ is a
well-defined constraining mapping, which associates each
transition t in T with a first order logic formula defined in the
underlying algebraic specification. Furthermore, the constraint
of a transition defines the meaning of the transition. We use
var(t) to denote variables appearing in R(t). ܯ: ܲ → ௌݏ݊ܥܯ
is a sort-respecting initial marking. The initial marking assigns
a multiset of tokens to each place p in P.

A -algebra of Spec provides interpretations for the sorts and
operations in Spec, which includes familiar sorts such as integer,
Boolean, string, tuple, and set as well as their relevant operations
and equations. In our tool environment, the Σ-algebra is
instantiated with a subset of Java data types and their associated
operations and laws.

B. The Dynamic Semantics of PrT Nets

The dynamic semantics of PrT nets are defined on the
concept of markings (states) that are mappings from places to
tokens. A transition t in T is enabled in a marking M if there are
tokens in its input places that satisfy its precondition defined in
constraint R(t). Formally, the enabling condition can be defined
as: ∀ ∈ ܲ. ,)തܮ) :(ݐ :(ݐ)ܴ()ܯߙ (ߙ , where ߙ is an
instantiation of arc variables with tokens in . An enabled
transition t can fire by removing tokens from its input places and
adding tokens to its output places according to the post condition
defined in constraint R(t), which results in a new marking M’.
Formally, transition firing can be defined as: ܯᇱ() = ()ܯ ∪
,ݐ)തܮ :(ߙ − ,)തܮ :(ݐ for all ߙ ∈ ܲ, where ߙ is an instantiation
satisfying ܴ(ݐ): Two enabled transitions may fire at the same .ߙ
time as long as they are not in conflict, i.e. the firing of one them
disables the other. The dynamic semantics (behavior) of a PrT
net is the set of all possible transition firing sequences starting
from the initial marking. The essential dynamic semantics
regarding the translation method are discussed later.

III. THE MODEL CHECKER SPIN

Promela is the underlying modeling language for SPIN to
describe a system model. An operational model in Promela
contains one or more processes, zero or more variables, zero or
more message channels and a semantics engine [6].

Processes are the central construct in a Promela model to
define system behaviors, and are defined using proctype
declaration.

Message channels are used to model the transfer of data from
one state to another, which can store a finite number of messages
as declared. Apart from storing data, channels provide a wide
range of features to model message passing in a clean and
efficient way. Basically, they are FIFO queue but can also be
used for random accesses. When a new message is sent to a
channel, it is added to the end. When an attempt is made to
retrieve a message, it always returns a message in front. It is also
possible to query a channel for a specific message. By default,
channel removes messages as they are retrieved. However, it is
also possible to get a message without removing it. Some basic
channel usages are given below.

 In the above example, lines 1 and 2 show the declaration of
channels with basic datatypes and structured datatypes
respectively. Line 3 sends message to the channel. Lines 4-7
show different ways to retrieve messages. Lines 4, 5 and 6
retrieve first message. Lines 4 and 5 also remove the message
after retrieving. Lines 5 and 6 check whether the second element
of the first message matches the value currently hold in y. Line
7 searches for a match anywhere in the channel. Lines 6 and 7
retrieve a message without removing it (poll operation). Line 8
returns the number of messages in the channel.

Promela provides non-determinism by default. The case
selection and looping shown in Table 2 both have similar
constructs. Each case is marked with a guarded statement
(started with ::). If there are more than one case, then the
sequence of statements will be selected for which the guarded
statement is executable. If there are more than one such
statement, then one of those will be chosen non-
deterministically. If no such statement present, then the block is
exited. A loop tries to find one executable guarded statement
each time it completes execution. Promela also has a for loop
construct, which is only to be used to iterate through channels.

1. chan qname = [8] of {int, short}
2. chan qname = [8] of {s_type}
3. qname!10, 20
4. qname?x, y
5. qname?x, eval(y)
6. qname?[x, eval(y)]
7. qname??[x, eval(y)]
8. len(qname)

Table 1- Basic usage of message channel

Case selection Looping
if
:: case 1
:: case 2
:: case 3
fi

do
:: case 1
:: case 2
:: case 3
od

Table 2 - Examples of control constructs

The next important thing is inline functions. Although Promela
does not have general function concept, but supports inline
functions as macros. We take advantage of in-line functions to
structure our translated code.

IV. TRANSLATION OF PRT NETS TO PROMELA

A complete translation needs to translate all the components
of a PrT net to equivalent constructs in the target language. Our
new translation method eliminates many limitations in our prior
work ([3], [4]) and supports many advanced features such as
complex data structures and first order logic formulas. We have
also combined transition enabling testing and firing to improve
model checking performance. Furthermore, we have
implemented an additional new process based translation
scheme, which has a major impact in checking some safety and
liveness properties that are otherwise not checkable using non-
deterministic selection of in-line function based transition
translation. We discuss the main translation rules as well as
identified problems in the following sections.

A. Translation of Places

In PrT nets, places basically store information called tokens
and thus represent the states of a net. Furthermore, PrT nets are
a data flow computation model. State changes occur through
token movements. The place concept perfectly matches the
channel concept in Promela. The built-in functions of channel
make it easy to query specific tokens for checking transition
enabling condition and to add/remove tokens for transition
firing. Each place in a PrT net is thus translated into a channel
with the same type and the tokens of in the place are translated
into messages stored in that channel in the initialization. Thus,
for all p ∊ P, we have the following two lines as declarations.

Here, type_p is a data type in Promela resulted from the
translation of the data type of place p, which will be discussed
in the translation of data types.

B. Translation of Transitions

Transitions are the core components of dynamic semantics
of a net and play the most important role in the execution as
discussed in a prior section. The execution of a transition has
two parts: testing its enabling condition and then firing it if
enabled.

The translation of transitions constitutes the operational
model in Promela. Each transition ݐ ∈ ܶ is translated using the
algorithm shown in Table 3. The techniques adopted for
evaluating precondition and post-condition are discussed in the
translation of transition constraints.

C. Translation of Arcs

Arcs are not translated directly but arc labels are important
in determining the input and output variables of transitions
during the translation of transition constraints (i.e. precondition
and post-condition).

D. Translation of Data Definition

The data definition of places are multisets over the set of the
sorts. These multisets are translated as structured types in
Promela, where each sort in the data type definition is
represented as a field in the structure.

PIPE+ supports only two basic sorts – string and number.
These are used to define more complex data types for places
through Cartesian product. To translate these complex data
types, we first need to determine the corresponding
representations of the sorts. Promela does not support strings,
we choose mtype in Promela to represent strings. Each string
token is treated as an enum constant in mtype. Promela does not
support real numbers, but provides three types to support
integers: int, short, and byte, in which the latter two help to
reduce the state space. We use short as the default
implementation and let a modeler select other choices during
translation. For example, a place p with data type, φ(p) =
<String, Number, String> is translated into a Promela structured
data type shown in Table 4.

E. Translation of Transition Constraints

The constraint of a transition t ∊ T is defined using a first
order logic formula, which specifies the relationships among
input and output variables of t. The constraint has two parts –
precondition only involving input variables and the post-
condition containing output variables.

1) Translation of operators

PIPE+ supports a variety or algebraic, relational, logical, and
set operators. A PrT net uses a subset of these operators to define
their behavior. Table 5 shows the supported operators in PIPE+.

Table 5 – Supported operators in PIPE+

Category Operators Data type
Algebraic +, -, *, /, % number
Relational =, ≠, <, ≤, >, ≥ number,string
Logical ˄, ˅, ¬, →,↔ bool
Set ∊, ∉, ∪, ∖, |, :, ⋅
Quantifiers ∀, ∃, ∄

Most of these operators have their usual meanings. Some are
overloaded, such as = operator. When = is used in a
precondition, it is a comparison. When ‘=’ is used in a post-
condition, it acts as an assignment.

#define bound_p const
chan place_p = [bound_p] of {type_p}

inline check_is_enabled_and_fire_t() {
for all combinations of values the input
variables to t can take, do the following

 if preconditions are satisfied then
compute postconditions
compute new marking
return;

 done
}

Table 3 – A general algorithm to translate a transition

typedef struct type_p {
 mtype field1;
 short field2;
 mtype field3;
}

Table 4 – An example of translation of data type definition

2) Translation of Preconditions

Each logic expression without quantifiers in a PrT net is
translated into an equivalent form supported in Promela by using
the corresponding operators. For example, expression (ݔሾ1ሿ ≥
3.5 ˄ yሾ1ሿ ≠ 10) → ሾ1ሿݖ = 2 ∗ ሾ1ሿݔ + 1 is translated to the
equivalent expression in Promela shown in Table 6.

However, the set operators and quantifiers in Table 5 do not
have equivalent representations. The translation of quantifiers is
given later. The translation of set operations is partially
completed and is not further discussed in this paper since they
are rarely used based on our experiences.

3) Translation of Post-conditions

Translation of post-conditions involve evaluation of the
expressions and assignments of the values to the designated
output variables. Alike preconditions, the evaluation is almost
the same. Only difference is that, the evaluated values are
assigned to the designated output variables. These output
variables will be used as messages to corresponding output
channels during new marking generation.

F. Translation of the Initial Marking

An initial marking defines the initial state of a PrT net. The
structured tokens of each place are simply translated into send
statements to the corresponding channel.

G. Translation of Quantifiers

PIPE+ supports two types of quantifiers – universal (∀) and
existential (∃). A first order logic formula with quantifiers is
called a quantified formula. Quantifiers are essentially used as a
part of preconditions for seeking desirable input tokens. Thus we
focus on how to translate these formulas in checking transition
enabling conditions.

We identify different types of quantified formulas based on
their structures, which are important in correctly handling the
quantifiers. (1) Is a quantified formula within another formula
(possibly another quantified formula), (2) Does a quantified
formula contain global variables (arc annotations and those from
their outer quantifiers), (3) Can a quantified formula be nicely
separated into a conjunction of precondition and post-condition,
(4) Does a quantified contain another quantified formula within
it and so on.

For each quantifier, an inline function implementing an
algorithm like what shown in Table 3 is generated. The
difference is that, for an existential quantifier, as soon as the first
combination of tokens satisfying the enabling condition, the
loop exits. And for a universal quantifier, as soon as the first
combination of tokens violates the enabling condition, the loop
stops. The in-line functions for quantifiers have the following
benefits: (1) easy management of the nested quantifiers. It is
only a matter of calling the inline functions for the nested
quantifier, (2) declaration, definition and scope management of
the local and global variables can be resolved easily. The

underlying contract of inline functions provided by Promela
takes care of the above tasks.

Only care needed is to make sure unique names are used in
these inline functions and the loop control variables have the
correct names.

The in-line functions for quantifiers are called inside the
innermost for loop before the if block in the corresponding
precondition evaluation function shown in Table 3. This way,
we can ensure the availability of the arc variables.

H. Putting Pieces Together

So far we have discussed the techniques of translating each
component of PrT nets into Promela’s constructs. To complete
the translation, we need to provide an overall execution structure
based on the dynamic semantics of PrT nets. There are two
essential ways to select a transition firing in Promela – (1) as a
passive in-line function to be non-deterministically selected in a
Do loop within a centralized process. As long as there is an
enabled transition, the loop continues; or (2) as an active
process, which will be selected for execution by the SPIN
runtime if the enabling condition is true. The first strategy was
used in our prior work, where a transition’s enabling condition
checking and firing were executed separately, which not only
had the slow performance but also could result in incorrect result
due to conflict. We resolve this problem in our new
implementation by combining transition enabling checking with
firing, which has also improved performance. Furthermore, we
have also implemented the second strategy. This new translation
strategy results in much better model checking results in
detecting violations of some safety properties and is important
to check liveness properties when weak fairness assumptions are
needed.

I. Translation Correctness

The correctness of the translation method covers the
completeness and consistency. Completeness measures whether
all features of PrT nets are translated into Promela. Our current
translation covers all PrT features except a few set operations,
which will be implemented in near future. Consistency refers to
the equivalence between the dynamic behavior of a PrT net and
the dynamic behavior of the translated Promela program. Of
course, we ignore the concurrency transition firings in PrT nets
that do not affect the satisfiability of safety and liveness
properties that are essentially state based. Therefore, we only
need to compare interleaved executions between a PrT net and
the translated Promela program. Each interleaved execution
starts from the initial marking and continues by firing one
enabled transition at a time. Using an induction proof principle,
we can only show (1) the initial marking is translated correctly,
(2) each transition is translated correctly, i.e. the enabling
condition and firing result are translated correctly, and (3) each
enabled transition will be selected to fire. Step (1) is trivial true
in our translation method. Step (2) is arguably true based on our
careful design and extensive testing. Step (3) is true for both our
overall model execution strategies discussed in the previous
section. However, the formal proof of a general translation
method is not easy, which is the reason that few compilers have
been formally verified.

!(x.field1 >= 3.5 && y.field1 != 10)|| z.field1
== (2*x.field1+1)

Table 6 – An example of translation of expression

V. EXPERINEMT RESULTS

To evaluate our translation method, we have used two
benchmark systems, Bridge and SafeBus, from the annual Petri
net model checking contest 2015 [8]. These are the only high
level Petri net models available in the contest, which were
defined using colored Petri nets (a type of high level Petri nets).
These systems are redefined using PrT nets in PIPE+. We only
present and describe the Bridge model in this paper due to the
page limit. The PrT models of the Bridge system and the
SafeBus system with different parameters in xml format and the
generated Promela models with properties in pml format as well
as SPIN model checking results can be found at
https://bitbucket.org/ptnet/pipe/.

The bridge system represents a system of a single lane bridge
with an automatic controller for controlling the two-way through
traffic. The model proposed contains three control parameters
(V, P, N), where V is the number of vehicles on each side of the
bridge trying to get to the other side, P is the maximum number
of vehicles allowed on the bridge, and N is the maximum
number of vehicles from the same side allowed to pass in a row.
A PrT model of the system with parameters (4, 5, 2) is shown in
Fig. 1. The net inscriptions are shown in Table 7 and 8.

We have run simulations of PrT model in PIPE+ and
simulations of the translated Promela model in SPIN. Both
simulations ended with all vehicles crossed the bridge
successfully. Although simulations in PIPE+ are much faster.
The properties checked include: (1) the number of vehicles on
the bridge never exceeds the maximal allowed (parameter P), (2)
all the vehicles on the bridge must move in the same direction,
(3) all the vehicles eventually cross the bridge, and (4) it cannot
happen when some vehicles are at starting point and others have
crossed the bridge. Properties (1) to (3) are the desirable ones –

expected to hold, but property (4) is undesirable – expected to
fail. These properties are specified using LTL expressions as
(1)[]!((len(place_onBridgeA) > P || len(place_onBridgeB)) > P),
where P is a constant based on the given model, (2)
[]!(len(place_onBridgeA)>0&&len(place_onBridgeB)>0), (3)
for all x, [](routeA(x) -> <>exitA(x)) and a similar formula for
the opposite direction B, and (4) []!(len(place_routeA)>0 &&
len(place_exitA)>0).

In these experiments, properties (1) to (3) on all the Promela
models up to (20,10,10) have been checked successfully without
any violation, however due to the complexity of these models,
SPIN quickly reached the allotted memory bound of 2048
Mbyte. Thus, only bounded state space is searched. The reported
none violation can be false positive. Since all verification runs
of the above properties in a particular model resulted in similar
results except slight time differences since the state space
explored is the same bounded by the allotted memory. A
summary of SPIN model checking results of property (1) in the
translated Promela models are shown in Tables 9 and 10. Table
9 shows the results where the transitions are translated as passive
in-line functions to be non-deterministically selected to execute.
Table 10 shows the results where transitions are translated as
active processes. These experiments show that the first approach
explores much smaller state space and is very fast than the
second one. However, the second approach is effective in
detecting violations in some safety properties, which found a
counter example of property (4) in 47 milliseconds; while the
first approach failed in finding a counter example in bounded
search space as shown in Table 11. The second approach is also
needed when a liveness property depends on weak fairness
assumption since SPIN runtime environment will enforce
fairness for processes.

Table 9 – Model checking results of property (1) using approach 1

Parameters
(V, P, N)

State
Transitions

Atomic
steps

Search
Depth

Time
(seconds)

(4, 5, 2) 1479955 2437508 2823 2.99
(10,10,10) 1677016 2775407 5754 3.62
(20,10,10) 3670366 5990664 12730 10

Table 10 – Model checking results of property (1) using approach 2

Parameters
(V, P, N)

State
Transitions

Atomic
steps

Search
Depth

Time
(seconds)

(4, 5, 2) 26172925 2.27E+08 4307 36.2
(10,10,10) 40727761 3.63E+08 7591 76.1
(20,10,10) 25392316 2.31E+08 14739 64

R(regA) = (cA1=cA+1)
R(authA)=((s=1∧n>0∧cA>0)∧(cA1=cA-1∧n1=n-1))
R(leaveA) = n1=n+1
R(timeoutA) = (s=1∧cA=0∧cB>0∧s1=2∧c0=0)
R(regB) = (cB1=cB+1)
R(authB)= ((s=2∧cB>0∧n>0)∧(cB1=cB-1∧n1=n-1))
R(leaveB)= n1=n+1
R(timeoutB) = (s=2∧cB=0∧cA>0∧s1=1∧c0=0)
R(decide) = (cpt<5∧cpt1=cpt+1)
R(alternate) = ((cpt=5∧c0=0∧s=1∧s1=2)∨

(cpt=5∧c0=0∧s=2∧s1=1))
R(switch) = (n=5)

Table 8 – Constraint definitions of the transitions

φ(routeA)=φ(waitA)=φ(exitA)=φ(onBridgeA)= ℘(number)
φ(routeB)=φ(waitB)=φ(exitB)=φ(onBridgeB)= ℘(number)
φ(nbA)=φ(nbB)=φ(timeoutA)=φ(timeoutB)= number
φ(controller)=φ(computer)=φ(capacity)= number
φ(choice)=φ(range)= number

Table 7 – Data type definitions of the places

Fig. 1 – A PrT net model of the Bridge system

SPIN was not able to run large models due to state space
explosion problem, which also happened the Petri model
checking contest where none of the participating tools could
verify the above high level Petri net models.

VI. RELATED WORK

During the past two decades, SPIN has been used as the
analysis engine of many tool development efforts. SPIN has
been used to model check programs. One of the most prominent
work is Java PathFinder [11], which is a prototype translator
from Java to Promela. Another work involves translation from
C code to Promela [12]. SPIN has also been used as for model
check specifications and designs. In [13], a formal approach
was proposed to verify web service orchestration by translating
the web service business process execution language (WS-
BPEL) to Promela. Several studies [14, 15] attempted to
formally verify the UML system models using SPIN by
translating UML models to Promela.

Formal verification of Petri net models using SPIN have
also been explored in the past several years. In [16], a simple
technique was proposed to translate low level Petri nets to
Promela. Several other similar techniques were proposed in the
literature to translate low level Petri nets, but few works dealt
with high level Petri nets. In our prior work [3, 4, 10], we
proposed several techniques to translate PrT nets to Promela
and implemented some of them with some restrictions in our
tool environment PIPE+. Those concepts and their
implementations suffer from some limitations – (1) those were
not generic enough to support a wide range of system models,
(2) did not support advanced features like quantifiers in full first
order logic formulas, (3) suffered from some performance
bottlenecks, (4) the translation scheme was rigid having no way
to tweak the translation process, etc. are worth mentioning. Our
new translation described in this paper eliminates these
problems. The model translation feature in PIPE+ is fully
automatic. Once a model is translated, we can explore powerful
features of SPIN to verify the constraints and properties of the
model using iSPIN graphical user interface.

VII. CONCLUSIONS

In this paper, we presented a method to translate PrT nets
into a Promela programs. This new translation method supports
many advanced features of PrT nets and provides a new
execution scheme. The method is implemented in our tool
environment PIPE+ and is completely automatic. Once a model
is translated to Promela program, we can leverage SPIN’s model
checking capability to analyze system properties of PrT net
models. Currently, we are doing more experiments to test
SPIN’s model checking capabilities, which will provide insights
for model construction and specific PrT features to use.
Furthermore, we want to develop a strategy to combine PrT’s
simulation capabilities and SPIN’s model checking capabilities
in analyzing different types of system properties when model

checking may not be feasible. We will also utilize modeling
knowledge to guide the translation, for example, mapping
bounded integers in a PrT model to byte type in Promela, which
may improve checking performance or make some property
checking feasible. We will also fully implement the set
operations in case some models require them. Our tool is open
source and is available at https://bitbucket.org/ptnet/pipe/.

ACKNOWLEDGEMENT
This work was partially supported by AFRL under FA8750-15-2-0106.

The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. We
thank anonymous reviewers’ comments for improving the presentation.

REFERENCES
[1] S. Katz and O. Grumberg, “A Framework for Translating Models and

Specifications,” in Proceedings of the Third International Conference on
Integrated Formal Methods, pp. 145–164, Springer-Verlag, 2002.

[2] X. He, H. Yu, T. Shi, J. Ding, and Y. Deng, “Formally analyzing software
architectural specifications using SAM,” J. Syst. Softw., vol. 71, no. 1-2,
pp. 11–29, 2004.

[3] G. Argote-Garcia, P. J. Clarke, X. He, Y. Fu, and L. Shi, “A Formal
Approach for Translating a SAM Architecture to PROMELA,” in SEKE,
pp. 440–447, 2008.

[4] Lily Chang and Xudong He: “A Methodology to Analyze Multi-Agent
Systems Modeled in High Level Petri Nets”, International Journal of
Software Engineering and Knowledge Engineering – IJSEKE, vol.25,
no.7, 2015, 1199-1235.

[5] “The SMV System”, http://www.cs.cmu.edu/~modelcheck/smv.html.

[6] G. Holzmann, “The Spin Model Checker: Primer and Reference Manual,”
Addison-Wesley Professional, 2003.

[7] Su Liu and Xudong He: “PIPE+Verifier - A Tool for Analyzing High
Level Petri Nets”, Proc. of the 27th International Conference on Software
Engineering and Knowledge Engineering (SEKE15), Pittsburgh, July 6 –
8, 2015.

[8] “Model checking contest @ Petri Nets”, http://mcc.lip6.fr/models.php.s.

[9] X. He: “A Comprehensive Survey of Petri Net Modeling in Software
Engineering”, International Journal of Software Engineering and
Knowledge Engineering - IJSEKE, vol. 23, no. 5, 2013, 589-626.

[10] Su Liu, Reng Zeng, Zhuo Sun, and Xudong He, “SAMAT - A Tool for
Software Architecture Modeling and Analysis,” Proc. of the 24th
International Conference on Software Engineering and Knowledge
Engineering, San Francisco, CA, pp. 352-358, July 2012.

[11] Havelund K: “Java PathFinder A Translator from Java to Promela”. In:
Dams D., Gerth R., Leue S., Massink M. (eds) Theoretical and Practical
Aspects of SPIN Model Checking. SPIN 1999. Lecture Notes in
Computer Science, vol 1680. Springer, Berlin, Heidelberg

[12] K. Jiang and B. Jonsson: “Using SPIN to Model Check Concurrent
Algorithms, using a translation from C to Promela”. In: Proc. 2nd Swedish
Workshop on Multi-Core Computing, Uppsala, Sweden: Department of
Information Technology, Uppsala University , 2009, 67-69.

[13] H. H. Kacem, W. Sellami, A. H. Kacem. “A Formal Approach for the
Validation of Web Service Orchestrations”. 2012 IEEE 21st International
Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises. June 2012. doi: https://doi.org/10.1109/WETICE.2012.53.

[14] L. Ji, J. Ma and Z. Shan: “Research on Model Checking Technology of
UML”. 2012 International Conference in Computer Science and Service
System, p.p. 2337 - 2340, 2012.

[15] Y. Yamada and K. Wasaki: “Automatic generation of SPIN model
checking code from UML activity diagram and its application to Web
application design”, The 7th International Conference on Digital Content,
Multimedia Technology and its Applications, p.p. 139 - 144. 2011.

[16] G. C. Gannod and S. Gupta: “An automated tool for analyzing Petri nets
using Spin”, Proceedings 16th Annual International Conference on
Automated Software Engineering (ASE 2001), pages 404-407, 2001.

Approach States Depth Time Result
1 9323528 2841 23.3 No-error
2 828 2351 0.047 Error

Table 11 – Checking results of property (4) with parameter (4, 5, 2)

