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Abstract— High level Petri nets (HLPNs) are a formal method 
for studying concurrent and distributed systems and have been 
widely used in many application domains. However, their strong 
expressive power hinds their analyzability. In this paper, we 
present a new transformational analysis method for analyzing a 
special class of HLPNs – predicate transition (PrT) nets. This 
method extends and improves our prior results by covering more 
PrT net features including full first order logic formulas and 
exploring additional alternative translation schemes. This new 
analysis method is supported by a tool chain – front end PIPE+ for 
creating and simulating PrT nets and back end SPIN for model 
checking safety and liveness properties. We have applied this 
method to two benchmark systems used in annual Petri net model 
checking contest 2015. We discuss several properties and show the 
detailed model checking results of two properties in one system. 

Keywords— formal methods; high level Petri nets; temporal 
logic; model checking; SPIN 

I. INTRODUCTION 

High level Petri nets (HLPNs) are a powerful formal method 
for modeling concurrent and distributed systems. HLPNs 
provide a graphical representation of systems to make them 
easier to understand. HLPNs offer strong expressive power 
through rich data abstraction, and algebraic expressions and 
logic formulas for defining system functionality. Furthermore, 
the dynamic semantics of HLPNs supports model level 
simulation. As a result, HLPNs are being used widely in system 
modeling in many application domains.  

However, due to the expressive power of HLPNs, they are 
difficult to analyze. This is especially critical when we need to 
study the safety and liveness properties of highly dependable 
systems modeled in HLPNs. In recent years, a variety of new 
analysis techniques based on model checking have been 
proposed to analyze high level Petri nets in addition to 
traditional techniques such as simulation. These new analysis 
techniques fall into two general categories: (1) developing 
tailored model checking algorithms for particular types of 
HLPNs, or (2) leveraging existing general model checkers 
through model translation where a HLPN is transformed into an 
equivalent form suitable for the target model checker.  

Although tailored model checkers for HLPNs may take 
advantages of the unique features of the underlying HLPNs and 
perform specific optimizations to improve performance, they 

often lack the full-fledged features provided by the well-known 
general model checkers and are not easily adaptable. 
Furthermore, there are no convincing experiments yet to show 
tailored model checkers have performance advantages over 
using general model checkers. Several tools supporting direct 
model checking of HLPNs participated in the annual Petri net 
model checking contest, but had very limited success.  

An alternative way of analyzing HLPNs leverages existing 
well-known general purpose model checkers. A translation 
method is needed to generate a state transition system from a 
given HLPN. Model translations have been used and explored 
for many years [1]. The key of a translation method is to ensure 
the behavioral equivalence of the source model and target 
model. It is quite straightforward to obtain a state transition 
system from a given HLPN with the loss of true concurrency. 
Fortunately, safety and liveness properties are preserved from 
all known Petri net semantics – causal (partial order), maximal 
concurrency, interleaving set, and interleaving. In our prior work 
([2], [3], [4]), we developed methods to translate a particular 
type of HLPNs – predicate transition nets (PrT nets) into the 
input models of several well-known model checkers including 
SMV [5] and SPIN [6] with various limitations. In this paper, 
we present a new and more general method to translate PrT nets 
to SPIN.  This method includes the following new contributions: 
(1) eliminating many limitations such as no set variables on arc 
label in our prior work, (2) supporting advanced features 
including quantifiers in full first order logic formulas, (3) 
combining transition enabling testing and firing to improve 
performance, and (4) offering an additional process based 
translation scheme. These new features have been implemented 
in our enhanced PIPE+ environment previously reported in [7]. 
We demonstrate the application of our method through two 
benchmark systems used in the annual model checking contest 
of Petri net tools 2015 [8]. 

II. PREDICATE TRANSITION NETS 

In the following sections, we give a brief introduction to PrT 
nets. More detailed definitions of PrT nets can be found in [9]. 

A. The Syntax and Static Semantics of PrT Nets 

A PrT net is a tuple (N, Spec, ins) where N = (P, T, F) is a 
net structure, in which (1) P and T are disjoint nonempty finite 
sets (the sets of places and transitions of N respectively), (2) F 
⊆ P × T ∪ T × P is a flow relation (the arcs of N). Spec = (S, 



Op, Eq) is the underlying algebraic specification, and consists of 
a signature Σ = (S, Op) and a set Eq of Σ-equations. Signature 
Σ includes a set of sorts S and a family ܱ =  of (௦ଵ,௦ଶ…௦;௦ܱ)
sorted operations for s1, . . . , sn, s ∈  S. For ݏ ∈ ܵ, we use Cons 
to denote Op;s (the 0-ary operation of sort s), i.e. the set of 
constant symbols of sort s. The Σ-equations in Eq define the 
meanings and properties of operations in Op. Spec is a meta-
language to define the tokens, labels, and constraints of a PrT 
net. Tokens of a PrT net are ground terms of signature Σ, written 
MConS. The set of labels is denoted by LabelS(X) (X is the set of 
sorted variables disjoint with Op). Each label can be a simple 
variable or a set expression of the form {ݔଵ, ,ଶݔ … , {ݔ . 
Constraints of a PrT net are a subset of first order logic formulas 
(where the domains of quantifiers are finite and any free variable 
in a constraint appears in the label of some connecting arc of the 
transition). The subset of first order logical formulas contains 
the Σ-terms of sort Bool over X, denoted as ܶ݁݉ݎ(ை;)(ܺ). 

ݏ݊ܫ = (߮, ,ܮ ܴ,  ) is a net inscription that associates a netܯ
element in N with its denotation in Spec.  ߮ ∶ ܲ → ℘(S) is the 
data definition of N and associates each place p in P with a 
subset of sorts in S. L : F → LabelS(X) is a sort-respecting 
labeling of PrT net. We use the following abbreviation in the 
following definitions: ܮത(ݔ, (ݕ = ,ݔ)ܮ (ݕ  if (ݔ, (ݕ ∈ ܨ  or 
,ݔ)തܮ (ݕ = Ø  if (ݔ, (ݕ ∉ ܨ . ܴ ∶  ܶ → (ܺ)(ை;)݉ݎ݁ܶ  is a 
well-defined constraining mapping, which associates each 
transition t in T with a first order logic formula defined in the 
underlying algebraic specification. Furthermore, the constraint 
of a transition defines the meaning of the transition. We use 
var(t) to denote variables appearing in R(t).  ܯ: ܲ →  ௌݏ݊ܥܯ
is a sort-respecting initial marking. The initial marking assigns 
a multiset of tokens to each place p in P.  

A -algebra of Spec provides interpretations for the sorts and 
operations in Spec, which includes familiar sorts such as integer, 
Boolean, string, tuple, and set as well as their relevant operations 
and equations. In our tool environment, the Σ-algebra is 
instantiated with a subset of Java data types and their associated 
operations and laws. 

B. The Dynamic Semantics of PrT Nets 

The dynamic semantics of PrT nets are defined on the 
concept of markings (states) that  are mappings from places to 
tokens. A transition t in T is enabled in a marking M if there are 
tokens in its input places that satisfy its precondition defined in 
constraint R(t). Formally, the enabling condition can be defined 
as: ∀ ∈ ܲ. ,)തܮ) :(ݐ :(ݐ)ܴ()ܯߙ (ߙ , where ߙ  is an 
instantiation of arc variables with tokens in  . An enabled 
transition t can fire by removing tokens from its input places and 
adding tokens to its output places according to the post condition 
defined in constraint R(t), which results in a new marking M’. 
Formally, transition firing can be defined as: ܯᇱ() = ()ܯ ∪
,ݐ)തܮ :( ߙ − ,)തܮ :(ݐ  for all ߙ ∈ ܲ, where ߙ is an instantiation 
satisfying ܴ(ݐ):  Two enabled transitions may fire at the same .ߙ
time as long as they are not in conflict, i.e. the firing of one them 
disables the other. The dynamic semantics (behavior) of a PrT 
net is the set of all possible transition firing sequences starting 
from the initial marking. The essential dynamic semantics 
regarding the translation method are discussed later. 

III. THE MODEL CHECKER SPIN 

Promela is the underlying modeling language for SPIN to 
describe a system model. An operational model in Promela 
contains one or more processes, zero or more variables, zero or 
more message channels and a semantics engine [6]. 

Processes are the central construct in a Promela model to 
define system behaviors, and are defined using proctype 
declaration.    

Message channels are used to model the transfer of data from 
one state to another, which can store a finite number of messages 
as declared. Apart from storing data, channels provide a wide 
range of features to model message passing in a clean and 
efficient way. Basically, they are FIFO queue but can also be 
used for random accesses. When a new message is sent to a 
channel, it is added to the end. When an attempt is made to 
retrieve a message, it always returns a message in front. It is also 
possible to query a channel for a specific message. By default, 
channel removes messages as they are retrieved. However, it is 
also possible to get a message without removing it. Some basic 
channel usages are given below. 

 In the above example, lines 1 and 2 show the declaration of 
channels with basic datatypes and structured datatypes 
respectively. Line 3 sends message to the channel. Lines 4-7 
show different ways to retrieve messages. Lines 4, 5 and 6 
retrieve first message. Lines 4 and 5 also remove the message 
after retrieving. Lines 5 and 6 check whether the second element 
of the first message matches the value currently hold in y. Line 
7 searches for a match anywhere in the channel. Lines 6 and 7 
retrieve a message without removing it (poll operation). Line 8 
returns the number of messages in the channel. 

Promela provides non-determinism by default. The case 
selection and looping shown in Table 2 both have similar 
constructs. Each case is marked with a guarded statement 
(started with ::). If there are more than one case, then the 
sequence of statements will be selected for which the guarded 
statement is executable. If there are more than one such 
statement, then one of those will be chosen non-
deterministically. If no such statement present, then the block is 
exited. A loop tries to find one executable guarded statement 
each time it completes execution. Promela also has a for loop 
construct, which is only to be used to iterate through channels. 

1. chan qname = [8] of {int, short} 
2. chan qname = [8] of {s_type} 
3. qname!10, 20 
4. qname?x, y 
5. qname?x, eval(y) 
6. qname?[x, eval(y)] 
7. qname??[x, eval(y)] 
8. len(qname) 
 

Table 1- Basic usage of message channel 

Case selection Looping 
if 
:: case 1 
:: case 2 
:: case 3 
fi 

do 
:: case 1 
:: case 2 
:: case 3 
od 

 

Table 2 - Examples of control constructs 



The next important thing is inline functions. Although Promela 
does not have general function concept, but supports inline 
functions as macros. We take advantage of in-line functions to 
structure our translated code. 

IV. TRANSLATION OF PRT NETS TO PROMELA 

A complete translation needs to translate all the components 
of a PrT net to equivalent constructs in the target language. Our 
new translation method eliminates many limitations in our prior 
work ([3], [4]) and supports many advanced features such as 
complex data structures and first order logic formulas. We have 
also combined transition enabling testing and firing to improve 
model checking performance. Furthermore, we have 
implemented an additional new process based translation 
scheme, which has a major impact in checking some safety and 
liveness properties that are otherwise not checkable using non-
deterministic selection of in-line function based transition 
translation. We discuss the main translation rules as well as 
identified problems in the following sections.      

A. Translation of Places 

In PrT nets, places basically store information called tokens 
and thus represent the states of a net. Furthermore, PrT nets are 
a data flow computation model. State changes occur through 
token movements. The place concept perfectly matches the 
channel concept in Promela. The built-in functions of channel 
make it easy to query specific tokens for checking transition 
enabling condition and to add/remove tokens for transition 
firing. Each place in a PrT net is thus translated into a channel 
with the same type and the tokens of in the place are translated 
into messages stored in that channel in the initialization. Thus, 
for all p ∊ P, we have the following two lines as declarations. 

Here, type_p is a data type in Promela resulted from the 
translation of the data type of place p, which will be discussed 
in the translation of data types. 

B. Translation of Transitions 

Transitions are the core components of dynamic semantics 
of a net and play the most important role in the execution as 
discussed in a prior section. The execution of a transition has 
two parts: testing its enabling condition and then firing it if 
enabled.   

The translation of transitions constitutes the operational 
model in Promela. Each transition ݐ ∈ ܶ is translated using the 
algorithm shown in Table 3. The techniques adopted for 
evaluating precondition and post-condition are discussed in the 
translation of transition constraints. 

C. Translation of Arcs 

Arcs are not translated directly but arc labels are important 
in determining the input and output variables of transitions 
during the translation of transition constraints (i.e. precondition 
and post-condition). 

D. Translation of Data Definition 

The data definition of places are multisets over the set of the 
sorts. These multisets are translated as structured types in 
Promela, where each sort in the data type definition is 
represented as a field in the structure. 

PIPE+ supports only two basic sorts – string and number. 
These are used to define more complex data types for places 
through Cartesian product. To translate these complex data 
types, we first need to determine the corresponding 
representations of the sorts. Promela does not support strings, 
we choose mtype in Promela to represent strings. Each string 
token is treated as an enum constant in mtype. Promela does not 
support real numbers, but provides three types to support 
integers: int, short, and byte, in which the latter two help to 
reduce the state space. We use short as the default 
implementation and let a modeler select other choices during 
translation. For example, a place p with data type, φ(p) = 
<String, Number, String> is translated into a Promela structured 
data type shown in Table 4. 

E. Translation of Transition Constraints 

The constraint of a transition t ∊ T is defined using a first 
order logic formula, which specifies the relationships among 
input and output variables of t. The constraint has two parts – 
precondition only involving input variables and the post-
condition containing output variables.  

1) Translation of operators 

PIPE+ supports a variety or algebraic, relational, logical, and 
set operators. A PrT net uses a subset of these operators to define 
their behavior. Table 5 shows the supported operators in PIPE+. 

Table 5 – Supported operators in PIPE+ 

Category Operators Data type 
Algebraic +, -, *, /, % number 
Relational =, ≠, <, ≤, >, ≥ number,string 
Logical ˄, ˅, ¬, →,↔ bool 
Set  ∊, ∉, ∪, ∖, |, :, ⋅  
Quantifiers ∀, ∃, ∄  

Most of these operators have their usual meanings. Some are 
overloaded, such as = operator. When = is used in a 
precondition, it is a comparison. When ‘=’ is used in a post-
condition, it acts as an assignment. 

#define bound_p const                     
chan place_p = [bound_p] of {type_p} 

 

inline check_is_enabled_and_fire_t() { 
for all combinations of values the input       
variables to t can take, do the following  

    if preconditions are satisfied then 
compute postconditions 
compute new marking 
return; 

  done 
} 

Table 3 – A general algorithm to translate a transition  

typedef struct type_p { 
     mtype field1; 
     short field2; 
     mtype field3;  
} 

Table 4 – An example of translation of data type definition 



2) Translation of Preconditions 

Each logic expression without quantifiers in a PrT net is 
translated into an equivalent form supported in Promela by using 
the corresponding operators. For example, expression (ݔሾ1ሿ ≥
3.5 ˄ yሾ1ሿ ≠ 10) → ሾ1ሿݖ = 2 ∗ ሾ1ሿݔ + 1  is translated to the 
equivalent expression in Promela shown in Table 6. 

However, the set operators and quantifiers in Table 5 do not 
have equivalent representations. The translation of quantifiers is 
given later. The translation of set operations is partially 
completed and is not further discussed in this paper since they 
are rarely used based on our experiences. 

3) Translation of Post-conditions 

Translation of post-conditions involve evaluation of the 
expressions and assignments of the values to the designated 
output variables. Alike preconditions, the evaluation is almost 
the same. Only difference is that, the evaluated values are 
assigned to the designated output variables. These output 
variables will be used as messages to corresponding output 
channels during new marking generation.  

F. Translation of the Initial Marking 

An initial marking defines the initial state of a PrT net. The 
structured tokens of each place are simply translated into send 
statements to the corresponding channel.  

G. Translation of Quantifiers 

PIPE+ supports two types of quantifiers – universal (∀) and 
existential (∃). A first order logic formula with quantifiers is 
called a quantified formula. Quantifiers are essentially used as a 
part of preconditions for seeking desirable input tokens. Thus we 
focus on how to translate these formulas in checking transition 
enabling conditions. 

We identify different types of quantified formulas based on 
their structures, which are important in correctly handling the 
quantifiers. (1) Is a quantified formula within another formula 
(possibly another quantified formula), (2) Does a quantified 
formula contain global variables (arc annotations and those from 
their outer quantifiers), (3) Can a quantified formula be nicely 
separated into a conjunction of precondition and post-condition, 
(4) Does a quantified contain another quantified formula within 
it and so on. 

For each quantifier, an inline function implementing an 
algorithm like what shown in Table 3 is generated. The 
difference is that, for an existential quantifier, as soon as the first 
combination of tokens satisfying the enabling condition, the 
loop exits. And for a universal quantifier, as soon as the first 
combination of tokens violates the enabling condition, the loop 
stops. The in-line functions for quantifiers have the following 
benefits: (1) easy management of the nested quantifiers. It is 
only a matter of calling the inline functions for the nested 
quantifier, (2) declaration, definition and scope management of 
the local and global variables can be resolved easily. The 

underlying contract of inline functions provided by Promela 
takes care of the above tasks. 

Only care needed is to make sure unique names are used in 
these inline functions and the loop control variables have the 
correct names. 

The in-line functions for quantifiers are called inside the 
innermost for loop before the if block in the corresponding 
precondition evaluation function shown in Table 3. This way, 
we can ensure the availability of the arc variables. 

H. Putting Pieces Together 

So far we have discussed the techniques of translating each 
component of PrT nets into Promela’s constructs. To complete 
the translation, we need to provide an overall execution structure 
based on the dynamic semantics of PrT nets. There are two 
essential ways to select a transition firing in Promela – (1) as a 
passive in-line function to be non-deterministically selected in a 
Do loop within a centralized process. As long as there is an 
enabled transition, the loop continues; or (2) as an active 
process, which will be selected for execution by the SPIN 
runtime if the enabling condition is true. The first strategy was 
used in our prior work, where a transition’s enabling condition 
checking and firing were executed separately, which not only 
had the slow performance but also could result in incorrect result 
due to conflict. We resolve this problem in our new 
implementation by combining transition enabling checking with 
firing, which has also improved performance. Furthermore, we 
have also implemented the second strategy. This new translation 
strategy results in much better model checking results in 
detecting violations of some safety properties and is important 
to check liveness properties when weak fairness assumptions are 
needed. 

I. Translation Correctness 

The correctness of the translation method covers the 
completeness and consistency. Completeness measures whether 
all features of PrT nets are translated into Promela. Our current 
translation covers all PrT features except a few set operations, 
which will be implemented in near future. Consistency refers to 
the equivalence between the dynamic behavior of a PrT net and 
the dynamic behavior of the translated Promela program. Of 
course, we ignore the concurrency transition firings in PrT nets 
that do not affect the satisfiability of safety and liveness 
properties that are essentially state based. Therefore, we only 
need to compare interleaved executions between a PrT net and 
the translated Promela program. Each interleaved execution 
starts from the initial marking and continues by firing one 
enabled transition at a time. Using an induction proof principle, 
we can only show (1) the initial marking is translated correctly, 
(2) each transition is translated correctly, i.e. the enabling 
condition and firing result are translated correctly, and (3) each 
enabled transition will be selected to fire. Step (1) is trivial true 
in our translation method. Step (2) is arguably true based on our 
careful design and extensive testing. Step (3) is true for both our 
overall model execution strategies discussed in the previous 
section. However, the formal proof of a general translation 
method is not easy, which is the reason that few compilers have 
been formally verified.    

!(x.field1 >= 3.5 && y.field1 != 10)|| z.field1 
== (2*x.field1+1) 

Table 6 – An example of translation of expression 



V. EXPERINEMT RESULTS 

To evaluate our translation method, we have used two 
benchmark systems, Bridge and SafeBus, from the annual Petri 
net model checking contest 2015 [8]. These are the only high 
level Petri net models available in the contest, which were 
defined using colored Petri nets (a type of high level Petri nets). 
These systems are redefined using PrT nets in PIPE+. We only 
present and describe the Bridge model in this paper due to the 
page limit. The PrT models of the Bridge system and the 
SafeBus system with different parameters in xml format and the 
generated Promela models with properties in pml format as well 
as SPIN model checking results can be found at 
https://bitbucket.org/ptnet/pipe/. 

The bridge system represents a system of a single lane bridge 
with an automatic controller for controlling the two-way through 
traffic. The model proposed contains three control parameters 
(V, P, N), where V is the number of vehicles on each side of the 
bridge trying to get to the other side, P is the maximum number 
of vehicles allowed on the bridge, and N is the maximum 
number of vehicles from the same side allowed to pass in a row. 
A PrT model of the system with parameters (4, 5, 2) is shown in 
Fig. 1. The net inscriptions are shown in Table 7 and 8.  

We have run simulations of PrT model in PIPE+ and 
simulations of the translated Promela model in SPIN. Both 
simulations ended with all vehicles crossed the bridge 
successfully. Although simulations in PIPE+ are much faster. 
The properties checked include: (1) the number of vehicles on 
the bridge never exceeds the maximal allowed (parameter P), (2) 
all the vehicles on the bridge must move in the same direction, 
(3) all the vehicles eventually cross the bridge, and (4) it cannot 
happen when some vehicles are at starting point and others have 
crossed the bridge. Properties (1) to (3) are the desirable ones – 

expected to hold, but property (4) is undesirable – expected to 
fail. These properties are specified using LTL expressions as 
(1)[]!((len(place_onBridgeA) > P || len(place_onBridgeB)) > P), 
where P is a constant based on the given model,    (2) 
[]!(len(place_onBridgeA)>0&&len(place_onBridgeB)>0), (3) 
for all x, [](routeA(x) -> <>exitA(x)) and a similar formula for 
the opposite direction B, and (4) []!(len(place_routeA)>0 && 
len(place_exitA)>0).  

In these experiments, properties (1) to (3) on all the Promela 
models up to (20,10,10) have been checked successfully without 
any violation, however due to the complexity of these models, 
SPIN quickly reached the allotted memory bound of 2048 
Mbyte. Thus, only bounded state space is searched. The reported 
none violation can be false positive. Since all verification runs 
of the above properties in a particular model resulted in similar 
results except slight time differences since the state space 
explored is the same bounded by the allotted memory. A 
summary of SPIN model checking results of property (1) in the 
translated Promela models are shown in Tables 9 and 10. Table 
9 shows the results where the transitions are translated as passive 
in-line functions to be non-deterministically selected to execute. 
Table 10 shows the results where transitions are translated as 
active processes. These experiments show that the first approach 
explores much smaller state space and is very fast than the 
second one.  However, the second approach is effective in 
detecting violations in some safety properties, which found a 
counter example of property (4) in 47 milliseconds; while the 
first approach failed in finding a counter example in bounded 
search space as shown in Table 11. The second approach is also 
needed when a liveness property depends on weak fairness 
assumption since SPIN runtime environment will enforce 
fairness for processes. 

Table 9 – Model checking results of property (1) using approach 1  

Parameters
(V, P, N) 

State 
Transitions 

Atomic 
steps 

Search 
Depth 

Time 
(seconds) 

(4, 5, 2) 1479955 2437508 2823 2.99 
(10,10,10) 1677016 2775407 5754 3.62 
(20,10,10) 3670366 5990664 12730 10 

 

Table 10 – Model checking results of property (1) using approach 2 

Parameters
(V, P, N) 

State 
Transitions 

Atomic 
steps 

Search 
Depth 

Time 
(seconds) 

(4, 5, 2) 26172925 2.27E+08 4307 36.2 
(10,10,10) 40727761 3.63E+08 7591 76.1 
(20,10,10) 25392316 2.31E+08 14739 64 

R(regA) = (cA1=cA+1) 
R(authA)=((s=1∧n>0∧cA>0)∧(cA1=cA-1∧n1=n-1)) 
R(leaveA) = n1=n+1 
R(timeoutA) = (s=1∧cA=0∧cB>0∧s1=2∧c0=0) 
R(regB) = (cB1=cB+1) 
R(authB)= ((s=2∧cB>0∧n>0)∧(cB1=cB-1∧n1=n-1)) 
R(leaveB)= n1=n+1 
R(timeoutB) = ( s=2∧cB=0∧cA>0∧s1=1∧c0=0) 
R(decide) =  (cpt<5∧cpt1=cpt+1) 
R(alternate) = ((cpt=5∧c0=0∧s=1∧s1=2)∨ 

(cpt=5∧c0=0∧s=2∧s1=1)) 
R(switch) = (n=5) 

Table 8 – Constraint definitions of the transitions 

φ(routeA)=φ(waitA)=φ(exitA)=φ(onBridgeA)= ℘(number) 
φ(routeB)=φ(waitB)=φ(exitB)=φ(onBridgeB)= ℘(number) 
φ(nbA)=φ(nbB)=φ(timeoutA)=φ(timeoutB)= number 
φ(controller)=φ(computer)=φ(capacity)= number 
φ(choice)=φ(range)= number 
 

Table 7 – Data type definitions of the places 

Fig. 1 – A PrT net model of the Bridge system 



SPIN was not able to run large models due to state space 
explosion problem, which also happened the Petri model 
checking contest where none of the participating tools could 
verify the above high level Petri net models. 

VI. RELATED WORK 

During the past two decades, SPIN has been used as the 
analysis engine of many tool development efforts. SPIN has 
been used to model check programs. One of the most prominent 
work is Java PathFinder [11], which is a prototype translator 
from Java to Promela. Another work involves translation from 
C code to Promela [12]. SPIN has also been used as for model 
check specifications and designs. In [13], a formal approach 
was proposed to verify web service orchestration by translating 
the web service business process execution language (WS-
BPEL) to Promela. Several studies [14, 15] attempted to 
formally verify the UML system models using SPIN by 
translating UML models to Promela. 

Formal verification of Petri net models using SPIN have 
also been explored in the past several years. In [16], a simple 
technique was proposed to translate low level Petri nets to 
Promela. Several other similar techniques were proposed in the 
literature to translate low level Petri nets, but few works dealt 
with high level Petri nets. In our prior work [3, 4, 10], we 
proposed several techniques to translate PrT nets to Promela 
and implemented some of them with some restrictions in our 
tool environment PIPE+. Those concepts and their 
implementations suffer from some limitations – (1) those were 
not generic enough to support a wide range of system models, 
(2) did not support advanced features like quantifiers in full first 
order logic formulas, (3) suffered from some performance 
bottlenecks, (4) the translation scheme was rigid having no way 
to tweak the translation process, etc. are worth mentioning. Our 
new translation described in this paper eliminates these 
problems. The model translation feature in PIPE+ is fully 
automatic. Once a model is translated, we can explore powerful 
features of SPIN to verify the constraints and properties of the 
model using iSPIN graphical user interface. 

VII. CONCLUSIONS 

In this paper, we presented a method to translate PrT nets 
into a Promela programs. This new translation method supports 
many advanced features of PrT nets and provides a new 
execution scheme. The method is implemented in our tool 
environment PIPE+ and is completely automatic. Once a model 
is translated to Promela program, we can leverage SPIN’s model 
checking capability to analyze system properties of PrT net 
models. Currently, we are doing more experiments to test 
SPIN’s model checking capabilities, which will provide insights 
for model construction and specific PrT features to use. 
Furthermore, we want to develop a strategy to combine PrT’s 
simulation capabilities and SPIN’s model checking capabilities 
in analyzing different types of system properties when model 

checking may not be feasible. We will also utilize modeling 
knowledge to guide the translation, for example, mapping 
bounded integers in a PrT model to byte type in Promela, which 
may improve checking performance or make some property 
checking feasible. We will also fully implement the set 
operations in case some models require them. Our tool is open 
source and is available at https://bitbucket.org/ptnet/pipe/. 
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Approach States Depth Time Result 
1 9323528 2841 23.3 No-error 
2 828 2351 0.047 Error  

 

Table 11 – Checking results of property (4) with parameter (4, 5, 2) 


