Conceptual Software Design: Algebraic Axisifior
Conceptual Integrity

laakov Exman and Phillip Katz

Software Engineering Department
The Jerusalem College of Engineering — JCE - Azriel
Jerusalem, Israel
iaakov@jce.ac.il phillipkatzl@gmail.com

Abstract—Software Conceptual Integrity has been considered
cardinal concern for design and development of softare systems.
But, except for verbal descriptions of desideratathere were no
formal tools to guarantee that conceptual integrityis attained.
This paper proposes an axiomatic algebraic approachbased
upon the assumption that the software system in ehadevel of the
system hierarchy is represented by a Modularity Matix. This

representation enables to translate propriety, ortlbgonality and
generality, usually taken as basic conceptual intedy principles,

into formal algebraic criteria. The novelty is that one can finally
make Conceptual Integrity quantitative calculations The latter

are illustrated by a case study. The paper also digsses the
intimate relationship between software and knowlede, which
emphasizes the importance of conceptual principle®r software

design.

Conceptual Integrity; software system design; Linear Software
Models;, Modularity Matrix; axiomatic approach; formal algebraic
criteria; quantitative calculations; Software Knowledge.

. INTRODUCTION

The central importance of Conceptual Integritydoftware
system design and development, first advanced bpl&r[3],
is a revolutionary idea, which did not percolate yeep
enough through the practice of Software Engineeritighas
two fundamental implications:

a- software is far away from the machine, be it a oza
virtual machine;

b- software understanding by human or robotic
stakeholders, either a developer or a user, itet t

The three principles suggested by Brooks [4] amtbally
described, e.g. by Jackson and co-authors [7], [18] are:

1. Orthogonality — individual functions should be
independent of one another;

2. Propriety — a product should have just the
functions essential to its purpose and no more;

3. Generality — a single function should be usable in
many ways.

These principles have not been formalized, besiuisg
explained in natural language and illustrated bgneples say
by some kind of informal graphical representation.

The ideas of the Conceptual Integrity principles dze
summarized in terms of design modularity and siaitgli
Orthogonality is a basic mechanism to obtain maityla
propriety means an optimization i.e. the fewer thections
that performexactlythe same tasks, the simpler the software
product; generality avoids unnecessary proliferatibsimilar
functions, i.e. reuse existing functions as fampassible (but
see the Discussion in section VI on faithfulnessarislation).

B. Linear Software Models: the Modularity
Matrix

We concisely review the Modularity Matrix, a Linear
Software Models’ algebraic structure, representingoftware
system. We aim to explain the primitive terms adsh models
used in the axioms of this work; for details s€e[d, [10].

Structors— the Modularity Matrix columns — are vector

heart of high quality design of any software system characterizations of software structure, generaizilasses for

This paper claims that faithful translation of infal verbal
principles to formal mathematical criteria is ed&#nto
widespread practical application of Conceptualdritg ideas.
Our proposal formulates algebraic axioms for Cotwap
Integrity based upon the Modularity Matrix [10], algebraic
structure of the Linear Software Models.

A. The Idea of Conceptual Integrity

The idea of Conceptual Integrity was proposed bgyoRs
[3], [4] to deal with neat design of software, andnagement
of teams of developers of software systems.

DOI: 10.18293/SEKE2017-148

any hierarchical software system levélunctionals — the
Modularity Matrix rows — are vector characterizago of
software behavior, i.e. generalized functions mesi by
structors that may be potentially invokédodules— the blocks
along the Modularity Matrix diagonal — are sub-sys$, made
of structor sub-sets and their respective functgrdisjoint to
sub-sets corresponding to other modules. Modulge e
standard Modularity Matrix its visually recognizabblock-
diagonality appearance.

In Linear Software Models the design goal is toiexd for
a software system, the standard Modularity Matnixyhich all
blocks are orthogonal. When an outlier couples rresjwvhich
are not anymore orthogonal, the system must besigaoked.

There is a two-fold relationship between a Modtyari
Matrix and Conceptual Integrity: a- the structore & fact

basic conceptsof the software system; b- the immediate

algebraic translation of conceptual integrity pifiees such as
orthogonality into operations among matrix entities

C. Paper Organization

The remaining of the paper is organized as folld®extion
Il refers to related work. Section Il introducdse taxiomatic
approach. Section IV provides quantitative Concaptu
Integrity criteria enabling actual calculations. cen V
illustrates the approach with a case study. Se&tlaoncludes
the paper with an overall discussion.

1. RELATED WORK

A. Applications of Conceptual Integrity

Works that mention the importance of Conceptuadrity
often make a vague statement about its meaningBeygmon
et al. [2].

generic overviews describing its mathematical faiiwths, see
e.g. Ganter and Wille [16].

The equivalence between Modularity Matrices and
Conceptual Lattices — see e.g. Exman and Speidi#r- is
especially relevant for the current work, sincgivies a formal
justification for dealing with structors as concept

I1l. AN AXIOMATIC APPROACH

In this paper we choose an Axiomatic Approach for a
theory of Conceptual Software Design. This kindapproach
is commonly found in certain sub-fields of matheosatand
physics. Why do we need axioms here?

The first justification is that we are dealing withinciples
that are accepted as truth without a proof. Weusr@ble to
compact the software developer experience of Broalss
admirable as revealed in his works, and turn i iatformal
argumentation. We do acknowledge that his suggested
principles are largely true, and build a model dawethem.

The second justification is that we are presentiege a

Kazman and Carriere [20] deal with reconstructing aheory combining two independent knowledge domairtsch

software system architecture. They gsaceptual integrityas
a guideline to a meaningful architecture, viz. wsemall

apparently have no intrinsic relationship. Againhist
relationship need to be clarified and made intajtivut cannot

number of components connected in regular waysh witbe proven. One domain is the field®dftware having its own

consistent functionality assigned to these comptsnen

Kazman [19] describes a SAAMtool, in whi€onceptual
Integrity is estimated by the number of primitive pattetret &1
system uses.

Clements et al. [6] think ofonceptual integrityas the
unifying theme of the system design at all levBisilar things
should be done in similar ways, with parsimonioasadand
control mechanisms in a system. They refer to hibreal
levels of systems, and also suggest counting methares a
path to a more quantitative definition@dnceptual Integrity

A recent example of the importance of Conceptualyasis
for applications of Software Engineering is the kvdoy
Zambonelli [25] on key abstractions for the InteéroeThings.

vocabulary and syntax — say classes, functiongyiitsimce, etc.
The other domain is a mathematical infra-structw@ch here

is Linear Algebra having its own vocabulary and operational
rules — say matrices, scalar product, eigenveattes,

This is the usual way of formulating theories inesce:
one chooses a mathematical formulation (here LiAdgebra)
judged to be the most suitable to represent andpuiate the
entities of the specific scientific domain (hereft®are). We
need to demonstrate as far as possible that thamaxin
algebraic terms are a plausible and faithful traticeh of the
intentions of Brooks’ principles referring to sofive
conceptual integrity. This kind of demonstratioregdeyond
the purely algebraic arguments given under thaaulfrLinear
Software Models in a series of papers (see e.gaBx8]).

B. Algebraic Representations of Software Systems The third justification is the specific contents dfe

In this work we refer to the Modularity Matrix [13Dther
matrices have been used for modular design.

The Laplacian matrix — see e.g. von Luxburg [21H an
references therein — has been used in various cafiphs.
Exman and Sakhnini [14] have derived a Laplaciartrima
containing equivalent information about a softwaystem as
the corresponding Modularity Matrix, enabling sianil
software design results.

The Design Structure Matrix (DSM) has been incoafemt
into the ‘Design Rules’ by Baldwin and Clark [1{.Has been
applied in various contexts, including for softwaystems, e.g.
Cai et al. [5]. An essential difference between D&M the
Modularity Matrix is linearity as a central idea dhe
Modularity Matrix, while DSM design quality is estated by
an external economic theory superimposed on the Dfalfix.

proposed axioms. These have paescriptive rather than
descriptive nature. The axioms embody the prinsiptd
Conceptual Integrity, which are the recommended way
design software systems as argued by Brooks [4] aihdr
authors. Again recommended and reasonable, bubrmoally
proven.

The ultimate justification for these axioms, whiate the
main contribution of this work, should be providegrigorous
empirical verification in a software design laborst

A. Overall Characteristics of the Axioms

The three axioms of our theory of software systeesgn
take the verbal principles behind Conceptual lritggas
mentioned above — in sub-sectidrof the Introduction section
— and represent them by linear algebraic operatiotign the

Conceptual lattices, analyzed within Formal Concep inear Software Models. The three axioms are ptesein the

Analysis (FCA) were introduced in Wille [24]. Themre

ogical order of the matrix manipulation neededotsain the
best system design.

B. First Axiom: Propriety

Remember the verbal formulation of Propriety: seftsv
systems should just have all the appropriate fonstias
demanded by its requirements, but no more thanethkis
meaning is therefore to avoid superfluous functions

1° Software Design Axiom: Propriety

For any hierarchical level of a given Software 8yst
represented by its Modularity Matrix, all its strois
should be linearly independent, and all its funciis
should be linearly independent.

Linear independence (of both structors and funet®n
obtains exactly the desirgualopriety. Identical columns/rows in
the Modularity Matrix should be eliminated, leavipgt one
instance of each column/row kind. If a few columoas are
respectively linear dependent, their number shbeldeduced
to the bare essentials, i.e. the minimal numbendépendent
vectors.

D. Third Axiom: Generality

The verbal formulation of Generality is that a ftioo
should be usable in many ways. Our interpretat®rthiat
similar functions should not be replicated in difiet modules,
but refined into a single generic form and then sjiag
invoked from other modules, if necessary. In otlerds, in
any hierarchy level of the software system, modalesuld be
cohesive enough — functions related to one anotfiin a
module — while enablingompositionwith other modules,
even from different hierarchical levels.

3 Software Design Axiom: Generality

For any hierarchical level of a given Software 8yst
represented by its Modularity Matrix, all its modsl
should display high cohesion. If a module does

display high cohesion it should be split, maximigithe
number of modules in the Matrix.

not

High cohesion in terms of modules of the Modularity

An important algebraic consequence of the ProprietMatrix means low sparsity, i.e. low numbers of zeatued

demands is that standard Modularity Matrices foy given
software system are square, as shown in [10].

C. Second Axiom: Orthogonality

The verbal formulation of orthogonality is that any
individual functions should be independent of omether.
Its meaning is thus, no overlap at all betweenehesctions.
This formulation with “independence” appears to lynp
linear independence, but the latter is alreadyeasd with
the F' axiom. Orthogonality in algebra is a stronger detha
than linear independence, deserving a separateaxio

2" Software Design Axiom: Orthogonality

For any hierarchical level of a given Software 8yst
represented by its Modularity Matrix, all the
structors/functionals belonging to a given moduiewsd
be respectively orthogonal to all the structorstfionals
belonging to any other module.

Orthogonality as defined in Linear Algebra, i.ee thcalar
product of two vectors is zero, is indeed a strordgEmand
than linear independence, viz. it demands zerolaydretween
vectors.

Orthogonality of software system modules is macibie
by reordering columns and rows in the Modularity ti4a
displaying the disjoint sets of structors and theispective
functionals, the blocks along the matrix diagon&, showing
block-diagonality.

matrix elements relatively to the module size.

If a module has low cohesion it should be splinigans of
a procedure using eigenvectors of the ModularityrMgsee

e.g. [11]).

E. Application of Conceptual Software Axioms

The importance and practical usage of the aboi@rexis
to obtain software system modules actually dispigyi
Conceptual Integrity. To this end, one just needsgply on
the software system Modularity Matrix the standaperations
found in Linear Software Models. These are:

1. For propriety — eliminate linear
respectively of matrix columns/rows;

dependencies

2. For orthogonality — reorder matrix columns/rows to
obtain block-diagonality, where blocks are modules;

3. For generality — eliminate outliers, thereby reducing
block sizes, to avoid low module cohesion, incregsi
the number of modules.

IV. QUANTITATIVE CRITERIA CALCULATIONS

Besides the formal axioms, the practical significan
contribution of this work is to formulate expliciguations to
calculate quantitative criterido measure conceptual integrity,
one criterion fitting each of the above axioms. S¢hequations
are combined to calculate criteria for a wholewafe system.

All the quantities involved in the calculations@énceptual
Integrity are normalized. Normalization means thhaéese

It seems quite clear that Brooks and other authorguantities are independent of the vector or maidgs, i.e. one

concerned with conceptual integrity have used themt
“orthogonality” inspired by its mathematical meapirso, it is
natural to keep using exactly the same term wahpirfect
meaning correspondence. The specific contributibnthis
work is to determine which entities — which vecterdave
their orthogonality calculated.

divides results by relevant entity sizes.

A. Equations for Conceptual Integrity Criteria

We assume that all elements of the Modularity Matind
therefore of its modules, structors and functiores non-
negative. The normalized criteria are given a®fed:

1. Propriety — Linear Dependence within a module is
evaluated by equation (1), in whichs the rank and
is the number of columns of the module sub-matrix.
Since module sub-matrices are square, one couldsuse
well the number of rows instead of the number of
columns. The module propriety criterion in equation
(1) has a value between zero and the maximum

Zero-valued

1 Matrix elements

Qutlier coupling
=
Modules 2 and 3

Y~ — — | €= Structor

y — — —]

propriety value of 1 which is obtained wheequalsc.

Propriety =1-((c-r)/c) (1)
Orthogonality— assume a pair of vectarsandv where
each of them is normalized [23], i.e. all theirnatmts
are divided by the length of the respective vectbeir
Orthogonality criterion is evaluated by equation), (2
where (usv) is the vectors’ scalar product.

Orthogonality has a value between zero and th
maximal value 1 obtained for zero scalar product.

Orthogonality = 1- (usv) 2)

generality criterion is given by equation (3), the
Cohesionof the module, wheré&parsityis the ratio

== Functional

Zero-valued
Matrix elements

e
Figure 1. Schematic generic Modularity Matrix with outlier K has 5

modules (in yellow), three of them mutually orthogb(modules 1, 4 and 5).
Modules 2 and 3 are coupled by the outlier (in pluWg least one matrix
element (in red) in the coupled modules is shangda bFunctional and a
Structor containing the outlier. The hatched af@gagreen) and the coupled
modules form a larger module, too sparse to bejitifeate module, as most

Generality— for each module of a software system thehatched areas matrix elements are zero-valuedptsarethe outlier.

The outlier couples modules 2 and 3 as it has atfanal

between zero-valued matrix elements and the totakrow) shared with module 2 and a Structor (colurshéred
number of matrix elements of the module. Thiswith module 3. As seen in Fig. 1, the shared Fanat has at
generality expression — the module cohesion — has jaast one non-zero matrix element in module 2. I8iyj the
value between zero and 1 and is maximal when thghared Structor has at least one non-zero mateimasit in

Sparsity is minimal.
Cohesion = (1- Sparsity) 3

B. Systems’ Conceptual Integrity Calculations

Software system calculations, based upon the above !

equations, should be done for the whole set of Néody
Matrix modules to obtain the combined conceptuatgrity
criterion for the respective software system.

For instance, the orthogonality criterion of a egstwithn
modules, wher&k modules are mutually orthogonal and the

remainingn-k are not orthogonal, is calculated by equation (4).

The measured orthogonalityn(i) for each non-orthogonal

modulei is obtained by repeated application of equation (2
Thus,

System_Orthogonality = (k + n_ik m(i))/n

V. ILLUSTRATION BY A CASE STUDY

A system calculation is here illustrated by a sinphse
study, shown in Fig. 1. It has 5 modules, with andlier
coupling between two modules (viz. modules 2 andaBil 3
mutually orthogonal modules (viz. modules 1, 4 &hd

module 3. Thus, the scalar products — in equa@yralpove —
of the Functional and Structor containing the eutlvith at
least one respective Functional of module 2 ant witleast
one respective Structor of module 3 will be gre#ttan zero.

Structor

Outlier
coupling
’ two modules

<+— Functional

s1

7

oo
1

7
A

2

Figure 2. Specific Modularity Sub-Matrix with owdti — It is equivalent to
zooming into (yellow) modules 2 and 3 of Fig. 1,08h hatched (red)
elements are coupled by a (dark blue) outlier. fBipeleft module size is 3*3
and the bottom-right size is 2*2. The hatched ar@agreen) outside the
modules have all zero-valued elements (ommittedsimplicity), except the
outlier.

The eigenvectors’ procedure [11] obtaining Moduari
Matrix modules, results in a larger module contagninodules
2 and 3 and the outlier element. But, cohesionutaion of

this larger module, applying equation (3) aboveyvah that
this larger module is too sparse to be a legitimadelule. One
effectively breaks it into modules 2 and 3, leavithg matrix
element outside these smaller modules as an outlier

Now let us calculate the orthogonality given by a&tipn
(4) for the software system with non-orthogonal miled
shown in Fig. 2. The outlier has a functional Flcommon
with the top-left module. F1 has non-zero scaladpcts with
two other functionals (F2 and F3) of the same meduhus,
by applying twice equation (2) the average measure
orthogonalitym(i) for the top-left module is 0.55. In addition,
the outlier has a structor S5 in common with th&dwo-right
module. S5 has a non-zero scalar product with tilueter S4.
Thus the measured orthogonality(i) for the bottom-right
module is 0.5. Therefore, the System Orthogonatitgulated
value is 0.81.

VI. DISCUSSION

A. The Relation between Functions and Concepts

The verbal Conceptual Integrity principles, in sgstionA
of this paper’s Introduction, are expressed in gerof
functions, instead afonceptsas it was pointed out by Jackson
and co-authors [7]. A Conceptual Integrity expositiis
expected to focus on concepts. One needs to expkairole of
functions. Here this is done in two steps.

In the first step, we reiterate that in the Obj€xtented
approach to software design, classes and theirrgleaion
structorsstand for abstract types, i.e. actually natunagjleage
concepts. Functionals, a generalization of funsti@nable the
vectorial representation of Structors. In other dgorthey are
the behavioral characterization of the respectoreepts.

The second step is a reminder that the Modularigtrivi
with its Structors and Functionals have been shbywixman
and Speicher [12] to be equivalent tocanceptual lattice
Lattices, within Formal Concept Analysis [16], algebraic
structures linking concepts of a particular domdihus, from
this point of view, functions are relevant to cqpiceal analysis.

B. The Number of Conceptual Integrity Axioms

The number of Conceptual Integrity axioms is annope
issue. The very formalization of the axioms shoiadilitate
answering this question, as axioms within the fdisnrashould
display coherence. Almost paradoxically, we shoafgply
Conceptual Integrity to decide about the numbetsadixioms.

It should be kept in mind, that the exact numbeaxdbdms
and their specific contents are dependent on sodtwasign
and development technologies. A substantial amooint
automatic development and less human influencebgaleep
learning techniques, would probably keep the akjebbasis
for the axioms, but change specific contents.

De Rosso and Jackson [7] proposedavérbal principle

it seems a user interface issue rather than a deepeeptual
issue. Such verbal principle could generat& axdom.

Additional axioms are certainly conceivable. Bute ave
sure that the minimal set is indeed three? Thiseids dealt
with in the next sub-section.

C. Faithfullness of Translation

The use of a mathematical formalism is never purely
arbitrary. We have chosen Linear Algebra to represeftware
gesign since our analysis refers to linearly depehd
information, such as conceptual dependencies, imct
replications and common functionalities. On theeothand, it
is well known that certain science domains maydeably well
represented by quite different mathematical tdeds.instance,
quantum mechanics was expressed through a diffarent
equation by Schroedinger, and through matrices digdthberg,
and it was necessary to demonstrate their non-obvio
equivalence.

The issue of faithful translation of the verbalngiples into
formal axioms appears to be relevant to the exaotber of
axioms. In terms of linear algebra coherence, @xhality
and Propriety seem to be completely justified hay explicitly
refer to linear algebra operations.

Generality, on the other hand, may raise some cogitsy
and certainly deserves a deeper discussion. Eokgsion is a
software rather than an algebraic concept, evengthgparsity
in equation (3) is expressed in terms of matrixamst.

Generality does not appear to be an intrinsic ptgpef a
given design of a software system. Through theesspitation
of high-level abstraction ideas behind the softwarea broad
and open sense, it rather seems to prepare thedyforfuture
extensiongnd modifications.

D. Abstraction as a Deeper Motivation for Conceptual

Integrity

The deeper motivation for the importance of Conaaipt
Integrity in software design and development carinberred
from the software history along time in the laftl/fyears. One
perceives the continuous increase of the highestradion
level from which one starts software design, witin@mitant
distancing away from machines, be they real oualrt

We cautiously distinguish two kinds of abstraction
hierarchies. One kind is the software system projsarchical
levels, each level with its own Modularity Matrixthis
hierarchy refers to the whole system, sub-systesub;sub-
systems, down to indivisible components chosendiywvare
engineers. Besides the modularity partition of #Huftware
system, it also characterizes abstraction levetalNes in each
level have a specific conceptual identity, whichmsre and
more general as one goes up the hierarchy.

The other kind of abstraction levels is that of the
implementation languages hierarchy, from the loweathine
level up to the human natural language. This hibsarin

called Consistencyenunciating that actions behave in a similarbottom-up direction approximately passes from agégnto

way irrespective of the states in which they amoked. They
did not include it among the Conceptual Integritygiples, as

high-level programming languages, to models suchJlsi,
and finally to natural language concepts.

Higher abstraction levels imply easier grasping tioé
software system design by humans. Thus Concepttegrity
is not a constraint artificially imposed from thetside, but an
inherent and comprehensible
stakeholders, both the software developers arghdsusers.

E. Software and Knowledge

Since this paper is presented to a conference ftiw&e
and Knowledge Engineering, it is worthwhile to strethe
intimate relationship between Software and Knowéedgn the
one hand, Conceptual Integrity is of cardinal intpoce to
software system design and development.

On the other hand, concepts are first class estitie
structures used to define and impart meaning tovdlcabulary
of a certain domain. Typical such structures aeectnceptual
lattices, referred above in sub-sectibdmf this Discussion and
their near cousins, the domain and application logies,
which are the subject of Knowledge engineering.

F. Pragmatic Considerations

In order to apply in practice the theory exposedhis
paper one needs a software tool such as Moduldsgr [
enabling generation and analysis of Modularity Ntas for
software systems from compiled code. One can edsily
generate a Matrix from UML class diagrams, in whitdéisses
stand for structors and independent methods stand
functionals. It should be stressed that such aisapa@ints out
to coupling problems deserving system redesignieseaving
the actual solution to considerations of the safenengineer.

Finally, one observes that Modularity Matrices sola
software system composition problem, somewhat aimtib
Petri Nets. However, the latter focuses on distelisystems,
and Modularity Matrices are not specialized forsehgystems.

G. Main Contribution

There are two main contributions of this paperstrithe
formalization of the principles behind Conceptuatebrity in
an axiomatic fashion, provide a deeper justificatior the
algebraic operations found in the Linear Softwadils.

(6]

quality serving humad’]

(8]

9]

[10]

[11]

[12]

[13]

fl14

[15]

[16]

(17]

(18]

Second, the formulation of equations finally enable

calculations of quantitative criteria for Conceptimegrity.

REFERENCES

[1] C.Y. Baldwin and K.B. ClarkDesign RulesVol. I. The Power of

Modularity, MIT Press, Cambridge, MA, USA, 2000.

W.M. Beynon, R.C. Boyatt and Z.E. Chan, “Intuition Software
Development Revisited”, in Proc. of 20Annual Psychology of
Programming Interest Group Conference, Lancastewvedsity, UK,
2008.

F.P. Brooks, The Mythical Man-Month Essays in Software
Engineering — Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

F.P. Brooks,The Design of Design: Essays from a Computer Ssfent
Addison-Wesley, Boston, MA, USA, 2010.

Y. Cai and K.J. Sullivan, “Modularity Analysis ofolical Design
Models”, in Proc. 2F' IEEE/ACM Int. Conf. Automated Software Eng.
ASE’'06 pp. 91-102, Tokyo, Japan, 2006.

(2]

(3]

(4]
(5]

P. Clements, R. Kazman and M. KleirEvaluating Software
Architecture: Methods and Case Studidddison-Wesley, Boston, MA,
USA, 2001.

S.P. De Rosso and D. Jackson, “What's Wrong witt? @i Conceptual
Design Analysis”, in Proc. of Onward! Conference, 87-51, ACM,
2013. DOl:http://dx.doi.org/10.1145/2509578.2509584

I. Exman, “Linear Software Models”, Proc. GTSE' SEMAT
Workshop on a General Theory of Software Engingeri¢TH Royal
Institute of Technology, Stockholm, Sweden, 2012a.
http://semat.org/wp-

content/uploads/2012/10/GTSE_2012 Proceedings.pdf

I. Exman, “Linear Software Models”, video presation of paper [8] at
GTSE 2012, KTH, Stockholm, Sweden, 2012b. Web site:
http://www.youtube.com/watch?v=EJfzArH8-Is.

. Exman, “Linear Software Models: Standard ModityaHighlights
Residual Coupling”, Int. Journal of Software Engrieg and
Knowledge Engineering, Vol. 24, pp. 183-210, 201®80I:
10.1142/S0218194014500089

. Exman, “Linear Software Models: Decoupled Modulérom
Modularity Matrix Eigenvectors”, Int. Journal of fBeare Engineering
and Knowledge Engineering, Vol. 25, pp. 1395-142615. DOI:
http://dx.doi.org/10.1142/S0218194015500308

I. Exman and D. Speicher, “Linear Software ModElguivalence of the
Modularity Matrix to its Modularity Lattice”, in Ric. 10" ICSOFT’2015
Int. Conference on Software Technology, pp. 109-1%6itePress,
Portugal, 2015. DOI0.5220/0005557701090116

I. Exman, “Linear Software Models: An Algebraic Tng of Software
Composition”, in Proc. 28 Int. Conf. on Software Engineering and
Knowledge Engineering, Keynote Abstract, KSI ReseaRedwood
City, CA, USA, 2016.

I. Exman and R. Sakhnini, “Linear Software ModeModularity
Analysis by the Laplacian Matrix”, in Proc. UICSOFT'2016 Int.
Conference on Software Technology, Volume 2, pp.0-108,
ScitePress, Portugal, 2016. DQ@0.5220/0005985601000108

I. Exman and P. Katz, “Modulaser: A Tool for Contteg) Analysis of
Software Systems”, in Proc. SKY 2018! Iht. Workshop on Software
Knowledge, pp. 19-26, ScitePress, Portugal, 2016.

B. Ganter and R. Willefformal Concept Analysis: Mathematical
Foundations Springer-Verlag, Berlin, Germany, 1998.

D. Jackson, “Conceptual Design of Software: A Redealgenda’,
CSAIL Technical Report, MIT-CSAIL-TR-2013-020, 2Q13JRL:
http://dspace.mit.edu/bitstream/handle/1721.1/788P6-CSAIL-TR-
2013-020.pdf?sequence=2

D. Jackson, “Towards a Theory of Conceptual DefigrSoftware”, in
Proc. Onward! 2015 ACM Int. Symposium on New Ided&w
Paradigms and Reflections on Programming and Scdtvg. 282-296,
2015. DOI:10.1145/2814228.2814248

] R. Kazman, “Tool Support for Architecture Analysiad Design”, in

[20]

[21

[22]
[23]

[24

[25]

ISAW’'96 Proc. 2¢ Int. Software Architecture Workshop, pp. 94-97,
ACM, New York, NY, USA, 1996. DOI10.1145/243327.243618

R. Kazman and S.J. Carriere, “Playing Detective:cdRetructing
Software Architecture from Available Evidence.” Teaal Report
CMU/SEI-97-TR-010, Software Engineering Institu@grnegie Mellon
University, Pittsburgh, PA, USA, 1997.

U. von Luxburg, “A Tutorial on Spectral ClusteringStatistics and
Computing 17 (4), pp. 395-416, 2007. DA0.1007/s11222-007-9033-
z

W. Reisig,Understanding Petri NetsSpringer, Berlin, 2013.

E.W. Weisstein, “Normalized Vector” From MathWord- Wolfram
Web Resourcéhttp://mathworld.wolfram.com/NormalizedVector.html
R. Wille, “Restructuring lattice theory: an apprbasased on hierarchies
of concepts” In: I. Rival (ed.)Ordered Setspp. 445-470, Reidel,
Dordrecht-Boston, 1982.

F. Zambonelli, “Key Abstractions

Engineering”, IEEE Software,
10.1109/MS.2017.3

lIoT-Oriented ofvare
38-45, 2017. DOl:

for
pp.

