
Conceptual Software Design: Algebraic Axioms for
Conceptual Integrity

Iaakov Exman and Phillip Katz
Software Engineering Department

The Jerusalem College of Engineering – JCE - Azrieli
Jerusalem, Israel

iaakov@jce.ac.il phillipkatz1@gmail.com

Abstract—Software Conceptual Integrity has been considered a
cardinal concern for design and development of software systems.
But, except for verbal descriptions of desiderata, there were no
formal tools to guarantee that conceptual integrity is attained.
This paper proposes an axiomatic algebraic approach, based
upon the assumption that the software system in each level of the
system hierarchy is represented by a Modularity Matrix. This
representation enables to translate propriety, orthogonality and
generality, usually taken as basic conceptual integrity principles,
into formal algebraic criteria. The novelty is that one can finally
make Conceptual Integrity quantitative calculations. The latter
are illustrated by a case study. The paper also discusses the
intimate relationship between software and knowledge, which
emphasizes the importance of conceptual principles for software
design.1

Conceptual Integrity; software system design; Linear Software
Models; Modularity Matrix; axiomatic approach; formal algebraic
criteria; quantitative calculations; Software Knowledge.

I. INTRODUCTION

The central importance of Conceptual Integrity for software
system design and development, first advanced by Brooks [3],
is a revolutionary idea, which did not percolate yet deep
enough through the practice of Software Engineering. It has
two fundamental implications:

a- software is far away from the machine, be it a real or a
virtual machine;

b- software understanding by human or robotic
stakeholders, either a developer or a user, is at the
heart of high quality design of any software system.

This paper claims that faithful translation of informal verbal
principles to formal mathematical criteria is essential to
widespread practical application of Conceptual Integrity ideas.
Our proposal formulates algebraic axioms for Conceptual
Integrity based upon the Modularity Matrix [10], an algebraic
structure of the Linear Software Models.

A. The Idea of Conceptual Integrity

The idea of Conceptual Integrity was proposed by Brooks
[3], [4] to deal with neat design of software, and management
of teams of developers of software systems.

DOI: 10.18293/SEKE2017-148

The three principles suggested by Brooks [4] and verbally
described, e.g. by Jackson and co-authors [7], [17], [18] are:

1. Orthogonality – individual functions should be
independent of one another;

2. Propriety – a product should have just the
functions essential to its purpose and no more;

3. Generality – a single function should be usable in
many ways.

These principles have not been formalized, besides being
explained in natural language and illustrated by examples say
by some kind of informal graphical representation.

The ideas of the Conceptual Integrity principles can be
summarized in terms of design modularity and simplicity.
Orthogonality is a basic mechanism to obtain modularity;
propriety means an optimization i.e. the fewer the functions
that perform exactly the same tasks, the simpler the software
product; generality avoids unnecessary proliferation of similar
functions, i.e. reuse existing functions as far as possible (but
see the Discussion in section VI on faithfulness of translation).

B. Linear Software Models: the Modularity
Matrix

We concisely review the Modularity Matrix, a Linear
Software Models’ algebraic structure, representing a software
system. We aim to explain the primitive terms of these models
used in the axioms of this work; for details see [8], [9], [10].

Structors – the Modularity Matrix columns – are vector
characterizations of software structure, generalizing classes for
any hierarchical software system level. Functionals – the
Modularity Matrix rows – are vector characterizations of
software behavior, i.e. generalized functions provided by
structors that may be potentially invoked. Modules – the blocks
along the Modularity Matrix diagonal – are sub-systems, made
of structor sub-sets and their respective functionals, disjoint to
sub-sets corresponding to other modules. Modules give the
standard Modularity Matrix its visually recognizable block-
diagonality appearance.

In Linear Software Models the design goal is to achieve for
a software system, the standard Modularity Matrix, in which all
blocks are orthogonal. When an outlier couples modules, which
are not anymore orthogonal, the system must be redesigned.

There is a two-fold relationship between a Modularity
Matrix and Conceptual Integrity: a- the structors are in fact
basic concepts of the software system; b- the immediate
algebraic translation of conceptual integrity principles such as
orthogonality into operations among matrix entities.

C. Paper Organization

The remaining of the paper is organized as follows. Section
II refers to related work. Section III introduces the axiomatic
approach. Section IV provides quantitative Conceptual
Integrity criteria enabling actual calculations. Section V
illustrates the approach with a case study. Section VI concludes
the paper with an overall discussion.

II. RELATED WORK

A. Applications of Conceptual Integrity

Works that mention the importance of Conceptual Integrity
often make a vague statement about its meaning, e.g. Beynon
et al. [2].

Kazman and Carriere [20] deal with reconstructing a
software system architecture. They use conceptual integrity as
a guideline to a meaningful architecture, viz. use a small
number of components connected in regular ways, with
consistent functionality assigned to these components.

Kazman [19] describes a SAAMtool, in which Conceptual
Integrity is estimated by the number of primitive patterns that a
system uses.

Clements et al. [6] think of conceptual integrity as the
unifying theme of the system design at all levels. Similar things
should be done in similar ways, with parsimonious data and
control mechanisms in a system. They refer to hierarchical
levels of systems, and also suggest counting mechanisms as a
path to a more quantitative definition of Conceptual Integrity.

A recent example of the importance of Conceptual analysis
for applications of Software Engineering is the work by
Zambonelli [25] on key abstractions for the Internet of Things.

B. Algebraic Representations of Software Systems

In this work we refer to the Modularity Matrix [13]. Other
matrices have been used for modular design.

The Laplacian matrix – see e.g. von Luxburg [21] and
references therein – has been used in various applications.
Exman and Sakhnini [14] have derived a Laplacian matrix
containing equivalent information about a software system as
the corresponding Modularity Matrix, enabling similar
software design results.

The Design Structure Matrix (DSM) has been incorporated
into the ‘Design Rules’ by Baldwin and Clark [1]. It has been
applied in various contexts, including for software systems, e.g.
Cai et al. [5]. An essential difference between DSM and the
Modularity Matrix is linearity as a central idea of the
Modularity Matrix, while DSM design quality is estimated by
an external economic theory superimposed on the DSM matrix.

Conceptual lattices, analyzed within Formal Concept
Analysis (FCA) were introduced in Wille [24]. There are

generic overviews describing its mathematical foundations, see
e.g. Ganter and Wille [16].

The equivalence between Modularity Matrices and
Conceptual Lattices – see e.g. Exman and Speicher [12] – is
especially relevant for the current work, since it gives a formal
justification for dealing with structors as concepts.

III. AN AXIOMATIC APPROACH

In this paper we choose an Axiomatic Approach for a
theory of Conceptual Software Design. This kind of approach
is commonly found in certain sub-fields of mathematics and
physics. Why do we need axioms here?

The first justification is that we are dealing with principles
that are accepted as truth without a proof. We are unable to
compact the software developer experience of Brooks, as
admirable as revealed in his works, and turn it into a formal
argumentation. We do acknowledge that his suggested
principles are largely true, and build a model based on them.

The second justification is that we are presenting here a
theory combining two independent knowledge domains, which
apparently have no intrinsic relationship. Again, this
relationship need to be clarified and made intuitive, but cannot
be proven. One domain is the field of Software, having its own
vocabulary and syntax – say classes, functions, inheritance, etc.
The other domain is a mathematical infra-structure, which here
is Linear Algebra, having its own vocabulary and operational
rules – say matrices, scalar product, eigenvectors, etc.

This is the usual way of formulating theories in science:
one chooses a mathematical formulation (here Linear Algebra)
judged to be the most suitable to represent and manipulate the
entities of the specific scientific domain (here Software). We
need to demonstrate as far as possible that the axioms in
algebraic terms are a plausible and faithful translation of the
intentions of Brooks’ principles referring to software
conceptual integrity. This kind of demonstration goes beyond
the purely algebraic arguments given under the rubric of Linear
Software Models in a series of papers (see e.g. Exman [8]).

The third justification is the specific contents of the
proposed axioms. These have a prescriptive rather than
descriptive nature. The axioms embody the principles of
Conceptual Integrity, which are the recommended way to
design software systems as argued by Brooks [4] and other
authors. Again recommended and reasonable, but not formally
proven.

The ultimate justification for these axioms, which are the
main contribution of this work, should be provided by rigorous
empirical verification in a software design laboratory.

A. Overall Characteristics of the Axioms

The three axioms of our theory of software systems design
take the verbal principles behind Conceptual Integrity as
mentioned above – in sub-section A of the Introduction section
– and represent them by linear algebraic operations within the
Linear Software Models. The three axioms are presented in the
logical order of the matrix manipulation needed to obtain the
best system design.

B. First Axiom: Propriety

Remember the verbal formulation of Propriety: software
systems should just have all the appropriate functions as
demanded by its requirements, but no more than those. Its
meaning is therefore to avoid superfluous functions.

Linear independence (of both structors and functionals)
obtains exactly the desired propriety. Identical columns/rows in
the Modularity Matrix should be eliminated, leaving just one
instance of each column/row kind. If a few columns/rows are
respectively linear dependent, their number should be reduced
to the bare essentials, i.e. the minimal number of independent
vectors.

An important algebraic consequence of the Propriety
demands is that standard Modularity Matrices for any given
software system are square, as shown in [10].

C. Second Axiom: Orthogonality

The verbal formulation of orthogonality is that any
individual functions should be independent of one another.
Its meaning is thus, no overlap at all between these functions.
This formulation with “independence” appears to imply
linear independence, but the latter is already achieved with
the 1st axiom. Orthogonality in algebra is a stronger demand
than linear independence, deserving a separate axiom.

Orthogonality as defined in Linear Algebra, i.e. the scalar
product of two vectors is zero, is indeed a stronger demand
than linear independence, viz. it demands zero overlap between
vectors.

Orthogonality of software system modules is made visible
by reordering columns and rows in the Modularity Matrix,
displaying the disjoint sets of structors and their respective
functionals, the blocks along the matrix diagonal, viz. showing
block-diagonality.

It seems quite clear that Brooks and other authors
concerned with conceptual integrity have used the term
“orthogonality” inspired by its mathematical meaning. So, it is
natural to keep using exactly the same term with its perfect
meaning correspondence. The specific contribution of this
work is to determine which entities – which vectors – have
their orthogonality calculated.

D. Third Axiom: Generality

The verbal formulation of Generality is that a function
should be usable in many ways. Our interpretation is that
similar functions should not be replicated in different modules,
but refined into a single generic form and then possibly
invoked from other modules, if necessary. In other words, in
any hierarchy level of the software system, modules should be
cohesive enough – functions related to one another within a
module – while enabling composition with other modules,
even from different hierarchical levels.

High cohesion in terms of modules of the Modularity
Matrix means low sparsity, i.e. low numbers of zero-valued
matrix elements relatively to the module size.

If a module has low cohesion it should be split by means of
a procedure using eigenvectors of the Modularity Matrix (see
e.g. [11]).

E. Application of Conceptual Software Axioms

 The importance and practical usage of the above axioms is
to obtain software system modules actually displaying
Conceptual Integrity. To this end, one just needs to apply on
the software system Modularity Matrix the standard operations
found in Linear Software Models. These are:

1. For propriety – eliminate linear dependencies
respectively of matrix columns/rows;

2. For orthogonality – reorder matrix columns/rows to
obtain block-diagonality, where blocks are modules;

3. For generality – eliminate outliers, thereby reducing
block sizes, to avoid low module cohesion, increasing
the number of modules.

IV. QUANTITATIVE CRITERIA CALCULATIONS

Besides the formal axioms, the practical significant
contribution of this work is to formulate explicit equations to
calculate quantitative criteria to measure conceptual integrity,
one criterion fitting each of the above axioms. These equations
are combined to calculate criteria for a whole software system.

All the quantities involved in the calculations of Conceptual
Integrity are normalized. Normalization means that these
quantities are independent of the vector or matrix sizes, i.e. one
divides results by relevant entity sizes.

A. Equations for Conceptual Integrity Criteria

We assume that all elements of the Modularity Matrix, and
therefore of its modules, structors and functionals are non-
negative. The normalized criteria are given as follows:

1st Software Design Axiom: Propriety
For any hierarchical level of a given Software System
represented by its Modularity Matrix, all its structors
should be linearly independent, and all its functionals
should be linearly independent.

2nd Software Design Axiom: Orthogonality
For any hierarchical level of a given Software System
represented by its Modularity Matrix, all the
structors/functionals belonging to a given module should
be respectively orthogonal to all the structors/functionals
belonging to any other module.

3rd Software Design Axiom: Generality
For any hierarchical level of a given Software System
represented by its Modularity Matrix, all its modules
should display high cohesion. If a module does not
display high cohesion it should be split, maximizing the
number of modules in the Matrix.

1. Propriety – Linear Dependence within a module is
evaluated by equation (1), in which r is the rank and c
is the number of columns of the module sub-matrix.
Since module sub-matrices are square, one could use as
well the number of rows instead of the number of
columns. The module propriety criterion in equation
(1) has a value between zero and the maximum
propriety value of 1 which is obtained when r equals c.

Propriety = 1 - ((c - r) c) (1)

2. Orthogonality – assume a pair of vectors u and v where
each of them is normalized [23], i.e. all their elements
are divided by the length of the respective vector. Their
Orthogonality criterion is evaluated by equation (2),
where ()u vi is the vectors’ scalar product.

Orthogonality has a value between zero and the
maximal value 1 obtained for zero scalar product.

)iOrthogonality = 1 - (u v (2)

3. Generality – for each module of a software system the
generality criterion is given by equation (3), the
Cohesion of the module, where Sparsity is the ratio
between zero-valued matrix elements and the total
number of matrix elements of the module. This
generality expression – the module cohesion – has a
value between zero and 1 and is maximal when the
Sparsity is minimal.

Cohesion = (1 - Sparsity) (3)

B. Systems’ Conceptual Integrity Calculations

Software system calculations, based upon the above
equations, should be done for the whole set of Modularity
Matrix modules to obtain the combined conceptual integrity
criterion for the respective software system.

For instance, the orthogonality criterion of a system with n
modules, where k modules are mutually orthogonal and the
remaining n-k are not orthogonal, is calculated by equation (4).
The measured orthogonality m(i) for each non-orthogonal
module i is obtained by repeated application of equation (2).
Thus,

∑
n-k

i
System_Orthogonality = (k + m(i)) n (4)

V. ILLUSTRATION BY A CASE STUDY

A system calculation is here illustrated by a simple case
study, shown in Fig. 1. It has 5 modules, with one outlier
coupling between two modules (viz. modules 2 and 3), and 3
mutually orthogonal modules (viz. modules 1, 4 and 5).

Figure 1. Schematic generic Modularity Matrix with outlier – It has 5
modules (in yellow), three of them mutually orthogonal (modules 1, 4 and 5).
Modules 2 and 3 are coupled by the outlier (in blue). At least one matrix
element (in red) in the coupled modules is shared by a Functional and a
Structor containing the outlier. The hatched areas (in green) and the coupled
modules form a larger module, too sparse to be a legitimate module, as most
hatched areas matrix elements are zero-valued, except for the outlier.

The outlier couples modules 2 and 3 as it has a Functional
(row) shared with module 2 and a Structor (column) shared
with module 3. As seen in Fig. 1, the shared Functional has at
least one non-zero matrix element in module 2. Similarly, the
shared Structor has at least one non-zero matrix element in
module 3. Thus, the scalar products – in equation (2) above –
of the Functional and Structor containing the outlier with at
least one respective Functional of module 2 and with at least
one respective Structor of module 3 will be greater than zero.

Figure 2. Specific Modularity Sub-Matrix with outlier – It is equivalent to
zooming into (yellow) modules 2 and 3 of Fig. 1, whose hatched (red)
elements are coupled by a (dark blue) outlier. The top-left module size is 3*3
and the bottom-right size is 2*2. The hatched areas (in green) outside the
modules have all zero-valued elements (ommitted for simplicity), except the
outlier.

The eigenvectors’ procedure [11] obtaining Modularity
Matrix modules, results in a larger module containing modules
2 and 3 and the outlier element. But, cohesion calculation of

this larger module, applying equation (3) above, shows that
this larger module is too sparse to be a legitimate module. One
effectively breaks it into modules 2 and 3, leaving the matrix
element outside these smaller modules as an outlier.

Now let us calculate the orthogonality given by equation
(4) for the software system with non-orthogonal modules
shown in Fig. 2. The outlier has a functional F1 in common
with the top-left module. F1 has non-zero scalar products with
two other functionals (F2 and F3) of the same module. Thus,
by applying twice equation (2) the average measured
orthogonality m(i) for the top-left module is 0.55. In addition,
the outlier has a structor S5 in common with the bottom-right
module. S5 has a non-zero scalar product with the structor S4.
Thus the measured orthogonality m(i) for the bottom-right
module is 0.5. Therefore, the System Orthogonality calculated
value is 0.81.

VI. DISCUSSION

A. The Relation between Functions and Concepts

The verbal Conceptual Integrity principles, in sub-section A
of this paper’s Introduction, are expressed in terms of
functions, instead of concepts, as it was pointed out by Jackson
and co-authors [7]. A Conceptual Integrity exposition is
expected to focus on concepts. One needs to explain the role of
functions. Here this is done in two steps.

In the first step, we reiterate that in the Object Oriented
approach to software design, classes and their generalization
structors stand for abstract types, i.e. actually natural language
concepts. Functionals, a generalization of functions, enable the
vectorial representation of Structors. In other words, they are
the behavioral characterization of the respective concepts.

The second step is a reminder that the Modularity Matrix
with its Structors and Functionals have been shown by Exman
and Speicher [12] to be equivalent to a conceptual lattice.
Lattices, within Formal Concept Analysis [16], are algebraic
structures linking concepts of a particular domain. Thus, from
this point of view, functions are relevant to conceptual analysis.

B. The Number of Conceptual Integrity Axioms

The number of Conceptual Integrity axioms is an open
issue. The very formalization of the axioms should facilitate
answering this question, as axioms within the formalism should
display coherence. Almost paradoxically, we should apply
Conceptual Integrity to decide about the number of its axioms.

It should be kept in mind, that the exact number of axioms
and their specific contents are dependent on software design
and development technologies. A substantial amount of
automatic development and less human influence, say by deep
learning techniques, would probably keep the algebraic basis
for the axioms, but change specific contents.

De Rosso and Jackson [7] proposed a 4th verbal principle
called Consistency enunciating that actions behave in a similar
way irrespective of the states in which they are invoked. They
did not include it among the Conceptual Integrity principles, as

it seems a user interface issue rather than a deeper conceptual
issue. Such verbal principle could generate a 4th axiom.

Additional axioms are certainly conceivable. But, are we
sure that the minimal set is indeed three? This issue is dealt
with in the next sub-section.

C. Faithfullness of Translation

The use of a mathematical formalism is never purely
arbitrary. We have chosen Linear Algebra to represent software
design since our analysis refers to linearly dependent
information, such as conceptual dependencies, function
replications and common functionalities. On the other hand, it
is well known that certain science domains may be equally well
represented by quite different mathematical tools. For instance,
quantum mechanics was expressed through a differential
equation by Schroedinger, and through matrices by Heisenberg,
and it was necessary to demonstrate their non-obvious
equivalence.

The issue of faithful translation of the verbal principles into
formal axioms appears to be relevant to the exact number of
axioms. In terms of linear algebra coherence, Orthogonality
and Propriety seem to be completely justified, as they explicitly
refer to linear algebra operations.

Generality, on the other hand, may raise some controversy
and certainly deserves a deeper discussion. First, cohesion is a
software rather than an algebraic concept, even though sparsity
in equation (3) is expressed in terms of matrix notions.

Generality does not appear to be an intrinsic property of a
given design of a software system. Through the representation
of high-level abstraction ideas behind the software, in a broad
and open sense, it rather seems to prepare the ground for future
extensions and modifications.

D. Abstraction as a Deeper Motivation for Conceptual
Integrity

The deeper motivation for the importance of Conceptual
Integrity in software design and development can be inferred
from the software history along time in the last fifty years. One
perceives the continuous increase of the highest abstraction
level from which one starts software design, with concomitant
distancing away from machines, be they real or virtual.

We cautiously distinguish two kinds of abstraction
hierarchies. One kind is the software system proper hierarchical
levels, each level with its own Modularity Matrix. This
hierarchy refers to the whole system, sub-systems, sub-sub-
systems, down to indivisible components chosen by software
engineers. Besides the modularity partition of the software
system, it also characterizes abstraction levels. Modules in each
level have a specific conceptual identity, which is more and
more general as one goes up the hierarchy.

The other kind of abstraction levels is that of the
implementation languages hierarchy, from the lowest machine
level up to the human natural language. This hierarchy in
bottom-up direction approximately passes from assembly, to
high-level programming languages, to models such as UML,
and finally to natural language concepts.

Higher abstraction levels imply easier grasping of the
software system design by humans. Thus Conceptual Integrity
is not a constraint artificially imposed from the outside, but an
inherent and comprehensible quality serving human
stakeholders, both the software developers and its end-users.

E. Software and Knowledge

Since this paper is presented to a conference on Software
and Knowledge Engineering, it is worthwhile to stress the
intimate relationship between Software and Knowledge. On the
one hand, Conceptual Integrity is of cardinal importance to
software system design and development.

On the other hand, concepts are first class entities in
structures used to define and impart meaning to the vocabulary
of a certain domain. Typical such structures are the conceptual
lattices, referred above in sub-section A of this Discussion and
their near cousins, the domain and application ontologies,
which are the subject of Knowledge engineering.

F. Pragmatic Considerations

In order to apply in practice the theory exposed in this
paper one needs a software tool such as Modulaser [15],
enabling generation and analysis of Modularity Matrices for
software systems from compiled code. One can also easily
generate a Matrix from UML class diagrams, in which classes
stand for structors and independent methods stand for
functionals. It should be stressed that such analysis points out
to coupling problems deserving system redesign, while leaving
the actual solution to considerations of the software engineer.

Finally, one observes that Modularity Matrices solve a
software system composition problem, somewhat similar to
Petri Nets. However, the latter focuses on distributed systems,
and Modularity Matrices are not specialized for these systems.

G. Main Contribution

There are two main contributions of this paper. First, the
formalization of the principles behind Conceptual Integrity in
an axiomatic fashion, provide a deeper justification for the
algebraic operations found in the Linear Software Models.

Second, the formulation of equations finally enables
calculations of quantitative criteria for Conceptual Integrity.

REFERENCES

[1] C.Y. Baldwin and K.B. Clark, Design Rules, Vol. I. The Power of

Modularity, MIT Press, Cambridge, MA, USA, 2000.

[2] W.M. Beynon, R.C. Boyatt and Z.E. Chan, “Intuition in Software
Development Revisited”, in Proc. of 20th Annual Psychology of
Programming Interest Group Conference, Lancaster University, UK,
2008.

[3] F.P. Brooks, The Mythical Man-Month – Essays in Software
Engineering – Anniversary Edition, Addison-Wesley, Boston, MA,
USA, 1995.

[4] F.P. Brooks, The Design of Design: Essays from a Computer Scientist,
Addison-Wesley, Boston, MA, USA, 2010.

[5] Y. Cai and K.J. Sullivan, “Modularity Analysis of Logical Design
Models”, in Proc. 21st IEEE/ACM Int. Conf. Automated Software Eng.
ASE’06, pp. 91-102, Tokyo, Japan, 2006.

[6] P. Clements, R. Kazman and M. Klein, Evaluating Software
Architecture: Methods and Case Studies. Addison-Wesley, Boston, MA,
USA, 2001.

[7] S.P. De Rosso and D. Jackson, “What’s Wrong with Git? A Conceptual
Design Analysis”, in Proc. of Onward! Conference, pp. 37-51, ACM,
2013. DOI: http://dx.doi.org/10.1145/2509578.2509584.

[8] I. Exman, “Linear Software Models”, Proc. GTSE 1st SEMAT
Workshop on a General Theory of Software Engineering, KTH Royal
Institute of Technology, Stockholm, Sweden, 2012a.
http://semat.org/wp-
content/uploads/2012/10/GTSE_2012_Proceedings.pdf.

[9] I. Exman, “Linear Software Models”, video presentation of paper [8] at
GTSE 2012, KTH, Stockholm, Sweden, 2012b. Web site:
http://www.youtube.com/watch?v=EJfzArH8-ls.

[10] I. Exman, “Linear Software Models: Standard Modularity Highlights
Residual Coupling”, Int. Journal of Software Engineering and
Knowledge Engineering, Vol. 24, pp. 183-210, 2014. DOI:
10.1142/S0218194014500089.

[11] I. Exman, “Linear Software Models: Decoupled Modules from
Modularity Matrix Eigenvectors”, Int. Journal of Software Engineering
and Knowledge Engineering, Vol. 25, pp. 1395-1426, 2015. DOI:
http://dx.doi.org/10.1142/S0218194015500308

[12] I. Exman and D. Speicher, “Linear Software Models: Equivalence of the
Modularity Matrix to its Modularity Lattice”, in Proc. 10th ICSOFT’2015
Int. Conference on Software Technology, pp. 109-116, ScitePress,
Portugal, 2015. DOI: 10.5220/0005557701090116

[13] I. Exman, “Linear Software Models: An Algebraic Theory of Software
Composition”, in Proc. 28th Int. Conf. on Software Engineering and
Knowledge Engineering, Keynote Abstract, KSI Research, Redwood
City, CA, USA, 2016.

[14] I. Exman and R. Sakhnini, “Linear Software Models: Modularity
Analysis by the Laplacian Matrix”, in Proc. 11th ICSOFT’2016 Int.
Conference on Software Technology, Volume 2, pp. 100-108,
ScitePress, Portugal, 2016. DOI: 10.5220/0005985601000108

[15] I. Exman and P. Katz, “Modulaser: A Tool for Conceptual Analysis of
Software Systems”, in Proc. SKY 2016, 7th Int. Workshop on Software
Knowledge, pp. 19-26, ScitePress, Portugal, 2016.

[16] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, Berlin, Germany, 1998.

[17] D. Jackson, “Conceptual Design of Software: A Research Agenda”,
CSAIL Technical Report, MIT-CSAIL-TR-2013-020, 2013. URL:
http://dspace.mit.edu/bitstream/handle/1721.1/79826/MIT-CSAIL-TR-
2013-020.pdf?sequence=2

[18] D. Jackson, “Towards a Theory of Conceptual Design for Software”, in
Proc. Onward! 2015 ACM Int. Symposium on New Ideas, New
Paradigms and Reflections on Programming and Software, pp. 282-296,
2015. DOI: 10.1145/2814228.2814248.

[19] R. Kazman, “Tool Support for Architecture Analysis and Design”, in
ISAW’96 Proc. 2nd Int. Software Architecture Workshop, pp. 94-97,
ACM, New York, NY, USA, 1996. DOI: 10.1145/243327.243618

[20] R. Kazman and S.J. Carriere, “Playing Detective: Reconstructing
Software Architecture from Available Evidence.” Technical Report
CMU/SEI-97-TR-010, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

[21] U. von Luxburg, “A Tutorial on Spectral Clustering”, Statistics and
Computing, 17 (4), pp. 395-416, 2007. DOI: 10.1007/s11222-007-9033-
z

[22] W. Reisig, Understanding Petri Nets, Springer, Berlin, 2013.

[23] E.W. Weisstein, “Normalized Vector” From MathWorld--A Wolfram
Web Resource. http://mathworld.wolfram.com/NormalizedVector.html

[24] R. Wille, “Restructuring lattice theory: an approach based on hierarchies
of concepts” In: I. Rival (ed.): Ordered Sets, pp. 445–470, Reidel,
Dordrecht-Boston, 1982.

[25] F. Zambonelli, “Key Abstractions for IoT-Oriented Software
Engineering”, IEEE Software, pp. 38-45, 2017. DOI:
10.1109/MS.2017.3

