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Abstract—Software Conceptual Integrity has been considered a 
cardinal concern for design and development of software systems. 
But, except for verbal descriptions of desiderata, there were no 
formal tools to guarantee that conceptual integrity is attained. 
This paper proposes an axiomatic algebraic approach, based 
upon the assumption that the software system in each level of the 
system hierarchy is represented by a Modularity Matrix. This 
representation enables to translate propriety, orthogonality and 
generality, usually taken as basic conceptual integrity principles, 
into formal algebraic criteria. The novelty is that one can finally 
make Conceptual Integrity quantitative calculations. The latter 
are illustrated by a case study. The paper also discusses the 
intimate relationship between software and knowledge, which 
emphasizes the importance of conceptual principles for software 
design.1 

Conceptual Integrity; software system design; Linear Software 
Models; Modularity Matrix; axiomatic approach; formal algebraic 
criteria; quantitative calculations; Software Knowledge. 

I.  INTRODUCTION 

The central importance of Conceptual Integrity for software 
system design and development, first advanced by Brooks [3], 
is a revolutionary idea, which did not percolate yet deep 
enough through the practice of Software Engineering.  It has 
two fundamental implications:  

a- software is far away from the machine, be it a real or a 
virtual machine;  

b- software understanding by human or robotic 
stakeholders, either a developer or a user, is at the 
heart of high quality design of any software system. 

This paper claims that faithful translation of informal verbal 
principles to formal mathematical criteria is essential to 
widespread practical application of Conceptual Integrity ideas. 
Our proposal formulates algebraic axioms for Conceptual 
Integrity based upon the Modularity Matrix [10], an algebraic 
structure of the Linear Software Models. 

A. The Idea of Conceptual Integrity 

The idea of Conceptual Integrity was proposed by Brooks 
[3], [4] to deal with neat design of software, and management 
of teams of developers of software systems.  
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The three principles suggested by Brooks [4] and verbally 
described, e.g. by Jackson and co-authors [7], [17], [18] are: 

1. Orthogonality – individual functions should be 
independent of one another; 

2. Propriety – a product should have just the 
functions essential to its purpose and no more; 

3. Generality – a single function should be usable in 
many ways. 

These principles have not been formalized, besides being 
explained in natural language and illustrated by examples say 
by some kind of informal graphical representation. 

The ideas of the Conceptual Integrity principles can be 
summarized in terms of design modularity and simplicity. 
Orthogonality is a basic mechanism to obtain modularity; 
propriety means an optimization i.e. the fewer the functions 
that perform exactly the same tasks, the simpler the software 
product; generality avoids unnecessary proliferation of similar 
functions, i.e. reuse existing functions as far as possible (but 
see the Discussion in section VI on faithfulness of translation). 

B. Linear Software Models: the Modularity 
Matrix 

We concisely review the Modularity Matrix, a Linear 
Software Models’ algebraic structure, representing a software 
system. We aim to explain the primitive terms of these models 
used in the axioms of this work; for details see [8], [9], [10].  

Structors – the Modularity Matrix columns – are vector 
characterizations of software structure, generalizing classes for 
any hierarchical software system level. Functionals – the 
Modularity Matrix rows – are vector characterizations of 
software behavior, i.e. generalized functions provided by 
structors that may be potentially invoked. Modules – the blocks 
along the Modularity Matrix diagonal – are sub-systems, made 
of structor sub-sets and their respective functionals, disjoint to 
sub-sets corresponding to other modules. Modules give the 
standard Modularity Matrix its visually recognizable block-
diagonality appearance. 

In Linear Software Models the design goal is to achieve for 
a software system, the standard Modularity Matrix, in which all 
blocks are orthogonal. When an outlier couples modules, which 
are not anymore orthogonal, the system must be redesigned. 



There is a two-fold relationship between a Modularity 
Matrix and Conceptual Integrity: a- the structors are in fact 
basic concepts of the software system; b- the immediate 
algebraic translation of conceptual integrity principles such as 
orthogonality into operations among matrix entities. 

C. Paper Organization 

The remaining of the paper is organized as follows. Section 
II refers to related work. Section III introduces the axiomatic 
approach. Section IV provides quantitative Conceptual 
Integrity criteria enabling actual calculations. Section V 
illustrates the approach with a case study. Section VI concludes 
the paper with an overall discussion. 

II. RELATED WORK 

A. Applications of Conceptual Integrity 

Works that mention the importance of Conceptual Integrity 
often make a vague statement about its meaning, e.g. Beynon 
et al. [2]. 

Kazman and Carriere [20] deal with reconstructing a 
software system architecture. They use conceptual integrity as 
a guideline to a meaningful architecture, viz. use a small 
number of components connected in regular ways, with 
consistent functionality assigned to these components.  

Kazman [19] describes a SAAMtool, in which Conceptual 
Integrity is estimated by the number of primitive patterns that a 
system uses. 

Clements et al. [6] think of conceptual integrity as the 
unifying theme of the system design at all levels. Similar things 
should be done in similar ways, with parsimonious data and 
control mechanisms in a system. They refer to hierarchical 
levels of systems, and also suggest counting mechanisms as a 
path to a more quantitative definition of Conceptual Integrity. 

A recent example of the importance of Conceptual analysis 
for applications of Software Engineering is the work by 
Zambonelli [25] on key abstractions for the Internet of Things. 

B. Algebraic Representations of Software Systems 

In this work we refer to the Modularity Matrix [13]. Other 
matrices have been used for modular design. 

The Laplacian matrix – see e.g. von Luxburg [21] and 
references therein – has been used in various applications. 
Exman and Sakhnini [14] have derived a Laplacian matrix 
containing equivalent information about a software system as 
the corresponding Modularity Matrix, enabling similar 
software design results.  

The Design Structure Matrix (DSM) has been incorporated 
into the ‘Design Rules’ by Baldwin and Clark [1]. It has been 
applied in various contexts, including for software systems, e.g. 
Cai et al. [5]. An essential difference between DSM and the 
Modularity Matrix is linearity as a central idea of the 
Modularity Matrix, while DSM design quality is estimated by 
an external economic theory superimposed on the DSM matrix. 

Conceptual lattices, analyzed within Formal Concept 
Analysis (FCA) were introduced in Wille [24]. There are 

generic overviews describing its mathematical foundations, see 
e.g. Ganter and Wille [16]. 

The equivalence between Modularity Matrices and 
Conceptual Lattices – see e.g. Exman and Speicher [12] – is 
especially relevant for the current work, since it gives a formal 
justification for dealing with structors as concepts.  

III.  AN AXIOMATIC APPROACH 

In this paper we choose an Axiomatic Approach for a 
theory of Conceptual Software Design. This kind of approach 
is commonly found in certain sub-fields of mathematics and 
physics. Why do we need axioms here? 

The first justification is that we are dealing with principles 
that are accepted as truth without a proof. We are unable to 
compact the software developer experience of Brooks, as 
admirable as revealed in his works, and turn it into a formal 
argumentation. We do acknowledge that his suggested 
principles are largely true, and build a model based on them. 

The second justification is that we are presenting here a 
theory combining two independent knowledge domains, which 
apparently have no intrinsic relationship. Again, this 
relationship need to be clarified and made intuitive, but cannot 
be proven. One domain is the field of Software, having its own 
vocabulary and syntax – say classes, functions, inheritance, etc.  
The other domain is a mathematical infra-structure, which here 
is Linear Algebra, having its own vocabulary and operational 
rules – say matrices, scalar product, eigenvectors, etc.  

This is the usual way of formulating theories in science: 
one chooses a mathematical formulation (here Linear Algebra) 
judged to be the most suitable to represent and manipulate the 
entities of the specific scientific domain (here Software). We 
need to demonstrate as far as possible that the axioms in 
algebraic terms are a plausible and faithful translation of the 
intentions of Brooks’ principles referring to software 
conceptual integrity. This kind of demonstration goes beyond 
the purely algebraic arguments given under the rubric of Linear 
Software Models in a series of papers (see e.g. Exman [8]). 

The third justification is the specific contents of the 
proposed axioms. These have a prescriptive rather than 
descriptive nature. The axioms embody the principles of 
Conceptual Integrity, which are the recommended way to 
design software systems as argued by Brooks [4] and other 
authors. Again recommended and reasonable, but not formally 
proven. 

The ultimate justification for these axioms, which are the 
main contribution of this work, should be provided by rigorous 
empirical verification in a software design laboratory. 

A. Overall Characteristics of the Axioms 

The three axioms of our theory of software systems design 
take the verbal principles behind Conceptual Integrity as 
mentioned above – in sub-section A of the Introduction section 
– and represent them by linear algebraic operations within the 
Linear Software Models. The three axioms are presented in the 
logical order of the matrix manipulation needed to obtain the 
best system design. 



B. First Axiom: Propriety 

Remember the verbal formulation of Propriety: software 
systems should just have all the appropriate functions as 
demanded by its requirements, but no more than those. Its 
meaning is therefore to avoid superfluous functions. 

 
 
 

 

 

 

Linear independence (of both structors and functionals) 
obtains exactly the desired propriety. Identical columns/rows in 
the Modularity Matrix should be eliminated, leaving just one 
instance of each column/row kind. If a few columns/rows are 
respectively linear dependent, their number should be reduced 
to the bare essentials, i.e. the minimal number of independent 
vectors. 

An important algebraic consequence of the Propriety 
demands is that standard Modularity Matrices for any given 
software system are square, as shown in [10].  

C. Second Axiom: Orthogonality 

The verbal formulation of orthogonality is that any 
individual functions should be independent of one another. 
Its meaning is thus, no overlap at all between these functions. 
This formulation with “independence” appears to imply 
linear independence, but the latter is already achieved with 
the 1st axiom. Orthogonality in algebra is a stronger demand 
than linear independence, deserving a separate axiom. 

 
 
 
 

 

 

 

Orthogonality as defined in Linear Algebra, i.e. the scalar 
product of two vectors is zero, is indeed a stronger demand 
than linear independence, viz. it demands zero overlap between 
vectors. 

Orthogonality of software system modules is made visible 
by reordering columns and rows in the Modularity Matrix, 
displaying the disjoint sets of structors and their respective 
functionals, the blocks along the matrix diagonal, viz. showing 
block-diagonality. 

It seems quite clear that Brooks and other authors 
concerned with conceptual integrity have used the term 
“orthogonality” inspired by its mathematical meaning. So, it is 
natural to keep using exactly the same term with its perfect 
meaning correspondence. The specific contribution of this 
work is to determine which entities – which vectors – have 
their orthogonality calculated. 

D. Third Axiom: Generality 

The verbal formulation of Generality is that a function 
should be usable in many ways. Our interpretation is that 
similar functions should not be replicated in different modules, 
but refined into a single generic form and then possibly 
invoked from other modules, if necessary. In other words, in 
any hierarchy level of the software system, modules should be 
cohesive enough – functions related to one another within a 
module – while enabling composition with other modules, 
even from different hierarchical levels. 

 
 
 
 

 

 

 

High cohesion in terms of modules of the Modularity 
Matrix means low sparsity, i.e. low numbers of zero-valued 
matrix elements relatively to the module size. 

If a module has low cohesion it should be split by means of 
a procedure using eigenvectors of the Modularity Matrix (see 
e.g. [11]). 

E. Application of Conceptual Software Axioms 

 The importance and practical usage of the above axioms is 
to obtain software system modules actually displaying 
Conceptual Integrity. To this end, one just needs to apply on 
the software system Modularity Matrix the standard operations 
found in Linear Software Models. These are: 

1. For propriety – eliminate linear dependencies 
respectively of matrix columns/rows;  

2. For orthogonality – reorder matrix columns/rows to 
obtain block-diagonality, where blocks are modules; 

3. For generality – eliminate outliers, thereby reducing 
block sizes, to avoid low module cohesion, increasing 
the number of modules. 

IV.  QUANTITATIVE CRITERIA CALCULATIONS 

Besides the formal axioms, the practical significant 
contribution of this work is to formulate explicit equations to 
calculate quantitative criteria to measure conceptual integrity, 
one criterion fitting each of the above axioms. These equations 
are combined to calculate criteria for a whole software system. 

All the quantities involved in the calculations of Conceptual 
Integrity are normalized. Normalization means that these 
quantities are independent of the vector or matrix sizes, i.e. one 
divides results by relevant entity sizes. 

A. Equations for Conceptual Integrity Criteria 

We assume that all elements of the Modularity Matrix, and 
therefore of its modules, structors and functionals are non-
negative. The normalized criteria are given as follows: 

1st Software Design Axiom: Propriety 
For any hierarchical level of a given Software System 
represented by its Modularity Matrix, all its structors 
should be linearly independent, and all its functionals 
should be linearly independent. 

2nd Software Design Axiom: Orthogonality 
For any hierarchical level of a given Software System 
represented by its Modularity Matrix, all the 
structors/functionals belonging to a given module should 
be respectively orthogonal to all the structors/functionals 
belonging to any other module. 

3rd Software Design Axiom: Generality 
For any hierarchical level of a given Software System 
represented by its Modularity Matrix, all its modules 
should display high cohesion. If a module does not 
display high cohesion it should be split, maximizing the 
number of modules in the Matrix. 



1. Propriety – Linear Dependence within a module is 
evaluated by equation (1), in which r  is the rank and c 
is the number of columns of the module sub-matrix. 
Since module sub-matrices are square, one could use as 
well the number of rows instead of the number of 
columns. The module propriety criterion in equation 
(1) has a value between zero and the maximum 
propriety value of 1 which is obtained when r  equals c. 

Propriety = 1 - ( (c - r) c )   (1) 

2. Orthogonality – assume a pair of vectors u and v where 
each of them is normalized [23], i.e. all their elements 
are divided by the length of the respective vector. Their 
Orthogonality criterion is evaluated by equation (2), 
where ( )u vi is the vectors’ scalar product. 

Orthogonality has a value between zero and the 
maximal value 1 obtained for zero scalar product. 

)iOrthogonality = 1 - (u v   (2) 

3. Generality – for each module of a software system the 
generality criterion is given by equation (3), the 
Cohesion of the module, where Sparsity is the ratio 
between zero-valued matrix elements and the total 
number of matrix elements of the module. This 
generality expression – the module cohesion – has a 
value between zero and 1 and is maximal when the 
Sparsity is minimal. 

Cohesion = (1 - Sparsity)     (3) 

B. Systems’ Conceptual Integrity Calculations 

Software system calculations, based upon the above 
equations, should be done for the whole set of Modularity 
Matrix modules to obtain the combined conceptual integrity 
criterion for the respective software system.  

For instance, the orthogonality criterion of a system with n 
modules, where k modules are mutually orthogonal and the 
remaining n-k are not orthogonal, is calculated by equation (4). 
The measured orthogonality m(i) for each non-orthogonal 
module i is obtained by repeated application of equation (2). 
Thus, 

∑
n-k

i
System_Orthogonality = (k + m(i)) n      (4) 

V. ILLUSTRATION BY A CASE STUDY 

A system calculation is here illustrated by a simple case 
study, shown in Fig. 1. It has 5 modules, with one outlier 
coupling between two modules (viz. modules 2 and 3), and 3 
mutually orthogonal modules (viz. modules 1, 4 and 5). 

 

 

Figure 1.  Schematic generic Modularity Matrix with outlier – It has 5 
modules (in yellow), three of them mutually orthogonal (modules 1, 4 and 5). 
Modules 2 and 3 are coupled by the outlier (in blue). At least one matrix 
element (in red) in the coupled modules is shared by a Functional and a 
Structor containing the outlier. The hatched areas (in green) and the coupled 
modules form a larger module, too sparse to be a legitimate module, as most 
hatched areas matrix elements are zero-valued, except for the outlier.  

The outlier couples modules 2 and 3 as it has a Functional 
(row) shared with module 2 and a Structor (column) shared 
with module 3.  As seen in Fig. 1, the shared Functional has at 
least one non-zero matrix element in module 2. Similarly, the 
shared Structor has at least one non-zero matrix element in 
module 3. Thus, the scalar products – in equation (2) above – 
of the Functional and Structor containing the outlier with at 
least one respective Functional of module 2 and with at least 
one respective Structor of module 3 will be greater than zero. 

 

Figure 2. Specific Modularity Sub-Matrix with outlier – It is equivalent to 
zooming into (yellow) modules 2 and 3 of Fig. 1, whose hatched (red) 
elements are coupled by a (dark blue) outlier. The top-left module size is 3*3 
and the bottom-right size is 2*2. The hatched areas (in green) outside the 
modules have all zero-valued elements (ommitted for simplicity), except the 
outlier.  
 

The eigenvectors’ procedure [11] obtaining Modularity 
Matrix modules, results in a larger module containing modules 
2 and 3 and the outlier element. But, cohesion calculation of 



this larger module, applying equation (3) above, shows that 
this larger module is too sparse to be a legitimate module. One 
effectively breaks it into modules 2 and 3, leaving the matrix 
element outside these smaller modules as an outlier. 

Now let us calculate the orthogonality given by equation 
(4) for the software system with non-orthogonal modules 
shown in Fig. 2. The outlier has a functional F1 in common 
with the top-left module. F1 has non-zero scalar products with 
two other functionals (F2 and F3) of the same module. Thus, 
by applying twice equation (2) the average measured 
orthogonality m(i) for the top-left module is 0.55. In addition, 
the outlier has a structor S5 in common with the bottom-right 
module. S5 has a non-zero scalar product with the structor S4. 
Thus the measured orthogonality m(i) for the bottom-right 
module is 0.5. Therefore, the System Orthogonality calculated 
value is 0.81. 

VI.  DISCUSSION 

A. The Relation between Functions and Concepts 

The verbal Conceptual Integrity principles, in sub-section A 
of this paper’s Introduction, are expressed in terms of 
functions, instead of concepts, as it was pointed out by Jackson 
and co-authors [7]. A Conceptual Integrity exposition is 
expected to focus on concepts. One needs to explain the role of 
functions. Here this is done in two steps.  

In the first step, we reiterate that in the Object Oriented 
approach to software design, classes and their generalization 
structors stand for abstract types, i.e. actually natural language 
concepts. Functionals, a generalization of functions, enable the 
vectorial representation of Structors. In other words, they are 
the behavioral characterization of the respective concepts. 

The second step is a reminder that the Modularity Matrix 
with its Structors and Functionals have been shown by Exman 
and Speicher [12] to be equivalent to a conceptual lattice. 
Lattices, within Formal Concept Analysis [16], are algebraic 
structures linking concepts of a particular domain. Thus, from 
this point of view, functions are relevant to conceptual analysis. 

B. The Number of Conceptual Integrity Axioms 

The number of Conceptual Integrity axioms is an open 
issue. The very formalization of the axioms should facilitate 
answering this question, as axioms within the formalism should 
display coherence. Almost paradoxically, we should apply 
Conceptual Integrity to decide about the number of its axioms. 

It should be kept in mind, that the exact number of axioms 
and their specific contents are dependent on software design 
and development technologies. A substantial amount of 
automatic development and less human influence, say by deep 
learning techniques, would probably keep the algebraic basis 
for the axioms, but change specific contents. 

De Rosso and Jackson [7] proposed a 4th verbal principle 
called Consistency enunciating that actions behave in a similar 
way irrespective of the states in which they are invoked. They 
did not include it among the Conceptual Integrity principles, as 

it seems a user interface issue rather than a deeper conceptual 
issue. Such verbal principle could generate a 4th axiom.  

Additional axioms are certainly conceivable. But, are we 
sure that the minimal set is indeed three? This issue is dealt 
with in the next sub-section. 

C. Faithfullness of Translation 

The use of a mathematical formalism is never purely 
arbitrary. We have chosen Linear Algebra to represent software 
design since our analysis refers to linearly dependent 
information, such as conceptual dependencies, function 
replications and common functionalities. On the other hand, it 
is well known that certain science domains may be equally well 
represented by quite different mathematical tools. For instance, 
quantum mechanics was expressed through a differential 
equation by Schroedinger, and through matrices by Heisenberg, 
and it was necessary to demonstrate their non-obvious 
equivalence. 

The issue of faithful translation of the verbal principles into 
formal axioms appears to be relevant to the exact number of 
axioms. In terms of linear algebra coherence, Orthogonality 
and Propriety seem to be completely justified, as they explicitly 
refer to linear algebra operations.  

Generality, on the other hand, may raise some controversy 
and certainly deserves a deeper discussion. First, cohesion is a 
software rather than an algebraic concept, even though sparsity 
in equation (3) is expressed in terms of matrix notions.  

Generality does not appear to be an intrinsic property of a 
given design of a software system. Through the representation 
of high-level abstraction ideas behind the software, in a broad 
and open sense, it rather seems to prepare the ground for future 
extensions and modifications. 

D. Abstraction as a Deeper Motivation for Conceptual 
Integrity 

The deeper motivation for the importance of Conceptual 
Integrity in software design and development can be inferred 
from the software history along time in the last fifty years. One 
perceives the continuous increase of the highest abstraction 
level from which one starts software design, with concomitant 
distancing away from machines, be they real or virtual. 

We cautiously distinguish two kinds of abstraction 
hierarchies. One kind is the software system proper hierarchical 
levels, each level with its own Modularity Matrix. This 
hierarchy refers to the whole system, sub-systems, sub-sub-
systems, down to indivisible components chosen by software 
engineers. Besides the modularity partition of the software 
system, it also characterizes abstraction levels. Modules in each 
level have a specific conceptual identity, which is more and 
more general as one goes up the hierarchy. 

The other kind of abstraction levels is that of the 
implementation languages hierarchy, from the lowest machine 
level up to the human natural language. This hierarchy in 
bottom-up direction approximately passes from assembly, to 
high-level programming languages, to models such as UML, 
and finally to natural language concepts. 



Higher abstraction levels imply easier grasping of the 
software system design by humans. Thus Conceptual Integrity 
is not a constraint artificially imposed from the outside, but an 
inherent and comprehensible quality serving human 
stakeholders, both the software developers and its end-users. 

E. Software and Knowledge 

Since this paper is presented to a conference on Software 
and Knowledge Engineering, it is worthwhile to stress the 
intimate relationship between Software and Knowledge. On the 
one hand, Conceptual Integrity is of cardinal importance to 
software system design and development.  

On the other hand, concepts are first class entities in 
structures used to define and impart meaning to the vocabulary 
of a certain domain. Typical such structures are the conceptual 
lattices, referred above in sub-section A of this Discussion and 
their near cousins, the domain and application ontologies, 
which are the subject of Knowledge engineering. 

F. Pragmatic Considerations 

In order to apply in practice the theory exposed in this 
paper one needs a software tool such as Modulaser [15], 
enabling generation and analysis of Modularity Matrices for 
software systems from compiled code.  One can also easily 
generate a Matrix from UML class diagrams, in which classes 
stand for structors and independent methods stand for 
functionals. It should be stressed that such analysis points out 
to coupling problems deserving system redesign, while leaving 
the actual solution to considerations of the software engineer.  

Finally, one observes that Modularity Matrices solve a 
software system composition problem, somewhat similar to 
Petri Nets. However, the latter focuses on distributed systems, 
and Modularity Matrices are not specialized for these systems. 

G. Main Contribution 

There are two main contributions of this paper. First, the 
formalization of the principles behind Conceptual Integrity in 
an axiomatic fashion, provide a deeper justification for the 
algebraic operations found in the Linear Software Models. 

Second, the formulation of equations finally enables 
calculations of quantitative criteria for Conceptual Integrity. 
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