Enhancing Sample-based Scheduler with Collaborate-state in Big Data Cluster

Chunliang Hao ** Celia Chen *

Jie Shen ™

Mingshu Li * Barry Boehm *

*Institute of Software, Chinese Academy of Science, Beijing, China
*Center for Systems and Software Engineering, University of Southern California, USA
*Department of Computing, Imperial College London, UK
“University of Chinese Academy of Science, China
Email: chunliang @nfs.iscas.ac.cn, giangiac@usc.edu, js1907 @imperial.ac.uk,
mingshu@iscas.ac.cn, boehm@usc.edu

Abstract

Sample-based scheduler design has become an emerging re-
search topic for its high scalability and simple scheduling pro-
cess in today’s big data cluster. One major limitation of such
design is its lack of global cluster knowledge, which leads to
sub-optimal decisions. Some cutting edge schedulers solve this
issue by deploying an extra centralized component in the clus-
ter to capture the real-time cluster state and inform all sched-
ulers. However, such solution is with high cost and low scala-
bility. As an alternative, we introduce the Collaborated-Cluster
State(CCS) technique in this paper. CCS is a low cost solution
that merely harms the scalability of sample-based design, while
achieving similar performance gain as ECC. Experiments with
Google and Yahoo production trace both show that CCS under
most scenarios can keep up with ECC’s performance while re-
ducing 87.7% (in Google trace) and 73.9% (in Yahoo trace) of
communications.

1 Background and Introduction

Sample-based scheduling is currently one of the most
promising branches of distributed scheduling. It is both
fully distributed and low-latency. Currently, the cutting edge
sample-based schedulers adopt the batch-probing sampling
process proposed by Sparrow. The batch-probing sampling
process contains following key steps: 1. In order to sched-
ule a t-task-job, a scheduler randomly samples 2¢ nodes from
the cluster (the ratio of sampling of 2 follows the power of two
law[1], but could also be changed to other value). 2. The sched-
uler sends each selected node a probe request. 3. Each probe
is then queued in the worker node to serve as task reservation.
4. When a task reservation is at the head of the queue and is
ready to execute, the worker replies to the scheduler and gets
a task to run. 5. Once the scheduler sends all ¢ task to run, it
cancels all remaining reservations for the job by notifying ac-
cording workers. 6. Worker will notify the scheduler of the
completion of the assigned task. More details could be found

DOI reference number: 10.18293/SEKE2017-136

in the Sparrow paper[2].

One crucial problem of these sample-based schedulers is
their lack of global knowledge of the cluster status. During
each decision process, a scheduler can only communicate with
a very small number (e.g. 2t in above example) of sampled
worker nodes and makes decision based on information gath-
ered from those nodes.This limits the sample-based scheduler
and leads to sub-optimal task placement decision.

An example of sub-optimal decisions made by sample-
based schedulers is shown in Figure 1. In this example, the
scheduler has randomly sampled two busy worker nodes, hence
the task under schedule will experience queue waiting no mat-
ter which worker is chosen. However, there are six available
worker nodes elsewhere in the cluster, this queue waiting could
have been avoided if the scheduler had that information. Such
a decision is considered sub-optimal since there are better deci-
sions that existed and should be found in the cluster. However,
for most cases scheduler itself can’t realize a sub-optimal deci-
sion is been made; for instance scheduler in both Figure 2 and
Figure 1 will consider themselves in the same status.

Some cutting edge scheduler mitigate this problem by using
a centralized software component to synchronize cluster status
and push collected global cluster knowledge to each sample-
based scheduler (refer to as EXCC).

This centralized component can either be a share-state mas-
ter, which is specifically designed to synchronize task and re-
source status with all worker nodes, or an independent central-
ized scheduler, which is responsible to schedule and inform the
sample-based schedulers at the same time. Either way, the cen-
tralized component has to synchronize with all worker nodes
to capture the real-time status of the cluster and then inform all
the sample-based schedulers accordingly.

Although this EXCC solution have proven to effectively re-
duce sub-optimal decision and improve scheduling precision,
EXCC is very expensive to implement. Since the centralized
component is required to synchronize with all workers in clus-
ter in order to collect global cluster information, the component
itself becomes a potential system bottleneck, which is the pri-

scheduler sample scheduler
cluster
é\ ~

/\55) /\0&%@‘JS)

Qﬁl IS) Y 3

3 ;4 g]

=
ER/AE m@ ER/AE mm@m
[| ER BQ [] AR Bl
[} ‘uul By § | ER ER BR
(§ Ey B e EE BR =R
B0 B am ER B0 am
Bl ER Bl EE BEE Enm
cluster cluster
Available @ Unavailable Available @ Unavailable
Worker Worker Worker Worker

Figure 1: A sub-optimal
task placement decision.

Figure 2: A good task place-
ment decision.

mary goal for sample-based schedulers to avoid. Moreover, a
large amount of extra communications is needed to capture the
real-time status of cluster.

In this paper, we propose collaborated-cluster-state (CCS),
an alternative design that is low-cost and scalable, which allows
the scheduler acquire global knowledge while keeping the sim-
plicity of sample-based scheduling design.

2 Collaborated-Cluster-State

In this paper, we introduce a novel technique, collaborated-
cluster-state (CCS), which provides sample-based schedulers
with global cluster knowledge through scheduler collaboration.
CCS keeps track of all occupied and available resource sta-
tus by receiving updates from schedulers only. Each scheduler
packs task start and complete information along with necessary
task details together and send it to CCS periodically. CCS also
periodically pushes its current accumulated knowledge to all
schedulers. This pushed copy of CCS knowledge can provide
each scheduler with advice on which workers should be probed
and which should not.

In CCS, cluster resource information is stored in the form
of an array of size NN, in which N represents the number of
worker nodes in the cluster. Each element in the array caches
the resource status of the corresponding worker node in the
cluster in a tuple (7@, r0), where ra denotes the available re-
source quantity in a worker node; 70 denotes the occupied re-
source quantity in a worker node. For instance, CCS[10] =
(3,4,500,5,12,200) means that the 10" worker node in the
cluster has 3 core, 4GB of DRAM and 500GB of Flash avail-
able and 5 core, 12GB of DRAM and 200GB of Flash occu-
pied.

The overall design to maintain and use CCS knowledge in
sample-based scheduling is shown in Figure 3.The CCS com-
ponent needs to be initialized before each scheduler starts to
function. Upon initialization, the CCS component reads in
worker registration information from the cluster daemon to ac-

Worker Worker

Honitor

orker er
Monitor Monitor

CLUSTER

Figure 3: Overview of sample based scheduling with CCS

quire the maximum resource capacity of each worker node and
marks them as available.

After initialization, CCS component first waits for incoming
messages from each scheduler. When a message arrives, CCS
unpacks the message to recover the task start or complete infor-
mation. Each piece of information is represented as one tuple.
CCS then processes these tuples one by one. For each tuple, the
component reads in the following information: whether the tu-
ple represents task start or complete; the worker nodes of which
each task runs on; the amount of resources each task claims.
CCS then finds that worker node in its data and updates the
amount of available and occupied resources accordingly. CCS
also pushes a copy of the cluster state knowledge to all sched-
ulers periodically. The interval of push, w, is preset, where
smaller w value makes copies in each scheduler more precise
but requires more communication while bigger w value leads
to the opposite situation. Each CCS copy also has an expire
period £, to prevent the failure of CCS component.

Each scheduler receives a CCS copy and only keeps the lat-
est version. At the beginning of each scheduling process, in-
stead of choosing sample target at complete random, it checks
with its own CCS copy first. Suppose 2¢ workers need to be
selected for a t-task-job and each task claims resources r¢,
the scheduler finds in its CCS copy for 2¢ worker that has
CCS[worker].ra > r¢. If more than 2¢ workers are found to
be qualified, the scheduler chooses workers with most available
resource by default. If less than 2¢ qualified workers are found,
the scheduler chooses from the rest of workers randomly.

After sample target is chosen, the rest of decisioning pro-
cess follows the common batch-probing process. The sched-
uler probes towards selected workers and places task reserva-
tions. When the scheduler is notified by any worker that one
reservation is ready to execute, the scheduler places a task with
that worker. It keeps doing so until all ¢ tasks are placed. Once
all tasks are placed, it cancels all the leftover reservations in
the cluster. When the scheduler places task towards a worker,
it caches a tuple [1, workerID,rc] locally. When the sched-

Table 1: Number/distribution of job and task in trace

Google(2011) | Yahoo(2011)
Number of Jobs 506.4k 24.2k
Number of Tasks 17889.7k 968.3k
% Jobs ed < 1000s 89.0% 96.6%
% Jobs ed < 100s 42.7% 36.4%
% Jobs ed < 10s 0.0% 2.7%
% Tasks ed < 1000s 69.7% 84.6%
% Tasks ed < 100s 7.6% 54.0%
% Tasks ed < 10s 0.0% 20.2%

uler is notified that a task is completed, the scheduler caches
a tuple [0, workerID,rc] locally. The first variable in tuple
represents task start/complete, where 1 represents start and 0
represents finished. The second variable is the ID of the cur-
rent worker, and the last variable is the amount of resources the
task claims. Periodically (with an fixed interval y) it packs all
cached tuples together and sends them to CCS. Each tuple will
be sent only once.

3 Experiments
3.1 Methodology

Workload: Google trace and Yahoo trace are used in the
evaluation as a representation of today’s production workloads
in big data cluster. The Google trace used in this paper[3][4]
is publicly available. Cleaning the trace by removing failed or
invalid records resulted in more than 500k heterogeneous jobs.
Task runtime also varies within each job. For Yahoo trace, we
gathered centroid values for task duration and average number
of task per job from the trace description[5][6], then used them
as scale parameters in exponential distribution to generate the
complete trace. The job/task distribute of Google trace and
Yahoo trace are listed in Table 1.

Metrics: In this paper, we used three metrics to evaluate
CCS against some baseline techniques. We first evaluated how
many sub-optimal decisions a sample-based scheduler could
avoid with CCS and then collated the job runtime results of
CCS and of the baseline techniques in Google and Yahoo trace.
50*" and 90" percentile job runtime of the workload were used
in this experiment. Finally we compared the communication
costs of CCS against the baseline schedulers.

Baseline Schedulers and Simulator: There are two base-
line schedulers used in this study: Sparrow and EXCC. Spar-
row was used to represent the cutting edge sample-based sched-
uler without any global cluster knowledge. In the experi-
ment, we use the event-based Sparrow simulator from its own
open-source project[2] and further augmented this event-based
scheduler for the evaluation of CCS. It was used as the lower
bound in performance and communication cost. EXCC repre-
sented the high-cost solution that uses a centralized component
to obtain a more precise global cluster state for the sample-
based schedulers. It was used to represent the upper bound
in sub-optimal decision and lower bound in job run-time. We
abstracted the EXCC used in Tarcil[7] scheduler for the evalu-
ation of CCS.

ECC mCCS
100.00%

80.00% |

60.00% |-
20.00% |
20.00% | :
0.00% o :

12 6 20 24 2R

Reduced sub-optimal choice

Number of resource unit in cluster (thousand)

Figure 4: The percentage of reduced sub-optimal decision us-
ing CCS and EXCC, comparing to Sparrow, Google trace

[E==3CCS, 50th percentile job
ECC, 50th percentile job
[T €CS, S0th percentile job
14 SS9 EQC, 90th percentile job

12 L --#--average cluster load Sparrow

N

Runtime retult normalized to SparrowResult
.

G
AR R

7

12 16 20 24 28

Number of resource unit in cluster (thousand)

Figure 5: Google trace runtime results in five different cluster;
evaluating Sparrow, CCS and EXCC. Both CCS and EXCC
results are normalized to Sparrow.

Cluster setting: We changed the size of the cluster to
achieve different cluster utilizations and simulate the industrial
workloads. The number of schedulers deployed in the cluster
was set to 10. For CCS, the parameter w was set to 10 second
and y was set to 5 second. Probe ratio was fixed at 2 following
the Power of Two Law[1].

3.2 Google Trace Results

The sub-optimal decision statistics from Google Trace are
shown in Figure 4. Both CCS and EXCC effectively reduced
most of the sub-optimal decisions in sample-based schedul-
ing. Especially when the cluster was under medium and low
loaded situation (20k,24k,28k slots cluster), almost all of the
sub-optimal decisions were avoided. In high cluster, CCS made
sub-optimal decisions mostly because of its imprecise global
knowledge; EXCC because of conflicts.

The result of job runtime of Google trace is shown in Fig-
ure 5. We normalized the runtime results of CCS and EXCC
to Sparrow for better comparison. In this case, smaller results
indicated better performance improvement. As shown in the
figure, the major improvement of both CCS and EXCC was in
high and extreme loaded (16k and 12k slots) clusters. The dif-
ference between EXCC and CCS was small except in extreme
loaded cluster, where EXCC outperformed CCS by about 20%.

The overall communication count in/out of CCS component

100.00%

80.00%

60.00%
40.00%

20.00%

0.00% T T
4 6 8 10 12

Reduced sub-optimal choice

Number of resource unit in cluster ({thousand)

Figure 6: The percentage of reduced sub-optimal decision us-
ing CCS and EXCC, comparing to Sparrow, Yahoo trace

===1CCS, 50th percentile job
18
EZZZA ECC, 50th percentile job
16 [CCS, 90th percentile job

14 [N ECC, 90th percentile job

12 F --#--average cluster load Sparrow

08 |

06

04

02 |

Runtime retult normalized to SparrowResult
-

7
7

Z

Number of resource unit in cluster(thousand)

Figure 7: Yahoo trace runtime results in five different cluster;
evaluating Sparrow, CCS and EXCC. Both CCS and EXCC
results are normalized to Sparrow.

in above experiments was roughly 7.5 million in total, while the
EXCC required about 60.6 million in total. When the through-
put of workload and cluster size increases (as expected in fu-
ture’s big data cluster), the communication needed by EXCC
increases accordingly while CCS stays the same.

3.3 Yahoo Trace Results

Yahoo trace results showed very similar trends as Google
results. Compared to Sparrow, both CCS and EXCC reduced
almost all sub-optimal decisions. CCS had a very similar per-
formance as EXCC, as shown in figure 6.

Considering runtime results, the results showed that both
CCS and EXCC reduced about 20% job runtime of Sparrow in
high loaded cluster(6k slots) and cut 90th percentile runtime of
Sparrow in half in medium loaded cluster(8k slots).

Similar to Google trace results, CCS needed much less com-
munication than EXCC. The total amount of communication
in/out of CCS is about 0.55 million and EXCC is about 2.11
million.

The results from both Google and Yahoo trace show that
CCS achieved similar performance using far less (respectively
86.7% and 73.9% less) communication cost. The impact of la-
tency (a 10 second pushing delay and a 5 second synchroniza-
tion delay) in CCS has a limited impact on the final runtime
result, as we expected.

In above experiments, while EXCC had to synchronize with

thousands of work nodes, CCS only needed to synchronize
with 10 worker nodes. Compared to EXCC, the packing of
updates in CCS changed synchronization frequency from per-
task frequency to a fixed rate, which in each experiment was
from about 1 per second in EXCC to 0.2 per second in CCS.

4 Related Work

Among existing sample-based methods, Sparrow is one of
the most popular and represented work with the batch-probing
technique. In this paper, we have introduced how to imple-
ment CCS through augmenting Sparrow and also used Sparrow
scheduler as the baseline in our experiment. Tarcil is also a dis-
tributed, sample-based scheduling approach. It uses extra cen-
tralized components to combine the benefit of share-state de-
sign and sample-based design. We have compared the perfor-
mance of such EXCC method and our proposed CCS method.

Another direction of providing sample based scheduler with
global knowledge is the hybrid design. Eagle[8] proposed a
design that uses a EXCC as a scheduler for long jobs and also
as a source of global information, which notifies sample based
schedulers about the placement of long tasks in cluster.

5 Conclusions

Collaborated-cluster State (CCS) is a novel technique to im-
prove the precision of sample-based schedulers by providing
them with global cluster knowledge. Comparing to existing
techniques that serve the same purpose, it requires much lower
communication cost while preserving the scalability of sample-
based design.

Acknowledgement

This work is financially supported by the Strategic Priority
Research Program of the Chinese Academy of Science (No.
XDA06010600), as part of the DataOS project.

References

[1] M. Mitzenmacher, “The power of two choices in randomized load balanc-
ing,” IEEE TPDS, vol. 12, no. 10, pp. 1094-1104, 2001.

[2] K. Ousterhout, P. Wendell, M. Zaharia, and 1. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in SOSP, 2013, pp. 69-84.

[3] J. Wilkes. More google cluster data. [Online]. Avail-
able: http://googleresearch.blogspot.ch/2011/11/more-google-cluster-
data.html

[4] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analysis,”
in SoCC, 2012, pp. 7-13.

[5] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in
big data systems,” in VLDB, 2012, pp. 1802-1813.

[6] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case for evaluat-
ing mapreduce performance using workload suites,” in MASCOTS, 2011,
pp. 390-399.

[7]1 C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: reconciling
scheduling speed and quality in large shared clusters,” in SoCC, 2015, pp.
97-110.

[8] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware schedul-
ing in eagle: Divide and stick to your probes,” in SoCC, 2016.

