
Model Construction and Data Management of Running

Log in Supporting SaaS Software Performance Analysis

Rui Wang1,2, Shi Ying1,2, Chengai Sun3, Hongyan Wan1,2, Huolin Zhang1,2, Xiangyang Jia1,2

1. State Key Lab of Software Engineering, Wuhan University, Wuhan 430072, China;

2. School of Computer, Wuhan University, Wuhan 430072, China;

3. College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

{wangrui1989,*yingshi}@whu.edu.cn, sun910213@163.com, {why0511,huolinzhang,jxy}@whu.edu.cn

Abstract—Changes in operating environment may result in the

performance degradation to a SaaS software. Analyzing running

log is an efficient method to locate this problem. However, as a

long-running software, SaaS may generate huge log data which is

difficult to analyze, and it lacks a systematic approach to

implement management of the running log. These all threaten the

timeliness of SaaS performance analysis. In this paper, we define

a log format to standardize multi-source heterogeneous log data

and construct a log model to support SaaS software performance

analysis, where the two performance metrics of average response

time and request timeout rate in the model are calculated by

statistical measurement. Furthermore, a log management

framework is given to support real-time big log data collection,

access, calculation, storage and service, and the technology

implementation of the framework is also given. Finally, a case

study is given to illustrate and validate the effectiveness of the

approach.

Keywords-big data; running log; log model; SaaS software

performance

I. INTRODUCTION

SaaS software provides software as service to consumers,
while service quality is the key factor for consumer satisfaction.
Performance as an important QoS attribute of SaaS software,
directly affects the user experience. In the dynamic, scalable
running environment provided by cloud computing, if the
average time that SaaS software responds to service request,
especially from tenant is too long, when the service does not
meet the service level agreement, and even losses availability,
we believe that it is suffering a performance issue (PI). When
this happens, it tends to cause consumer dissatisfaction, even
cause the loss of consumers, and finally damage the interests of
service providers.

After SaaS software is deployed and put into operation, it
will provide the highest possible service throughput with the
lowest possible response latency in various running
environments and usage scenarios. Due to the development
quality of the software system, the complex changes of the
running environment and its resources, the diversity of usage
scenarios and loads, etc., it will cause the software to suffer a
variety of performance issues in the runtime. In addition, high
performance is the basic requirement of SaaS software. With the
increasingly large number of users, business process execution
time will get longer and longer, and the possibility of SaaS
software performance issues will also grow.

Therefore, at the runtime of SaaS software, operation and
maintenance managers need find performance issues timely,
exhaustively, accurately, and take measures to ensure that the
system can restore the invalid service to the available state in
time, make the software continue to provide high performance
services. In this case, through corresponding methods and
facilities getting a general idea of the performance state of a
system becomes a necessary condition to achieve above demand.

The running log of the SaaS software is the data that records
the information about the status, events, processes or changes in
the software and its operating environment, the usage behavior
of users, the occurred events, the interactive messages, and other
aspects. Running log is widely applied in the various tasks
managed by software system, such as software failure analysis,
running environment analysis, usage behavior analysis, etc. The
operational information extracted from the running log can help
operation and maintenance managers to analyze software status,
there are two main means: One is to detect the anomaly of the
software by analyzing the log features, for example, Wei Xu[1]
proposed an automatic method that extracts information from
console logs to detect and visualize runtime problems in large
scale distributed systems. Deqing Zou et al.[2] proposed a
method that classifies log according to different failure types,
which can assists system administrators to monitor the operation
of the system and diagnose the failure. Fu X et al.[3] presented
a methodology and a system, named LogMaster, for mining
correlations of events that have multiple attributions based on
system logs and predicting system failure. The other is to
analyze the performance of the software by analyzing the
performance counters, for example, Keith A. Bare et al.[4]
proposed an online diagnostic framework ASDF that
transparently monitors and analyzes different time-varying data
sources (e.g., OS performance counters, Hadoop logs), and
narrows down performance issues to a specific node or a set of
nodes. Zhiling Lan et al.[5] proposed a set of techniques to
automatically analyze collected data from per node, to detect the
nodes acting differently from others in the large scale distributed
system, in another reference[6], they adopted a divide-and-
conquer approach to address the scalability challenge emerging
in this problem and explored the use of non-parametric
clustering and two-phase majority voting to improve detection
flexibility and accuracy.

However, the above studies mainly focus on the analysis of
the characteristics of the log itself to detect software anomalies
or monitoring the data in the PaaS or IaaS layer to analyze the

*Corresponding Author

DOI reference number: 10.18293/SEKE2017-128

mailto:sun910213@163.com

software performance, few studies have been done on the
performance monitoring and analysis of Web application
components even fine-grained services in the SaaS layer. The
features of SaaS software in the cloud computing environment,
lead to large and complex log data related to performance which
have high requirement for analysis and processing. So it is
difficult to identify and diagnose the performance issues of SaaS
software and has high timeliness requirements. Although the
application level of big data technology continues to improve,
the research on the analysis and processing technology of big log
data is not yet mature, and the research on the analysis of SaaS
software performance issues based on running log is especially
lacking. Therefore, how to scientifically and effectively analyze
and utilize big log data, correctly obtain performance-related log
data, further diagnose occurred performance issues, and how to
use big data technology efficiently record, process and analyze
big log data become a challenging problem in log data analysis
and processing.

For these above problems, in view of the SaaS software and
its cloud computing environment, combined with the demand for
SaaS software performance analysis, this paper studies how to
construct log model and manage the log data supporting SaaS
software performance analysis. We first define the log format to
normalize the log distributed on each virtual machine node, then
construct log model and calculate the performance metrics in the
model via statistical measurement method, and finally design
and implement the whole framework for managing raw log data
and log model data.

This paper is organized as follows. In Section 1, we introduce
the research background of this paper. In Section 2, we introduce
the method of constructing log model. In Section 3, we explain
our log management framework and discuss the technology
implementation of the framework. Our case study is presented
in Sections 4. We conclude our work in Section 5.

II. LOG MODEL CONSTRUCTION BASED ON STATISTICAL

MEASUREMENT

A. Performance Metrics

Performance is generally used to define and measure the time
constraints and resource allocation degree of a software system
efficiency. Common performance metrics include response time,
throughput, resource utilization, etc., the first two reflect the
performance status of the application level, the latter reflects the
performance status of the server level.

In this paper, from the application level, the two metrics of
response time and throughput are obtained through collecting
and constructing of the performance metric data from SaaS
software running log. Performance monitoring of SaaS
applications belongs to high-level monitoring[7]. In order to
describe the performance of SaaS software at high level, the
performance metrics are transformed into the values of statistical
measurement. In this paper, according to the definition of two
traditional software performance metrics, response time and
throughput, we obtain the two performance metrics supporting
SaaS software performance analysis: 1) Average Response Time
(ART), that reflects the time efficiency that service processes
requests. The longer the ART, the slower service processing
requests, the lower the performance; 2) Request Timeout Ratio

(RTR), which reflects the degree of service overload. The higher
the RTR, the higher load, the lower the performance.

B. Log Format

Context information at SaaS software runtime is generally
obtained by the way of logging. We define logging rules as
follows: 1) Service Invocation Begin (SBE), the SBE event has
to be logged as the first instruction (begin) of the service. The
event, if logged, provides the trace that the entity initiated the
invocation of the service; 2) Service Invocation End (SEN), the
SEN event notifies the termination (end) of the service and has
to be logged immediately before each normal exit point of the
service. The event, once logged, provides the trace that the entity
completed the invocation of the service; 3) Service Timeout
Error (STE), the STE entry is written in the event log when a
service timeout is detected and reported to system.

Log components generally employ binary instrumentation[8]
to log, but the log records generated by this method has the
characteristic of discontinuity. We solve this problem by adding
a unique identifier GUID in the log records. We use the JSON
format as the log format standard. An example of log format is
shown in Fig. 1.

Figure 1. An example of log format.

And we adopt the time window method to analyze the SaaS
software running log[9]. The size of the time window can be set
according to actual demand.

So GUID and TimeStamp are the core fields of the log model
supporting SaaS software performance analysis. The work of
this paper focuses on analyzing the performance of SaaS
software, we need monitor the performance of each service
component even fine-grained service method in cloud
environment, so the SaaS software running log should also
include the location information field about SaaS service
component even service method: Web component name and IP
address of virtual machine. The basic log information field
should include service name (service method name), log level
(log type) and log context (context execution information).

C. Log Model

The raw log data generated by SaaS software at runtime has
the characteristics of volume, velocity, value and veracity (4V).
For big data processing technology, there are many applications
in other fields[10-11]. While the log is a stream of data that is a
real-time, continuous, time-varying sequence of data items. Data
stream model is the logical abstract expression of the data stream,
which can improve the processing efficiency of data streams. In
order to improve the efficiency of big log data processing and
analysis, we propose a log model, it mainly consists of 7
attributes, as shown in Fig. 2.

Virtual Machine

IP

Virtual Machine

IP

WebApp

Name

WebApp

Name

Service

Name

Service

Name Time Window

 Start Time

Time Window

 Start Time

Time Window

 End Time

Time Window

 End Time

 Average Response

Time of Services

 Average Response

Time of Services

 Request Timeout

Ratio of Services

 Request Timeout

Ratio of Services

Log RecordLog RecordLog Model

Figure 2. Log model supporting SaaS software performance analysis.

We calculate the two performance metrics of Average
Response Time and Request Timeout Ratio in the model by
statistical measurement method.

1) Average Response Time Calculation
Response time is the end-to-end time that a task spends to

traverse a certain path within the system[12]. Average Response
Time reflects the user expectation on time that software responds
to request. The ART is computed as

𝐴𝑅𝑇𝑤 = 𝐸[𝑇𝑟𝑤] = ∑ (𝑡𝑟𝑖 − 𝑡𝑠𝑖)
𝑛
𝑖=1 /𝑛

where 𝑊 is the time window, it can be a given time interval,
such as 1 minutes, 1 hours, 1 days etc.; 𝑇𝑟𝑤 is the response time
of request 𝑟 in 𝑊 ; 𝑛 is the number of requests in 𝑊 ; 𝑡𝑟𝑖
indicates the arrival time of the request 𝑖, that is the time of SBE;
𝑡𝑠𝑖 indicates the service response time of the request 𝑖, that is the
time of SEN. This calculation does not take into account the time
consumption about network transmission from client to server.
Equation (1) is applied only in the case that each (SBE, SEN)
pair in a time window.

R1R1

R2R2

RiRi

R4R4

R5R5

Requests

Time

t1 t2 tri t3 t4 t5 t6 tsi t7 t8

w

tw t(k+1)*wt0

w
(k-1)*w

tk*w

Logging code

Service function code

Generate a unique identifier GUID code

Figure 3. The requests of across the time windows.

For example in Fig. 3, request Ri across multiple time
windows from request arrival to service response. We consider
the proportion of time spent on each time window. We divide
the Ri into three parts, calculate the ART for each part. The ART

of request Ri in the time window [𝑡0, 𝑡𝑤] is
𝑡𝑤−𝑡𝑟𝑖

(𝑡𝑤−𝑡𝑟𝑖)/(𝑡𝑠𝑖−𝑡𝑟𝑖)
, in

the time window [𝑡𝑘𝑤, 𝑡(𝑘+1)𝑤] is
𝑡𝑠𝑖−𝑡𝑘𝑤

(𝑡𝑠𝑖−𝑡𝑘𝑤)/(𝑡𝑠𝑖−𝑡𝑟𝑖)
, in the time

interval [𝑡𝑤, 𝑡𝑘𝑤] is
(k−1)w

(k−1)w/(𝑡𝑠𝑖−𝑡𝑟𝑖)
.Therefore, the ART for all

requests in the time window[𝑡0, 𝑡𝑤] is
(𝑡3−𝑡1)+(𝑡4−𝑡2)+(𝑡𝑤−𝑡𝑟𝑖)

1+1+(𝑡𝑤−𝑡𝑟𝑖)/(𝑡𝑠𝑖−𝑡𝑟𝑖)
, in

the time window [𝑡𝑘𝑤, 𝑡(𝑘+1)𝑤] is
(𝑡7−𝑡5)+(𝑡8−𝑡6)+(𝑡𝑠𝑖−𝑡𝑘𝑤)

1+1+(𝑡𝑠𝑖−𝑡𝑘𝑤)/(𝑡𝑠𝑖−𝑡𝑟𝑖)
.

Combined with the above example, we modify (1) as

𝐴𝑅𝑇𝑤𝑗 =
∑ 𝑇𝑟𝑖𝑊𝑗

𝑛𝑗
𝑖=1

∑ 𝐾𝑟𝑖𝑊𝑗

𝑛𝑗
𝑖=1

 (2)

where 𝑊𝑗 is a time window from 𝑡𝑗𝑤 to 𝑡(𝑗+1)𝑤 , i.e. 𝑊𝑗 =
[𝑡𝑗𝑤 , 𝑡(𝑗+1)𝑤]; 𝑛𝑗 is the number of requests within 𝑊𝑗; 𝑇𝑟𝑖𝑊𝑗

 is

the time proportion of ith request 𝑟𝑖 in 𝑊𝑗, i.e.

𝑇𝑟𝑖𝑊𝑗
= {

𝑡𝑠𝑖 − 𝑡𝑟𝑖 , 𝑡𝑗𝑤 < 𝑡𝑟𝑖 < 𝑡𝑠𝑖 < 𝑡(𝑗+1)𝑤
𝑡𝑠𝑖 − 𝑡𝑗𝑤, 𝑡𝑟𝑖 < 𝑡𝑗𝑤 < 𝑡𝑠𝑖 < 𝑡(𝑗+1)𝑤
𝑡(𝑗+1)𝑤 − 𝑡𝑟𝑖, 𝑡𝑗𝑤 < 𝑡𝑟𝑖 < 𝑡(𝑗+1)𝑤 < 𝑡𝑠𝑖

;

𝐾𝑟𝑖𝑊𝑗
 is the number of ith request 𝑟𝑖 in 𝑊𝑗, i.e.

𝐾𝑟𝑖𝑊𝑗
=

{

1, 𝑡𝑗𝑤 < 𝑡𝑟𝑖 < 𝑡𝑠𝑖 < 𝑡(𝑗+1)𝑤
𝑡𝑠𝑖−𝑡𝑗𝑤

𝑡𝑠𝑖−𝑡𝑟𝑖
, 𝑡𝑟𝑖 < 𝑡𝑗𝑤 < 𝑡𝑠𝑖 < 𝑡(𝑗+1)𝑤

𝑡(𝑗+1)𝑤−𝑡𝑟𝑖

𝑡𝑠𝑖−𝑡𝑟𝑖
, 𝑡𝑗𝑤 < 𝑡𝑟𝑖 < 𝑡(𝑗+1)𝑤 < 𝑡𝑠𝑖

.

2) Request Timeout Ratio Calculation
Request Timeout Ratio describes that the service accepts

multiple requests simultaneously, but responses to some
requests exceed the user expectation in a given time window,
then the percentage of these requests is the request timeout ratio.

In time window 𝑊𝑗, the RTR is the ratio of the number of

timeout requests 𝑁𝑡𝑊𝑗
 to the total number of requests 𝑁𝑎𝑊𝑗

:

𝑅𝑇𝑅𝑊𝑗
(∆𝑡) =

𝑁𝑡𝑊𝑗

𝑁𝑎𝑊𝑗

 (3)

Because it is a ratio, the metric is less influenced by isolated
extreme values, which makes it more independent of time
window length. But 𝑁𝑡𝑊𝑗

 and 𝑁𝑎𝑊𝑗
 can not be directly obtained

through the program, we modify (3) as

𝑅𝑇𝑅𝑊𝑗
(∆𝑡) =

𝑁𝑡𝑊𝑗

𝑁𝑎𝑊𝑗

=
∑ 𝑁𝑡𝑊𝑗

𝑟𝑖
𝑛𝑗
𝑖=1

∑ 𝑁𝑎𝑊𝑗

𝑟𝑖
𝑛𝑗
𝑖=1

, ∑ 𝑁𝑎𝑊𝑗

𝑟𝑖𝑛𝑗
𝑖=1

≠ 0 (4)

where 𝑁𝑡𝑊𝑗

𝑟𝑖 indicates whether ith request 𝑟𝑖 timeouts within 𝑊𝑗，

𝑁𝑡𝑊𝑗

𝑟𝑖 = {
1 𝑡𝑗𝑤 < 𝑡𝑟𝑖 < 𝑡𝑠𝑖 < 𝑡(𝑗+1)𝑤, 𝑡𝑠𝑖 − 𝑡𝑟𝑖 > ∆𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

1 indicates that the request timeouts within the window.

𝑁𝑎𝑊𝑗

𝑟𝑖 indicates whether ith request 𝑟𝑖 is within 𝑊𝑗,

𝑁𝑎𝑊𝑗

𝑟𝑖 = {
1 𝑡𝑗𝑤 < 𝑡𝑟𝑖 < 𝑡𝑠𝑖 < 𝑡(𝑗+1)𝑤
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

1 indicates that the request is within the window.

A request timeout belongs to the STE event, we estimate the
expected duration ∆𝑡 of the requested service timeout by
EWMA[13]. The timestamps of the SBE and SEN events,
logged at each exception-free invocation, are used to profile ∆𝑡.
The EWMA statistic as described in the following:

∆𝑛= (1 − 𝛼)∆𝑛−1 + 𝛼∆𝑙 (5)

where ∆𝑙 is the last duration estimate (obtained by subtracting
the timestamp of the SBE from the one of the SEN event at the
last service invocation); 𝛼 is the weight, the weight is small for
taking into account the history in the changing tendency of the
∆𝑛 series. A requested service timeout is detected if the SEN
event is not observed within ∆𝑡 = 𝑛𝑠 ∙ ∆𝑛 time units since the
SBE. Then the STE event will be written in the log and reported
to system.

The structure of log model is fixed as shown in Fig. 2, but
log model data is calculated in real time with the generation of
raw log data, it has the characteristic of rapid growth. In addition,
the log model is for different roles, and the requirements for the
log model are different due to different demands of the roles. In
Fig. 2, we define the core attributes of a log model that supports
the diagnosis of performance issue that response time is too long.
In the actual diagnosis, we can add the specific attribute items to
meet the different requirements of specific diagnostic tasks of
different roles.

III. LOG MANAGEMENT SUPPORTING SAAS SOFTWARE

PERFORMANCE ANALYSIS

A. Log Management Framework

The log data management framework adopts the idea of
modularization[14].

Collection

Module

Result Data Storage

Computation Module

Access Module

Raw Data Storage

WebApp 1

WebApp n

...

Storage Module

Application

Layer

Terminal Layer Collector

Collector

Content Layer Collector

Infrastructure

Layer
Collector

System

Log

Transport

Log

Transport

Stream

Computing

Data-

intensive

Computing

Service Module

Service for

Developer

Service for

User

Service for

Administer

Service for

others

Figure 4. The log management framework supporting SaaS software

performance analysis.

Fig. 4 shows the log management framework that supports
the processing of big log event stream data in real-time. It
consists of five modules: collection module, access module,
computation module, storage module and service module, the
functions of each module are described as follows:

1) Log Collection Module
This module is responsible for collecting data in real-time

from virtual machine nodes on the cloud platform. As the log
data is multi-sourced and heterogeneous, each collector logs the
data generated by different objects and normalizes the collected
log data according to the log format defined in this paper;

2) Log Access Module
This module is responsible for easing the situation that the

speed of data collection and data processing is not synchronized,
and solving the cost problem that immediately process collected
data. So it is necessary to transfer the log data to the storage
module or computation module for centralized processing;

3) Log Computation Module

In this module, one is data-intensive computing applied to
analyze massive raw log data to obtain the required information.
The other is stream computing applied to process the coming
data in real-time. Furthermore, this module is extensive for its
computing frameworks based on actual analysis demands;

4) Log Storage Module
This module includes two kinds of storage systems. One is

raw data storage, which stores historical data orderly and
permanently for future data mining and analyzing. The other is
result data storage, which provides rapid access to data for
different role analysis, evaluation or prediction;

5) Log Service Module
This module consists of services that can meet the different data

demands of different roles. Each service reads required data from
the Result Data Storage for all roles in each layer. In addition, to
meet the demand of an administrator for diagnosing performance
issues, the raw log data in Raw Data Storage are needed.

B. Implementation of Log Management Framework
Flume

MongoDB

(Performance Log Model)

Spark Streaming

Kafka

HBase

(Full Dose Log Data)

Agent 1

Agent n

... Collector

B
ro

k
er

Zookeeper

(Service

Coordinator)

WebApp 1

WebApp n

...

Learning

Service

Statistic

Service

Prediction

Service

Other

Services

Kafka

Spout

RDD

Δt

RDD

Δt

RDD

Δt

RDD

Δt

RDD

Δt

RDD

Δt

operations

window

W

window-based operation

Figure 5. The log management framework implementation supporting SaaS

software performance analysis.

As shown in Fig. 5, event log generated from the SaaS
application WebApp deployed on the virtual machine in cloud
platform will be collected by Agent of the Flume collection
process of each virtual machine, then it flows into the Flume sink
node of a virtual machine and generates two log event stream
branch: The first flows directly to the HBase database for storage;
The second will flow into the Spark Streaming for calculation,
and the results are written into the MongoDB database.

1) Log Collection Module Implementation
We collect the log context of SaaS software at runtime by

interceptor technology, as shown in Fig. 6.

logFilter: logUtil: logClient: logSource: fileChannel: HBaseSink: memoryChannel: kafkaSink:

1: writeLog

1.1: log
1.1.1: log

1.1.1.1: writeTo

1.1.1.2: writeTo

3: readFrom

4: readFrom
5: readFrom

6: readFrom

1.1.2: log
1.2: log

2: writeLog

Figure 6. Log collection sequence diagram.

2) Log Access Module Implementation
We adopts Kafka mainstream framework as distributed

message queue middleware, as shown in Fig. 7.

kafkaSink: kafkaServer: kafkaSpout:

1: Start

2: Start

3: register

4: register

9: reciveFrom(String topic)

10: reciveFrom(String topic)

5: register

6: register

7: sendTo(String topic, String msg)

8: sendTo(String topic, String msg)

Figure 7. Kafka's producers and consumers publish subscribe message

sequence diagram.

3) Log Computation Module Implementation
We implement the real-time calculation of log data stream

based on Spark Streaming[15], as shown in Fig. 8.

Input

KafkaInputDStreamKafkaInputDStream

MongoInputFormatMongoInputFormat

{ip,webapp,Guid,timestamp}{ip,webapp,Guid,timestamp}

{ip,webapp,Guid,timestamp}{ip,webapp,Guid,timestamp}

{ip,webapp,timeStart,timeEnd}{ip,webapp,timeStart,timeEnd}

{ip,webapp,timeStart,requestCount,responseCount}{ip,webapp,timeStart,requestCount,responseCount}

{ip,webapp,OneMinuteStart,OneMinuteEnd,MRT}{ip,webapp,OneMinuteStart,OneMinuteEnd,MRT}

{ip,webapp,OneMinuteStart,OneMinuteEnd,RTP,

requestCount,responseCount}

{ip,webapp,OneMinuteStart,OneMinuteEnd,RTP,

requestCount,responseCount}

MongoDB

Kafka MessageQueue

Spark Streaming

Output

RDD

Δt

RDD

Δt

RDD

Δt

RDD

Δt

window

W

window

W

Spark JobSpark Job

{ip,webapp,

OneMinuteStart,

OneMinuteEnd,

MRT, RTP,

requestCount,

responseCount}

{ip,webapp,

OneMinuteStart,

OneMinuteEnd,

MRT, RTP,

requestCount,

responseCount}

Figure 8. Log data stream real-time computing process.

Spark Streaming provides some basic log data statistics
interface, we use its basic statistical functions: total, mean and
percentage. For the window operation of Spark Streaming, we
use incremental methods to improve the efficiency of statistics.

4) Log Storage Module Implementation

a) log data storage

Raw log data generally has no high-frequency access and has
no high requirement for real-time, so we consider storing it on
Hadoop Distributed File System (HDFS). This paper stores the
raw log data according to the log level in the log record;

b) log model data storage

Log model data will be accessed frequently by the log
service module. Combined with the characteristics of the log
model itself, this paper chooses to store it in the extensible, high-
performance distributed NoSQL database MongoDB. In order to
improve the efficiency of query processing, we establish B-tree
index[16] at the SBE time for log model data with the increasing
computational requirements.

5) Log Service Module Implementation
The module provides the basis for operation and

maintenance managers to find software performance issues, and
improve the issues effectively. For the implementation of this
module, from discovering performance issues to timely
improving performance issues, demand of the roles in SaaS
software may involve three services: historical log data statistics
service, real-time monitor service and prediction service.

IV. CASE STUDY

We evaluate the effectiveness of our method by an Integrated
Disaster Reduction Application System (IDRAS). It relies on the
basic idea of cloud service platform and service oriented
architecture (SOA), has a series of Web components with
independent functions, as shown in Fig. 9.

S
erv

ice p
la

tfo
rm

Business operation and management

Image data access

Service

Field data access

service

Resource scheduling

management

User management Portal website Location service

Information service Products producting Data processing

Figure 9. The service platform of IDRAS.

When the disaster occurs, all the SaaS software services in
the system work together to provide services. In such a complex
production environment, SaaS application will produce hundreds
of MBs of log data with millions of events in them. Full manual
analysis of these log data is not a realistic option, yet they need
to be used daily by the operation and maintenance managers to
monitor and resolve performance issues. Therefore, it is of great
significance to provide a unified log management system for the
massive running log generated by IDRAS to support its
performance analysis. And our log management system can
handle these hundreds of MBs of log data even larger.

We create a collection called LogModel in the MongoDB,
the document structures of the collection include Key, Value,
and Type. Table I elaborates the types and descriptions of each
key in the log model in the document structure.

TABLE I. LOG MODEL DOCUMENT STRUCTURE DESCRIPTION

Key Type Description

_id ObjectId Primary key field

VHostIP String Mobile IP or fixed IP

WebAppName String such as war files

OneMinuteStart DateTime Start time

OneMinuteEnd DateTime End time

ART Int32 Average Response Time

RequestCount Int32 The number of requests in 1min

ResponseCount Int32 The number of responses in 1min

RTR Double 1-(ResponseCount/RequestCount)

We visualize the log model data results supporting IDRAS
performance analysis through MongoVUE, Fig. 10 shows a
small part of the data.

Figure 10. Log model result data of the service platform of IDRAS.

As can be seen from the data in Fig. 10, SaaS components of
UserMgr and ProductMakeService receive 47 and 46 user
requests respectively in a certain minute, but they only respond
to 45 requests, and their average response time are fluctuating
abnormally or fluctuating up over a time period in which the
request timeouts, this indicates that the two SaaS components
may be experiencing a PI. About what causes this result, the
expert can combine the raw log data in the HBase database to
analyze whether an exception or error has occurred in a time
window in which the request timeouts. The expert can locate the
reasons of SaaS software PI through tracking analysis of
abnormal or error log.

The analysis results were evaluated by performance experts
from IDRAS who has 8 years of experience in SaaS software
performance analysis and deep knowledge of the IDRAS
infrastructure. In this evaluation the experts focus on evaluating
whether the result data generated by our method reflects the
software is experiencing PI, the evaluation results as shown in
Table II and Table III.

TABLE II. PI EVALUATION 1

PI ID: 1 Date: 2016-12-22 07:15:56 Strategy used: tracing
Manual diagnosis:

Page reads/sec high on UserMgr. Cause: server restarted → cache empty so

needs to be filled up.
Verification:

Is real PI: Yes Diagnosis correctness: 1

TABLE III. PI EVALUATION 2

PI ID: 2 Date: 2017-01-23 06:57:56 Strategy used: tracing
Manual diagnosis:

Images download timeout (9000 ms) has expired. Cause: cache I/O busy →

read and write exception so needs to optimize the cache mechanism.
Verification:

Is real PI: Yes Diagnosis correctness: 1

From the above two evaluation results can be seen, the
results data generated by our method reflect the software is
experiencing PI, it is consistent with the expert's diagnostic
results. Software running cycle is long, we just choose some
real-world performance problems that prove the effectiveness of
our method, in the next running time, as long as the performance
issues occur, we can find the performance experts to confirm,
and so far our all results are corroborated with the experts.

V. CONCLUSION

From the demand and research status of SaaS software
performance monitoring and analysis in cloud computing

environment, this paper proposes a format standard that
standardizes the SaaS software running log. Based on the
standardized log, we calculate the performance metrics of SaaS
software components with the aid of the service average
response time calculation model and service request timeout
ratio calculation model, and then obtain the log model
supporting SaaS software performance analysis. In addition, this
paper also presents a management framework and technology
implementation of the raw log data and log model data, which
supports the performance analysis of SaaS software. Finally, we
demonstrate the effectiveness of our approach through a case
study. The next step will improve the work of the log service
module, and combine the low-level indicators to study the
automatic identification of SaaS software performance issues.

ACKNOWLEDGMENT

This work is supported in part by the grants of National Key
Research and Development Program of China (2016YFC1202204)
and National Natural Science Foundation of China (61373038,
61672392).

REFERENCE

[1] Wei Xu. Detecting Large Scale System Problems by Mining Console
Logs. PhD dissertation, UC Berkeley, 2010.

[2] Deqing Zou, Hao Qin, Hai Jin. UiLog: Improving Log-Based Fault
Diagnosis by Log Analysis. Journal of Computer Science and Technology,
2016, 31(5): 1038-1052.

[3] Fu X, Ren R, Zhan J, et al. LogMaster: mining event correlations in logs
of large-scale cluster systems. 2012 IEEE 31st Symposium on Reliable
Distributed Systems(SRDS), 2012:71-80.

[4] Keith A. Bare, Soila Kavulya, Jiaqi Tan, et al. ASDF: An Automated,
Online Framework for Diagnosing Performance Problems. Workshop on
Software Architectures for Dependable Systems(WADS), 2009: 201-226.

[5] Zhiling Lan, Ziming Zheng, Yawei Li. Towards Automated Anomaly
Identification in Large-Scale Systems. IEEE Transactions on Parallel and
Distributed Systems(TPDS), 2010, 21(2): 174-187.

[6] Li Yu, Zhiling Lan. A Scalable, Non-Parametric Method for Detecting
Performance Anomaly in Large Scale Computing. IEEE Transactions on
Parallel and Distributed Systems(TPDS), 2016,27(7): 1902-1914.

[7] Aceto G, Botta A, De Donato W, et al. Cloud monitoring: A survey.
Computer Networks. 2013, 57(9): 2093-2115.

[8] Mona Attariyan, Michael Chow, Jason Flinn. X-ray: Automating Root-
Cause Diagnosis of Performance Anomalies in Production Software. 10th
USENIX Symposium on Operating Systems Design and
Implementation(OSDI), 2012: 307-320.

[9] Zhu Baojin. Design and Implementation of Log Filter System for Cloud
Computing System. Hangzhou: Hangzhou Dianzi University, 2014.

[10] Xu Z, Liu Y, Mei L, et al. Semantic based representing and organizing
surveillance big data using video structural description technology.
Journal of Systems and Software, 2015, 102: 217-225.

[11] Liu J, Yu X, Xu Z, et al. A cloud‐based taxi trace mining framework for
smart city. Software: Practice and Experience, 2016.

[12] Cortellessa V, Di Marco A, Inverardi P. Model-based software
performance analysis. Springer Science & Business Media, 2011. 4:10.

[13] Tao Wang, Wenbo Zhang, Jun Wei et al. Fault detection for cloud
computing systems with correlation analysis. IFIP/IEEE International
Symposium on Integrated Network Management(IM), 2015: 652-658.

[14] Meiyappan Nagappan. A Framework for Analyzing Software Systems
Log Files. PhD thesis, NC State Uni., 2011.

[15] Holden Karau, Andy Konwinski, Patrick Wendell et al. Learning Spark:
Lightning-fast data analysis[M]. CA: O’Reilly Media,Inc., 2015.

[16] Wang Zhaoyong. Research of Storage Methods for Large-scale bulk log
data. Chengdu: University of Electronic Science and Technology of China,
2011

