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Abstract—Traditional word embedding models only learn
word-level semantic information from corpus while neglect the
valuable semantic information of words’ internal structures such
as morphemes. To address this problem, the goal of this paper is
to exploit the morphological information to enhance the quality
of word embeddings. Based on spectral method, we propose
two word embedding models: Morpheme on Original view and
Morpheme on Context view (MOMC) and Morpheme on Context
view (MC). In vector space of MOMC and MC, both semantic-
similar words and morphological-similar words locate near with
each other. In experiments, MOMC, MC and the baselines are
tested on word similarity and sentiment classification. The results
show that our models outperform all comparative baselines on
six datasets of word similarity and win the first on sentiment
classification as well. Based on a large German corpus, we also
inspect the ability of word embeddings to process morpheme-
rich languages by using German word similarity task. The
result shows that MOMC and MC significantly outperform the
baselines more than 5 percentage on one dataset and nearly
4 percentage on the other. These impressive improvements
demonstrate the effectiveness of our models in dealing with
morpheme-rich languages like German.

Index Terms—Spectral Method, Morphological Information,
CCA, Random SVD, Word Embedding

I. INTRODUCTION

Nowadays, Natural Language Processing (NLP) has been
an important part of Artificial Intelligence (AI) for its ef-
fectiveness on many NLP tasks such as information retrieval
[1] and text classification [2]. As we all know, computer can
not directly deal with natural language due to the abstract
semantic structure contained in corpus. To solve this problem,
researchers developed a lot of models to represent words into
vector space, which is also called word embedding.

Traditional word embedding models are divided into two
main branches. One is based on neural network like Contin-
uous Bag Of Words (CBOW) and Skip-gram [3]. The other
is based on the matrix factorization such as the models in
[4], which is also called spectral method. In general, the
neural network-based models are famous for their robust
performance. Nevertheless, these models with a large amount
of parameters are time-consuming and tuning parameters re-
quires enough experiences. Besides, CBOW and Skip-gram
are also meaning-ambiguous methods, which lack theoretical
explanation. On the contrary, the spectral models have their
own advantages such as being on a theoretically provable basis
and able to accelerate the calculation. Nevertheless, the models
mentioned above are still word-level models and ignore many
useful internal information of a word such as the morphemes.
In English, a morpheme is the smallest unit and has some
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linguistic meanings. Mostly, morphemes can be divided into
three categories. The prefix is one of the morphemes which
has an affix placed before the stem of a word. Usually, adding
a prefix before a word changes the meaning of the word
but assigns similar semanteme. For example, putting “uni-”
before the word “form” changes the sense of “style”, but all
the words beginning with “uni-” will be endowed with the
meaning of “single”. The suffix is another morpheme which is
an affix placed after the stem of a word. For instance, “-ed” is
always added to the tail of the word to denote the past tense.
Additionally, the root is the primary lexical unit of a word
without prefix or suffix before or after it. In traditional models,
the meaningful morphological information is abandoned.

Motivated by recent work, which exploits the internal
structures to improve Chinese word embeddings [5], [6], in
this paper, we utilize the spectral technique to incorporate
the morphological information into word embedding training
process. In our models, the word information, morphological
information and context information are transformed into
three matrices, respectively. Based on these matrices, we
propose two models including Morpheme on Original view
and Morpheme on Context view (MOMC) and Morpheme
on Context view (MC) by using the Canonical Correlation
Analysis (CCA). In MOMC, we combine the morphological
information matrix with not only the word information matrix
but the context information matrix. Then, CCA is conducted on
these two new matrices. In MC, the morphological information
matrix is only combined with the context information matrix.
Then, we conduct CCA on the new combination matrix and
the initial word information matrix.

In experiments, MOMC and MC together with the baselines
are tested on word similarity and sentiment classification.
The results demonstrate the advantages of our models, which
outperform the baselines on six datasets of word similarity.
Besides, MOMC and MC also achieve the best performance
on sentiment classification. In order to evaluate the ability of
our methods to deal with the morpheme-rich languages, we
train all models on a German corpus and also test them on
word similarity task. The result indicates that MC and MOMC
significantly outperform the baselines on all the datasets and
even get more than 5 percentage advantage on RG-65-German
dataset. The performance of our models convinces us that
incorporating morphological information into word embedding
can generate a good structure in vector space and enhance the
quality of word embeddings.

II. RELATED WORK AND BACKGROUND

As we mentioned above, there are a lot of word embedding
models. In this section, we are going to give a brief review



of CBOW [3] and OSCCA (One Step CCA) [4], which are
chosen as the baselines in experiments.

CBOW With a slide window, CBOW [3] utilizes the context
words in the window to predict the target word. Given a
sequence of tokens T = {t1, t2, · · · , tn}, the goal of CBOW
is to maximize the following average log probability equation:

L =
1

n

n∑
i=1

log p(ti|context(ti)), (1)

where context(ti) means the context information of ti in the
slide window. Based on Hierarchical Softmax and Negative
Sampling [7], Equation (1) can be solved efficiently.

OSCCA Based on CCA, Dhillon et al. proposed a spectral
word embedding model named OSCCA, which is proven to be
effective in [4]. For a sequence of tokens T = {t1, t2, · · · , tn},
in OSCCA, we firstly need to construct two matrices including
word information matrix W and context information matrix C.
Building of these matrices will be introduced in the following
section. Then, we directly do CCA on these matrices. As we all
know, the goal of CCA is to find a pair of projection matrices
Φw and Φc such that the correlation between the projection
of W onto Φw and C onto Φc is maximized. Based on
Eigendecomposition, the solution of Φw and Φc is as follows.

Σ−1
11 Σ12Σ−1

22 Σ21Φw = λΦw

Σ−1
22 Σ21Σ−1

11 Σ12Φc = λΦc

(2)

where Σ11 is the covariance matrix of W , Σ12 is the co-
variance matrix between W and C, Σ22 is the covariance
matrix of C, Σ21 if the covariance matrix between C and W .
Nevertheless, this solution is time-consuming and memory-
consuming due to many large sparse matrix multiplications,
which origins from the huge vocabulary size. To solve this
problem, in [4], they demonstrated that the solution of OSCCA
can be transformed into an equivalent equation.

Σ
−1/2
11 Σ12Σ

−1/2
22 = ΦwΛΦT

c (3)

where (Φw,Φc) are the left and right singular vectors and Λ
is the diagonal matrix of singular values. Hence, Φproj

w =

Σ
−1/2
11 Φw and Φproj

c = Σ
−1/2
22 Φc. In OSCCA [4], the pro-

jection Φproj
w is viewed as the word embedding. For clarity,

we define the anterior CCA progress as (Φproj
w ,Φproj

c ) ≡
CCA(matrix1,matrix2) and use it if we want to do CCA
on a pair of matrices. Due to the effectiveness of the second
solution, all spectral word embeddings are trained based on
Equation (3) in this paper.

III. INCORPORATING MORPHOLOGICAL INFORMATION
INTO WORD EMBEDDING

Based on spectral technique, we propose two word embed-
ding models: Morpheme on Original view and Morpheme on
Context view (MOMC) and Morpheme on Context view (MC).
The objective of these models is to incorporate morphological
information to improve the quality of word embeddings so that
both semantic-similar words and morphological-similar words
can group together in vector space. Both MOMC and MC
are built based on three information matrices including word
information matrix, context information matrix and morpho-
logical information matrix. For clarity, we introduce how to
build these matrices firstly.

A. Methodology of Building Information Matrices

1) Notation: We define the word information matrix as
W ∈ Rn×p, morphological information matrix as M ∈
Rn×(np+ns+nr), left context information matrix as L ∈
Rn×cp, right context information matrix as R ∈ Rn×cp and
whole context information matrix as C ∈ Rn×2cp where n
is the length of the word sequence, p is the number of the
vocabulary, np is the number of the prefix, nr is the number
of the root, ns is the number of the suffix and c is context
window size.

2) Word Information Matrix: The word information
is mapped into a sparse matrix W . Given a corpus
{t1, t2, t3, ..., tn}, the vocabulary is {null, v1, v2, ..., vp}
where n ≥ p. Every word is represented as a one-hot vector
in which wij = 1 means word ti is in the jth position of
the vocabulary. In practice, the vocabulary is so huge that
the computational cost is rather high. Since quite a number
of words only turn up at a low frequency due to the zipfian
distribution, we set a threshold of the frequency of the words.
If the word’s frequency is under that threshold, the word will
be assigned to the first column null. More detail is give in
Equation (4).

wij =

{
1, when ti = vj or ti = null

0, otherwise
(4)

3) Morphological Information Matrix: In this paper, mor-
phemes are divided into prefix, suffix and root. There-
fore, the whole morphological information matrix M can
be represented as the concatenation of three separate ma-
trices. We assume that root = {null, r1, r2, · · · , rnr},
prefix = {null, p1, p2, · · · , pnp}, and suffix =
{null, s1, s2, · · · , sns}. If a word has a certain morpheme, the
corresponding column position should be set as 1. A constraint
is that in the whole matrix, every morpheme should be active
at least once. If there is no feature in the morpheme list,
the first column null will be set as 1. We define function
match(ti, aj) ∈ {1, 0}, aj ∈ { prefix ∪ root ∪ suffix}
to simplify our description. The function means that if word
ti contains morpheme aj , it will be set as 1 or 0 otherwise.
Hence, we can utilize Equation (5) to summarize the construc-
tion of morphological information matrix.

mij =

{
1, when match(ti, aj) = 1

0, otherwise
(5)

4) Context Information Matrix: Context information matrix
C is composed of the left context matrix L and the right
context matrix R. For a target word, the construction of the
left context matrix is built based on the contextual words,
which are located in the left-side of the target word. Building
of the right context matrix is associated with the right-side
contextual words of the target word. For a single token in
corpus, the corresponding positions of its context words in
the left context matrix and right context matrix will be set
as 1. If the context word is not in the vocabulary, then the
corresponding position of null will be set as 1. We define a
function context(ti, vj , k), k ∈ [1, c], j ∈ [1, c × p]. When
the kth context word of ti is equal to vj , this function is
equal to 1 or 0 otherwise. The mathematical description of



Algorithm 1 MOMC model
function MOMC (D,M, h, k)
Input: huge size corpus D
morpheme set M
context window size h
dimension of word embedding k
Output: word vector φproj

w

Initialization: Initialize expanded word information matrix We and
context information matrix Ce according to the input parameters.
Calculate the approximate correlated matrix
Cww = WT

e We

Cwc = WT
e Ce

Ccc = CT
e Ce

Do SVD on
C

−1/2
ww CwcC

−1/2
cc

Get right singular matrix φwe

Get the eigenword φproj
we

= C
−1/2
ww φwe

Extract the vocabulary part skipping morpheme part φproj
w

Return φproj
w

left context matrix L is in Equation (6). Right context matrix
can be established in the same way.

lij =

{
1, when context(ti, vj , k) = 1

0, otherwise
(6)

B. Morpheme on Original view and Morpheme on Context
view (MOMC)

In MOMC, the morpheme information is viewed as a unit
feature. It means that all words including the target words and
context words need to be featured by morpheme information.
MOMC uses the expanded word matrix We = [W M ] and
expanded context matrix Ce = [[L M ] [R M ]] as the input.
[ ] means concatenating two matrices upon row direction.
Like what we did above, we utilize the following equation
to describe the MOMC in a mathematic way.

(Φproj
w ,Φproj

c ) = CCA(We, Ce) (7)

The detailed algorithm is described as the pseudocode
in Algorithm 1 shown below. This model will lead words
with similar morphemes to locate closer than that in the
original vector space. Due to the fact that morphemes have
some semantic roles, the method encoding the morphological
information into the word vectors will be useful to identify
words’ semantic role and morphological role. Hence, it will
have a better performance than OSCCA ideally.

C. Morpheme on Context view (MC)

This method is similar to MOMC which also exploit the
internal structures of words. Nevertheless, this method deals
with the morphological information in an entirely different
way. In MC, the morphological information is viewed as a
global feature rather than unit feature in MOMC, which acts
as a unique character about the corpus. We don’t represent
words into the other space but take their context words and
morphemes as the context. The solution of this model is also
based on CCA model. The pseudocode of MC is similar to
Algorithm 1. The only difference is the input matrix. For

brevity, we don’t give the algorithm of MC. The equation is
like the MOMC which is shown as follows:

(Φproj
w ,Φproj

c ) = CCA(We, Ce) (8)

where We = W and Ce = [L R M ].

D. Random SVD for CCA

In [4], the authors discussed how to calculate Σ11, Σ12 and
Σ22 in Equation (3). Based on zipfian distribution, in OSCCA,
the empirical expectations of all words are set as zero so that
matrices WTW , WTC and CTC can be utilized to stand for
Σ11, Σ12 and Σ22, respectively. As we all know, a word and
its morpheme are occurred simultaneously, which means the
distribution of morpheme in large corpus follows the zipfian
distribution as well. Hence, the empirical expectations of all
morphemes are also set as zero so that we can utilize the same
way to calculate the Σ11, Σ12 and Σ22 in MOMC and MC.

As we mentioned above, getting word embeddings needs to
train a huge corpus. Doing decomposition on so vast matrix
still needs a great deal of time and memory even though the
computing power has become more powerful. Hence, recent
advances in SVD algorithms are necessary to be taken to solve
the huge matrix decomposition. In [8], Halko et al. gave a
powerful tool which uses random projections to do SVD on
large matrices. Basic idea of the method is to find a lower
dimensional basis for large matrix and then to calculate the
singular vectors in this lower dimensional basis. For a large
input m × n matrix A, the first stage is to find a basis Q,
based on which A can be represent as following equation.

A ≈ QQTA (9)

where Q has few columns. When calculate Q, we firstly gen-
erate a Gaussian test matrix Ω with dimensions of n× (k+ l)
where k is a target number of singular vectors and l is
the extra basis vector ranging from 0 to k. By multiplying
alternately with A and AT , we secondly generate a matrix
Y = (AAT )qAΩ where q is another parameter from input.
Lastly, matrix Q whose columns form an orthonormal basis
for the range of Y will be constructed. The second stage of
this method is to do SVD algorithm on A with the help of
Q. In this stage, a matrix B = QTA needs to be calculated
firstly. Then, SVD algorithm is conducted on the small matrix
B = U

′
ΣV T . Finally, the left singular matrix U of A

can be approximately set as U = QU
′
. More theoretical

demonstrations are illustrated in [8].

E. Complexity Analysis

The solutions of our models including MOMC and MC are
based on the random SVD algorithm which is introduced in
the previous subsection. Random SVD algorithm as the most
important part of our models consumes most of the training
time. For a large matrix A with the dimensions m×n, the first
stage needs to cost O(mns) time to generate a low dimension
basis Q with the dimensions m×s, s� n. In [4], it is reported
that the computational complexity of OSCCA is O(p2cs). For
MC, the cost of time will be O(p(pc + np + ns + nr)s).
Because np, ns and nr stand for the counts of morphemes



which are the constant numbers and much more smaller than
pc, O(p(pc+np+ns+nr)s) is equal to O(p2cs). Obviously,
the complexity of MOMC is also O(p2cs). The notations p and
c represent the vocabulary size and context window size which
have been introduced. Compared with OSCCA, it is obvious
that our models have same computational complexities.

IV. EXPERIMENTS

In this section, we test MOMC, MC and the baselines
on word similarity and sentiment classification. Moreover,
parameter analysis is given in the end of this section. For
clarity, some experimental settings are introduced firstly.

A. Experimental Settings

In this paper, all word embeddings are trained based on
the news corpus of 2009, which is listed on the 2013 ACL
Workshop on Machine Translation1 and also used in [9]. We
collect the morpheme from the website2 and get 90 prefixes,
241 roots and 64 suffixes.

The existing word embedding model OSCCA [4] and
CBOW [3] are chosen to compare with MOMC and MC. For a
fair and unbiased comparison, all word embeddings are trained
in the same condition. The size of the context window and the
dimension of word embedding are set as 2 and 200, which are
the same as the settings in [4]. CBOW is trained by using the
source code3. For efficiency, the negative sampling algorithm
is chosen to solve CBOW [7]. To generate the word embedding
of OSCCA, we utilize the java toolkit, which is released in
Dhillon’s github4. Moreover, we modify the source code of
this toolkit and generate our embeddings.

B. Word Similarity

This experiment is utilized to evaluate the ability of word
embeddings to capture semantic information from large cor-
pus. The dataset is composed of two parts: word pairs and
human score. We need to calculate the similarities of word
pairs firstly and then measure the correlation between the
similarities and human score. The similarities of word pairs
are measured using cosine distance. We use Spearman’s rank
correlation coefficient (ρ) to evaluate the correlation between
word similarities and human score. Apparently, bigger ρ means
better performance. In this task, we utilize 8 widely used
benchmarks. RG-65 [10] has 65 noun pairs. MTurk-287 and
MTurk-771 [11] contain 287 and 771 English word pairs,
respectively. RW-STANFORD [12] has a large number of
rare words with similarity score. WS-353-ALL [13] contains
353 pairs of English with human similarity ratings. WS-
353-REL and WS-353-SIM are annotated based on WS-353-
ALL in [14]. MEN-TR-3k [15] owns 3000 word pairs, which
frequently turn up in a large web corpus.

The results are shown in Table I. It is obvious that our
methods significantly outperform the comparative baselines.

1http://www.statmt.org/wmt13/translation-task.html
2https://msu.edu/∼defores1/gre/roots/gre rts afx1.htm
3https://github.com/dav/word2vec
4https://github.com/paramveerdhillon/swell

MOMC wins the first on four dataset and MC performs
the best on other two datasets. The advantages of MOMC
and MC are corresponding to our expectation. Obviously,
more semantic information means better performance. The
baselines are word-level models and neglect the internal se-
mantic information. On the contrary, MOMC and MC exploit
the morphological information and capture more semantic
information, which interprets the best performance of our
methods.

TABLE I
RESULTS OF WORD SIMILARITY AND SENTIMENT CLASSIFICATION.

“SA” STANDS FOR SENTIMENT CLASSIFICATION. THE NUMBERS IN BOLD
MEAN THE BEST ANSWERS.

OSCCA MOMC MC CBOW

MTurk-287 0.5664 0.5847 0.5657 0.5761

RG-65 0.5674 0.5734 0.5734 0.6042

RW-STANFORD 0.4966 0.4798 0.5107 0.4961

WS-353-ALL 0.5387 0.5742 0.5634 0.5675

WS-353-REL 0.4486 0.4607 0.4338 0.4420

WS-353-SIM 0.6752 0.6827 0.7072 0.6970

MEN-TR-3k 0.6562 0.6339 0.6562 0.6346

MTurk-771 0.5324 0.5532 0.5338 0.5478

SA 0.7086 0.7132 0.7256 0.7193

C. Sentiment Classification

This experiment is conducted in a similar way as we find in
[16]. The average of the word embeddings of a given sentence
is utilized as features in a logistic regression model for
classification. In this task, we utilize the annotated sentences
with sentiment labels by treebank model introduced in [17].
We report the accuracy in Table I.

The results show that MC and MOMC outperform the
baselines as well. Actually, the sentiment of a word is related
to the morphological information. For instance, prefix “dis”,
“un” and “in” have negative meanings. By incorporating
morphological information, the morpheme-similar words will
group together in vector space. Hence, our better performance
may stems from this property.

TABLE II
PERFORMANCE ON MORPHEME-RICH LANGUAGES. THE NUMBERS IN

BOLD MEAN BEST PERFORMANCES.

OSCCA MC MOMC

RG-65-German 58.63 63.98 62.36

WS-353-German 59.94 63.45 63.21

D. Morpheme-Rich Language Test

In order to measure the ability of our models when applied
to some morpheme-rich languages like German, we train
OSCCA, MC and MOMC based on the 2009 news German
corpus, which is also from the 2013 ACL Workshop on
Machine Translation. Then, all word embeddings are tested
on word similarity task as well. We utilize Google Translate



Fig. 1. Words ending with the suffix of “ed” are grouped together in vector
space of MOMC.

to translate the golden standard WordSim-353 and RG-65
into German and named them WS-353-German and RG-65-
German, respectively.

The results in Table II show that our methods beat OSCCA
in a quite much sense. MC outperforms OSCCA more than
5 percentage on RG-65-German and nearly 4 percentage on
WS-353-German. In addition, MOMC also performs well on
both datasets. Hence, our methods incorporating morpheme
information seem to have some positive effects on the quality
of word embedding.

E. Word Structure

The word structure of MOMC is illustrated in Fig.1 by using
t-SNE. From these figures, we find that the morphological-
similar words locate near with each other, which is consistent
with our expectation. Moreover, we upload a particular part
of the embeddings to the website5 providing word vector
evaluation service by [18]. The result in Fig.2 shows that
some male and female related words have exciting semantic
structures. For example, in the top left of this picture, tokens of
“he”, “his”, “she” and “her” sit nearby. Furthermore, it also
indicates some analogy meaning that the vector from “her”
pointing to “his” is parallel to that from “she” pointing to
“he”. Nevertheless, there are also some weaknesses in Fig.2.
For instance, words “mother” and “mom” are semantic-related
words but far from each other. As we all know, the quality of
word embeddings have a strong connection with the corpus.
Obviously, we can not capture all patterns because of some
outliers in corpus, which can do harm to the quality of word
embeddings.

F. Parameter analysis

In our models, there are several parameters related to the
quality of the word embeddings including token size, context
window size and the dimension of embedding. We are going
to do parameter analysis based on the three parameters in the
following parts.

5http://www.wordvectors.org/index.php

Fig. 2. The position of male and female related words in vector space of
MOMC.

1) Effect of token size: In order to analyze the effect of
token size, OSCCA, MOMC and MC are trained on the one-
fifth, two-fifth, three-fifth, four-fifth and five-fifth of the corpus
we mentioned before. All word embeddings are tested on the
word similarity by using the golden standard Wordsim-353.
The results are illustrated in Fig.3.

In Fig.3, the performance of all the word embeddings shows
an obvious ascending tendency, which means larger corpus
will generate better word embedding. At the beginning, MC
and MOMC perform worse than OSCCA. However, with the
increasing of token size, MC and MOMC outperform OSCCA
and have a more stable increased tendency.
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Fig. 3. Effect of token size based on word similarity test by using Wordsim-
353.

2) Effect of Context Window Size: In this part, the context
window size ranges from 1 to 5. All models are evaluated on
the word similarity task by using Wordsim-353 as well. The
result is illustrated in Fig.4.

From Fig.4, an ascending tendency is very clear accompa-
nying with the changing of window size, which accords with
our expectation. Larger window size means more semantic
information. It seems that MC and MOMC are more sensitive
to window size. At beginning, MC and MOMC perform worse
than OSCCA. However, they outperform OSCCA on larger
window size. We can not roughly conclude that larger window
size means better performance because we don’t test the
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Fig. 4. Effect of context size based on word similarity test by using Wordsim-
353.

models by setting some extreme condition due to the limitation
of computing resource. In small scope, it is concluded that
larger window size generates better word embedding.

3) Effect of Word Embedding Dimension: The word embed-
dings of OSCCA, MOMC and MC are trained by dynamically
setting the dimension increasing from 50 to 250 step by 50.
The results on word similarity are shown in Fig.5.
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Fig. 5. Effect of dimension based on word similarity test by using Wordsim-
353.

In Fig.5, all models follow a tendency of ascending before
and stable later. It seems that MOMC is very sensitive to
dimension and starts with a low position. An empirical expla-
nation is given to illustrate this phenomenon. From anterior
section, it is easy to find that the matrices used in MOMC
for random SVD decomposition are much larger than other
models which means if the dimension is set too low, we may
lose more information than other models when the random
SVD is conducted. It convinces us that the dimension of
MOMC should be set larger than other models. From the
figure, it is fine to choose dimension of word embedding from
200 to 250.

V. CONCLUSION

Traditional word embedding models neglect meaningful in-
ternal semantic structures such as morphemes when extracting
semantic and syntactic information from large corpus. To ad-
dress this problem, we propose two models including MOMC
and MC by exploiting the morphological information based on
spectral methods. In MOMC, the morphological information
is viewed as a unit feature. On the contrary, the morphological
information is viewed as a global feature and utilized to
supplement the context information during the training process

of MC. The experiments’ results on word similarity and
sentiment classification show that MOMC and MC outperform
the baselines on both tasks. The morpheme-rich language
test also demonstrates the effectiveness of MOMC and MC,
which outperform OSCCA to a great extent. In summary, both
semantic-similar words and morphological-similar words have
a trend to group together in vector space of MOMC and MC.
The property can not only improve the semantic similarity but
also elevate morphological similarity of word embeddings.
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