
Cold-Start Developer Recommendation in Software
Crowdsourcing: A Topic Sampling Approach

Yu Yang, Wenkai Mo, Beijun Shen†, Yuting Chen
School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University, Shanghai, China
Email: {monkeydeking, jirachikai, bjshen, chenyt}@sjtu.edu.cn

Abstract—Recently, software crowdsourcing platforms, which
provide paid tasks for developers, become attractive to both
employers and developers. Developers expect to find tasks that
match their interests and capabilities via crowdsourcing plat-
forms, and thus recommender systems play important roles in
these platforms. However, we still face several challenges when
building a recommender system for a crowdsourcing platform.
A major challenge is how to recommend tasks to cold-start de-
velopers whose task interaction data is not available. This paper
presents a novel, topic sampling approach to tackling with the
cold-start developer recommendation problem. First, it employs a
general method for modeling developers and tasks, which solves
the data heterogeneous issue across different platforms. After
that, it casts the cold-start developer recommendation problem
into a multi-optimization problem, and takes a topic-sampling
based genetic algorithm to recommend tasks. More specifically,
our approach is different from traditional solutions in that it
leverages task descriptions and popularity-to-be, allowing new
tasks to be recommended to cold-start developers. To evaluate
the effectiveness of the proposed approach, we have conducted
experiments on a large dataset crawled from three real-world
software crowdsourcing platforms. Compared with other state-of-
the-art recommendation solutions, the experimental results show
that the proposed approach improves 75% of precision and recall
on average.

Keywords—Cold-Start Problem, Software Crowdsourcing,
Topic Sampling, Developer Recommendation.

I. INTRODUCTION

Software crowdsourcing has attracted great attentions from
both industry and academia recently. An increasing number
of software companies have turned to find online developers
in software crowdsourcing platforms, such as OsChina1 and
Zhubajie2, to accomplish various types of software develop-
ment tasks, including architecture design, component devel-
opment, testing and bug fixing. On a crowdsourcing platform,
developers hunt for suitable tasks, and employers also search
for qualified developers. Inappropriate developer-task match-
ing may decrease the quality of the software deliverables.
Thereafter, a recommender system needs to be designed and
integrated into a crowdsourcing platform, helping users find
the best fitting developers or tasks effectively.

For a software crowdsourcing recommender system, a major
challenge is how to recommend tasks to cold-start developers

† Corresponding Author
1http://www.oschina.net/
2http://www.zbj.com/
DOI reference number: 10.18293/SEKE2017-104

(i.e., new developers) whose task interaction data is not
available. Even worse, unlike movies or music items in tradi-
tional recommender systems, tasks in software crowdsourcing
platforms may be insufficient in their data accumulations, since
they usually have short lifetime period. Available developer
behavior history information becomes rare, making the cold-
start developer problem severe.

In this paper, we focus on solving the cold-start developer
problem in software crowdsourcing recommender systems,
i.e. recommending tasks to cold-start developers with little
online behavior information. Traditional solutions conduct
some questionnaire surveys [1] on cold-start developers and
then build models based on results or simply recommend
popular tasks to them [2]. However, it requires a lot of expert
efforts to prepare good questionnaires, while developers may
still forget to fill up them. Furthermore, these methods cannot
recommend new tasks whose popularity are relative low to
developers, even though these tasks are potentially popular in
the future.

To tackle these problems, we propose a topic sampling
based approach to recommend tasks to cold-start developers.
Our approach builds the models of developers and tasks in
a general way, casts the cold-start developer recommendation
problem into a multi-optimization problem, and takes a topic-
sampling based genetic algorithm to recommend tasks. More
specifically, it leverages task descriptions and popularity-to-be,
and can recommend even new tasks to cold-start developers,
which makes it significantly different from previous solutions.
We conducted several experiments to evaluate the proposed ap-
proach. Using three real datasets from software crowdsourcing
platforms, we can conclude that our approach has a significant
enhancement, 75% on both precision and recall in average, at
the recommendation.

Our main contributions are summarized as follows:
1) Task Popularity-to-be Estimation. Instead of using ex-

isting task popularity, we propose an estimation method
to get task popularity-to-be as one of key properties of
task model. It adopts regression, a machine learning
technique, to estimate whether a cold-start task may
become popular in the future.

2) General Resources Modeling. We propose a general
modeling method for modeling developers and tasks.
The method abstracts the key properties of resources
from heterogeneous data, modeling developers from



their profiles and behaviors, while modeling tasks from
their descriptions by natural language processing tech-
nologies. Then it transfers the features from warmed de-
velopers (also called non-cold start developers) to cold-
start developers, through classification and clustering.

3) Cold-start Developer Recommendation Algorithm. With
task model and developer model, a semi-supervised al-
gorithm is designed to recommend tasks to cold-start de-
velopers, called Topic Sampling-based Recommendation
Algorithm, which designs the recommendation problem
as a new multi-optimization problem and employs the
genetic algorithm to solve it.

II. RELATED WORK

Recommendation System. The traditional approaches on rec-
ommendation are collaborative filtering (CF) approaches [3],
such as singular value decomposition (SVD) [4], where the
user gets items based on other items with similar patterns.
However, an inherent prerequisite of CF is to have historical
user-item interactions. Thus, CF suffers from the cold-start
problem.

Some researchers proposed content-based approaches for
building a recommender system. For example, Takacs et al.
constructed content similarity matrix and used neighbor based
approach to recommendation, where users ratings are affected
by their nearest neighbors [5]. But it is difficult for content-
based approaches to construct proper profiles for cold-start
developers.
Cold-Start Problem. In this paper, we focus on the user
cold-start problem in recommender systems. To model the
preferences of cold-start users, previous work usually ob-
tain related information by short interviews [6] [7]. During
interviews, the users are asked to rate several items from
carefully constructed seed sets, which are constructed based
on popularity, contention, and coverage [8]. However, usually
only a few people will fill out the questionnaires, and badly
written questions limit the usefulness [9].

One of the classical approaches to addressing cold-start
problem is popularity-based approach. Miao et al. jointly
predicted the rating and popularity for cold-start items by
sentinel user selection [10]. Arapakis et al. characterised the
online popularity of news articles by two different metrics [11].
But popularity-based approaches are not good at personalizing
recommendation.

Another is bandits-based approach. Li et al. modeled per-
sonalized recommendation of news articles as a contextual
bandit problem [12], and solved it by using user-click feedback
to maximize total user clicks. In [3], CF was combined with
exploration-exploitation strategies for content recommenda-
tion. Instead of cold-start users, it is better at solving cold-start
item problem.
Developer Recommendation. There are also some studies
of recommendation technologies for software crowdsourcing
platform. Zhu extracted skill and location features from the
textual descriptions, and adopted learning to rank technology

to perform recommendation [13]. Lee et al. proposed a dy-
namic planning algorithm to recommend tasks [14]. Yuen et al.
pointed out that the past task preference and user performance
could be utilized for task preference model [15]. However all
of these work did not address the cold start problem.

III. PROBLEM DEFINITION AND APPROACH OVERVIEW

We give a formal definition of cold-start developer rec-
ommendation problem, and then present an overview of our
approach.

A. Cold-Start Developer Recommendation Problem

There are two basic resources on a software crowdsourcing
platform: tasks denoted as T , and developers as U . Once an
employer has requested a task, the developers can bid for,
win, and then deliver the task. So we express the relationship
between one developer u and one task t as the set R =
{bidding, winning, delivering}. Thus, data on the software
crowdsourcing platform can be expressed as a relationship
triples: (u, t, r) ∈ U × T ×R.

Definition 1: Developer Activity Percentile. We design a
new metric, developer u’s current activity percentile Act (u),
to measure how often the developer interact with tasks, which
is defined as the number of tasks u has bid for.

Act (u) =
∑
i∈T

1 {if u bids i} (1)

Then, we calculate the average current activity percentile
µact and the variance of the current popularity σ2

act on the
platform. In this paper, we suppose that the activity per-
centile is consistent with the Gaussian distribution Act ∼
N
(
µact, σ

2
act

)
.

Definition 2: Cold-Start Developer. When the activi-
ty percentile of developer u is less than twice the vari-
ance of the Gaussian function formed by all develop-
ers’ activity percentile on the platform, developer u is
regarded as a cold-start developer, that is, Act (u) <
Gaussian

(
µact − 2 ∗ σ2

act;µact, σ
2
act

)
.

Definition 3: Cold-Start Developer Recommendation Prob-
lem. For the all tasks, it is given that ∀t ∈ T, t = {desc, f},
where desc represents description of task t and f a boolean
value indicating whether task is terminated. The problem is
that recommender system must learn an appropriate model to
recommend a suitable task set T

′
for a cold-start developer,

where ∀t′ ∈ T ′
{
t
′
.f = 0

}
. Besides, the task set recommend-

ed must meet ∀t′ ∈ T ′
{
i does not bid t

′
}

, that is, without
being bid by i.

B. Approach Overview

To address the above cold-start problem, a novel approach
is proposed, as shown in Fig. 1. It consists of two phases, the
resource modeling phase which models tasks and developers
from heterogeneous data in the platform, and the recommenda-
tion phase which recommends appropriate tasks for cold-start
developers with topic sampling.



Fig. 1: Our Approach to Cold-Start Developer Recommendation.

1) Software Crowdsourcing Resource Modeling: Due to
heterogeneous data from different software crowdsourcing
platforms, we build the models of developers and tasks in a
general way. For tasks, our approach extracts task topics by the
topic model, and calculates task popularity by the regression
model. For developers, it builds profile vector, topic vector and
activity percentile through NLP technologies.

2) Cold-Start Developer Recommendation: Recommenda-
tion phase has three steps: (1) Warm Developer Clustering
produces some clusters and their center topics; (2) Cold-Start
Developer Classification assigns each cold-start developer to
one cluster of warm developers; (3) Recommendation Based
on Topic Sampling proposes a topic-based popularity sampling
algorithm which applies genetic programming to perform
recommendation.

IV. SOFTWARE CROWDSOURCING RESOURCE MODELING

In this section, a general resource modeling method will be
introduced, which can extract task and developer information
from heterogeneous data in different software crowdsourcing
platforms.

A. Task Modeling

One of the basic elements in software crowdsourcing is the
task. Each task has its own task description including a title
and a body. Although there are other properties to describe
tasks in some specific platforms like tags, etc., without loss
of generality, we only set task descriptions as the input of
modeling phase.

1) Task Topic Modeling: Task descriptions are written in
natural language by the employer. We use a popular topic
modeling algorithm, Latent Dirichlet Allocation (LDA) [16],
to obtain the topic distribution to represent tasks description-
s. Before applying LDA, the descriptions need to be pre-
processed. We first concatenate the title and the body of a
task description to a big text, and remove stop words and
words whose part-of-speech tags are not noun, adjective, or
verb. Then each text is represented by a bag-of-words (BOW)
vector. We set the number of topics to 150, and thus, each
description is finally transformed into a 150-dimensional topic
vector. Distinctly our method can transform heterogeneous
task data from different platforms into an isomorphic vector.

2) Task Popularity Modeling: In traditional popularity-
based recommendation systems, an item’s current popularity
Popc is defined as the average rating of all users to item or
how many people rate/bid it. However, it cannot reflect the
popularity well especially for new tasks. A new task may be
popular in the future, but at the beginning, it cannot attract
enough developers in short time, and thus its current popularity
is low. To better model tasks, we propose a new concept called
popularity-to-be Pope, which is calculated by a regression
model and extremely beneficial for new tasks.

Given the training dataset D =
{(x1, y1) , (x2, y2) , · · · , (xn, yn)} , x ∈ Rk, y ∈ R, where
yi is current popularity of a task which has been bid
and delivered, and xi the corresponding task topic vector.
Regression algorithms can fit a model f̂ (x) → R from
these historical data. Then using this model, for a task, its
popularity-to-be can be estimated by the task topic vector.

There are many regression algorithms, such as Classification
and Regression Tree (CART) [17], linear regression [18],
Gaussian mixture model [19], etc. In the experiment, the
classical CART algorithm achieves the best performance and
thus we apply it to estimate task’s popularity-to-be.

It is meaningful and effective to extract information from
the task description for estimating popularity because the
task popularity-to-be can indirectly reflect the distribution
of topic. However, the longer tasks are released, the less
credible the estimated popularity will be. In order to avoid
the inaccuracy issue, we propose a time-weighted method
ultimately to calculate the popularity of task j.

Pop (j) = α (ts, tc) ∗ Popc (j) + β (ts, tc) ∗ Pope (j) (2)

Both α (ts, tc) and β (ts, tc) are two time weighting factors,
calculated by the task’s release time tc and the current time
ts. For α (ts, tc), it should be increased with tc − ts since
the reliability of current popularity is growing higher as
released time goes by. Meanwhile, the reliability of estimated
popularity decreases. So α (ts, tc) and β (ts, tc) are defined
as:

α (ts, tc) = ln (tc − ts + 1) , β (ts, tc) =
1

ln (tc − ts + 1)
(3)



B. Developer Modeling

We build the model of developers from three aspects.
1) Developer Profiling: When registering on different soft-

ware crowdsourcing platforms, a new developer is required
to fill in different individual information that can be con-
verted into a unified vector to denote his profile model. The
individual information generally contains three kinds of data
type: numeric, string, and enumerations. Numeric data can be
added directly to the profile vector, as well as enumeration
after relatively simple discrete processing. For a string, it is
generally accepted by converting it to a BOW vector so that
the string can be appended to the profile vector.

2) Calculating Developer Activity Percentile: The develop-
er activity percentile is calculated by his/her online behaviors,
just according to the definition 1.

3) Refining Developer Topic: The relationship between
developer and task is denoted by triples, representing whether
a developer has bid, won, or delivered a task. In previous
work [10] [11], only the bidding relation triples are used. In
this paper, we use all relations to build developer topic model
to keep more valuable information:

vu = λB

∑
t∈Bu

vt + λW

∑
t∈Wu

vt + λD

∑
t∈Du

vt (4)

where λB , λW and λD represent weights of bidding, winning
and delivering, while Bu, Wu and Du means sets of the task
that developer u has bid, won and delivered. Delivering of
the task reflects one developer’s ability with the maximum
influence, followed by winning and bidding, and thus we have
λB < λW < λD. The more the tasks are delivered, won and
bid, the stronger developer’s ability is.

V. COLD-START DEVELOPER RECOMMENDATION

In this section, we introduce a semi-supervised topic sam-
pling algorithm to recommend tasks to cold-start developers on
the software crowdsourcing platform. The algorithm consists
of three steps: warm developer clustering, cold developer
classification and recommendation by topic sampling.

A. Warm Developer Clustering

In the crowdsourcing platform, it is time-consuming to pre-
define the classes for all developers, which requires massive
expert knowledge. In this paper, we apply clustering methods
to obtain the classes automatically. Our algorithm only clusters
warm developers because they have enough information left in
the platform. K-means and DBScan are the effective clustering
algorithms. We will compare the performance of these two
algorithms in the experiments. The better one will be chosen.

After clustering by developer profiles, the cluster topic for
each cluster is calculated by the formula-(5), where d is the
number of developers in the cluster and ui.topic denotes the
developer i’s topic in the cluster. Thus it can be seen the cluster
topic is the topic vector center of instances in one cluster.

Topic (C) =

∑d
i=1 ui.topic

d
(5)

B. Cold-Start Developer Classification

For cold-start developers, they only have profile vector, and
can be classified to warm developer clusters. To find a proper
cluster for a cold-start developer, we first define cluster center
for each cluster. Supposing there are d points in the cluster C,
the cluster center is defined by formula-(6). Then for a cold-
start developer, the distances between his profile vector and all
cluster centers are calculated. The nearest cluster is the target
cluster for the developer.

Center (C) =

∑d
i=1 ui.profile

d
(6)

C. Recommendation by Topic Sampling

Accordingly, we design a recommendation algorithm based
on topic sampling to make a recommendation for cold-start
developers who are classified in a proper cluster.

1) Multi-objects Optimization Problem Formulation: From
the profile aspect, a cold-start developer u has high similarity
to developers in the same cluster. We consider that topic which
the developer interests also has high similarity with those
developers. However, the cold-start developer does not have
the topic vector, so we use the corresponding cluster topic
to represent the interested topic of the cold-start developer,
denoted by Topicu (C). Based on Topicu (C), our algorithm
samples l tasks which have high similarity to Topicu (C) and
then recommends these tasks to the cold-start developer.

However, sometimes the assumption that the cluster topic
can represent the cold-start developer’s topic is not exactly pre-
cise since we only use developer profile to cluster and classify
cold-start developer. To solve this issue, during the sampling
process, we also take the task popularity into consideration.

Therefore, the cold-start developer recommendation is de-
signed as a multi-objects optimization problem (MOP) that
considers both task topic and popularity, formulated as

max.

∑l
i=1 Pop (ti)

l
s.t.

∑l
i=1 ti.topic

l
− Topic (C) 6 ε (7)

The constraint,
∑l

i=1 ti.topic
l − Topic (C) 6 ε, tries to make

the topic center of selected tasks close to the cluster topic
Topicu (C). The optimization function

∑l
i=1 Pop(ti)

l ensures
the overall popularity of selected tasks as high as possible. In
our approach, task popularity considers both current popularity
and popularity-to-be, so the recommendation algorithm can
also recommend the latest tasks to developers, outperforming
other popularity-based recommendation algorithms [1] [2].

2) Recommendation Algorithm Design: As an MOP, our
recommendation problem is suitable to adopt genetic algo-
rithm (GA) to search for optimal goals. GA is randomized
search and optimization techniques based on the concepts
of natural activity percentile of genes, individual selection,
and the evolutionary process [20]. Applying the GA to the
recommendation algorithm, the individual is the recommended
task list, the gene is the task in the list and the population is the
list of recommended lists. The optimization function, formula-
(7), dictates that the next generation population will knock out



the list with a lower popularity and retain higher. The details
of our recommendation algorithm are described as follows.

Algorithm: Topic Sampling Based Recommendation Algorithm
Input: all available tasks T

population size s
recommended tasks size l
cluster topic vector Topic(C)
selection criteria ε
iterative times t
mute rate α

Output: Reclist [0]
1: Reclist = new array(s)
2: for i from 1 to s:
3: Reclist.append(newinstance(Topic(C), ε, T, l)
4: Sort(Reclist)
5: for i from 0 to t:
6: for j from s

2
to s:

7: if getoperation(α)==”mute” :
8: Reclist[j] = mute(Reclist[j], Topic(C), ε
9: else:

10: idx = randomint(0, s
2

)
11: Reclist[j], Reclist[j+1]=cross(Reclist[j], idx, Topic(C), ε)
12: j++
13: Sort(Reclist)

The first three lines of the algorithm initialize the initial
population of random processing. Each individual is composed
of two parts, gene and health degree, where the gene is the
task list, the health degree is calculated using the formula (7).
Then the algorithm sorts the health degree of the individual in
descending order. The individuals with small health degrees
in the current population are subject to mutation and cross-
swapping operations (Line 6). Then the getoperation function
decides whether to perform mutation operations (Line 8) or
cross-swaps (Lines 10-12) on the current individual referring
to the mutation rate (Lines 7-9). Additionally, the objects of the
cross-swapping are randomly selected from the high-quality
individuals retained in the previous population (line 10). At
the end, the most healthy individuals of the final population
are returned.

In order to prevent it taking too much time in the mutate and
cross functions, we can set a maximum number of mutations
and the number of crossovers. When the number of mutations
is greater than any of them, a new individual should be
regenerated and returned.

VI. EVALUATIONS

In order to evaluate the proposed cold-start recommendation
approach, we have carried on several comparative experiments
to answer four research questions.

RQ1: During task popularity estimation, which regression
algorithm performs best?

RQ2: For the warm developer classification, which performs
better, k-means or DBScan?

RQ3: During the task modeling, which popularity metric
will more benefit the final recommendation result, Popc or
Pop?

RQ4: Compared with other state-of-the-art recommendation
approaches, how is the performance of our approach?

A. Experimental Dataset
We crawled data between Dec. 2010 to Apr. 2016 from

Zhubajie, Oschina, and Witkey, which are all the largest soft-
ware crowdsourcing platforms in China. There are several task
categories in these platforms, and only software development
tasks are considered in the experiments. In total, there are
15,375 developers and 31,255 software development tasks, as
shown in Table I. Obviously, the data of Witkey is less than the
other two platforms, and the relationship is relatively sparse.

TABLE I: Dataset from Three Software Crowdsourcing Plat-
forms in China

Platfrom Tasks Developers Relationship
Zhubajie 6000 10597 48769
Witkey 2800 5231 15498
Oschina 6575 15427 77925

B. Regression Experiment and Results
To answer the RQ1, we conducted the experiment to esti-

mate task popularity by four widely used regression methods,
including linear regression, classification and regression tree
(CART), Gaussian mixture and artificial neural network. And
three well-known metrics are used to evaluate predictive
accuracy: mean absolute error (MAE), root mean square error
(RMSE) and R-square.

Fig. 2: Comparison among Different Regression Algorithms.

Fig. 2 shows the results, where CART achieves the best
performance with the lowest MAE, RMSE and the highest R-
square. Thus in our approach, we apply the CART to estimate
task popularity.

C. Clustering Experiment and Results
To answer RQ2, we conducted a cold-start developer recom-

mendation experiment using the k-means algorithm (k = 15 in
the experiments) and DBScan algorithm for warm developer
clustering in our approach. We use precision and recall as the
evaluation metrics.

We experimentally set λB , λW and λD to 0.3, 0.8 and
1.0 in formula (4), respectively. Considering the requirements
from two real software crowdsourcing platforms, we set rec-
ommended list size to 15, i.e., l = 15. The other settings in
our algorithm are: (1) the popularity size s is 100; (2) the
iterative times t is 100; (3) the mute rate α is 0.3.

TABLE II: Comparison between Two Clustering Algorithms
Platform K-means DBScan

Precision Recall Precision Recall
Zhubajie 0.099 0.557 0.087 0.524
Witkey 0.069 0.531 0.072 0.559
Oschina 0.077 0.481 0.037 0.361



TABLE III: Cold-Start Developer Recommending Results
Platform Ours with Popc Ours with Pop NRec with Popc NRec with Pop MRec with Popc MRec with Pop

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Zhubajie 0.073 0.531 0.099 0.557 0.052 0.317 0.068 0.433 0.059 0.346 0.079 0.474
Witkey 0.059 0.498 0.069 0.531 0.044 0.286 0.047 0.398 0.049 0.313 0.054 0.442
Oschina 0.066 0.449 0.077 0.481 0.035 0.243 0.046 0.354 0.040 0.269 0.057 0.396

The recommendation results using two clustering algorithms
are listed in Table II, which show that k-means wins on
stability. In the dataset of Oschina, DBScan results in the
worst recommendation recall and precision, because DBScan
clusters all warm developers as one group.

D. Recommendation Experiment and Results

To answer the RQ3 and RQ4, we select two popular
popularity-based recommendation approaches in [10] and [11],
might called NRec and MRec, to perform the task recommen-
dation for the cold start developers, and compare them with
our approach. Each approach will adopt the two popularity
metrics respectively, i.e. Popc and Pop. We also use precision
and recall to evaluate the recommendation results.

The experimental results are shown in Table III. It can
be observed that our approach outperforms MRec and NRec
either with Popc or Pop, and improves 75% of precision and
recall on average.

Even though the recommendation results of NRec and
MRec with Pop are not the best one, they performs better than
with Popc (i.e. the current popularity). Also MRec with Popc
and NRec with Popc cannot recommend the latest requested
task. So it is obvious that Pop is more beneficial to the final
recommendation result than Popc.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to task rec-
ommendation for cold-start developers in crowdsourcing plat-
forms, using a topic-sampling based genetic algorithm. It
builds the model of cold-start developers by leveraging the
warm developers’ preference and tasks’ topics. Experimental
results show that our approach can minimize the impact of the
developer cold-start problem effectively.

For the future work, we plan to explore the task cold-start
problem in depth, i.e., recommend developers to cold-start
tasks, which is equally important. We will also research on the
platform cold-start problem by transfer learning technologies,
to build an effective recommender system for a new software
crowdsourcing platform.

ACKNOWLEDGEMENT

This research is supported by 973 Program in China (Grant
No. 2015CB352203) and National Natural Science Foundation
of China (Grant No. 61472242 and 61572312).

REFERENCES

[1] K. Christakopoulou, F. Radlinski, and K. Hofmann, “Towards conver-
sational recommender systems,” in The ACM SIGKDD International
Conference, pp. 815–824, 2016.

[2] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods
and metrics for cold-start recommendations,” in International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
pp. 253–260, 2002.

[3] S. Li, A. Karatzoglou, and C. Gentile, “Collaborative filtering bandits,”
in International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 539–548, 2016.

[4] O. N. Osmanli and I. H. Toroslu, “Using tag similarity in svd-based
recommendation systems,” in International Conference on Application
of Information and Communication Technologies, pp. 1–4, 2011.

[5] Tak, G. Cs, I. Szy, B. Meth, and D. Tikk, “Matrix factorization and
neighbor based algorithms for the netflix prize problem,” in ACM
Conference on Recommender Systems (Recsys), Lausanne, Switzerland,
pp. 267–274, 2008.

[6] N. Golbandi, Y. Koren, and R. Lempel, “On bootstrapping recommender
systems,” in ACM Conference on Information and Knowledge Manage-
ment, CIKM 2010, Toronto, Ontario, Canada, October, pp. 1805–1808,
2010.

[7] A. M. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new
users in recommender systems: an information theoretic approach,” Acm
Sigkdd Explorations Newsletter, vol. 10, no. 2, pp. 90–100, 2008.

[8] F. Hu and Y. Yu, “Interview process learning for top-n recommendation,”
in ACM Conference on Recommender Systems, pp. 331–334, 2013.

[9] R. Karimi, A. Nanopoulos, and L. Schmidt-Thieme, “Improved question-
naire trees for active learning in recommender systems,” Proceedings of
the LWA 2014 Workshops, pp. 6–11, 2014.

[10] Z. Miao, J. Yan, K. Chen, X. Yang, H. Zha, and W. Zhang, “Joint
prediction of rating and popularity for cold-start item by sentinel user
selection,” IEEE Access, vol. 4, pp. 8500–8513, 2016.

[11] I. Arapakis, B. B. Cambazoglu, and M. Lalmas, “On the feasibility of
predicting news popularity at cold start,” in 6th International Conference
on Social Informatics, Barcelona, Spain, pp. 290–299, November 11-13,
2014.

[12] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in International
Conference on World Wide Web, pp. 661–670, 2010.

[13] J. Zhu, B. Shen, and F. Hu, “A learning to rank framework for developer
recommendation in software crowdsourcing,” in Asia-Pacific Software
Engineering Conference, pp. 285–292, 2015.

[14] S. Lee, S. Park, and S. Park, “A quality enhancement of crowdsourcing
based on quality evaluation and user-level task assignment framework,”
in International Conference on Big Data and Smart Computing, pp. 60–
65, 2014.

[15] M. C. Yuen, I. King, and K. S. Leung, “Task recommendation in
crowdsourcing systems,” in International Workshop on Crowdsourcing
and Data Mining, pp. 22–26, 2012.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[17] M. Khandelwal, D. J. Armaghani, R. S. Faradonbeh, M. Yellishetty,
M. Z. A. Majid, and M. Monjezi, “Classification and regression tree
technique in estimating peak particle velocity caused by blasting,”
Engineering with Computers, vol. 32, no. 120, pp. 1–9, 2016.

[18] B. Pavlyshenko, “Machine learning, linear and bayesian models for
logistic regression in failure detection problems,” in IEEE International
Conference on Big Data (BigData), Washington DC, USA, pp. 2046–
2050, December 5-8, 2016.

[19] J. Ala-Luhtala and R. Piché, “Gaussian scale mixture models for robust
linear multivariate regression with missing data,” Communications in
Statistics - Simulation and Computation, vol. 45, no. 3, pp. 791–813,
2016.

[20] A. H. Beg and M. Z. Islam, “A novel genetic algorithm-based clustering
technique and its suitability for knowledge discovery from a brain data
set,” in IEEE Congress on Evolutionary Computation, pp. 948–956,
2016.


