
Software Evolution by Correctness Enhancement ∗

Wided Ghardallou
Universityy of Tunis El Manar

Tunis, Tunisia
wided.ghardallou@gmail.com

Nafi Diallo
NJIT

Newark, NJ 07102-1982 USA
ncd8@njit.edu

Ali Mili
NJIT

Newark, NJ 07102-1982 USA
mili@njit.edu

ABSTRACT
Relative correctness is the property of a program to be
more-correct than another with respect to a specification;
this property enables us to rank candidate programs in
a partial ordering structure whose maximal elements are
the correct programs. Whereas traditionally we think of
program derivation as a process of successive correctness-
preserving transformations (using refinement) starting from
the specification, we argue that it is possible to derive pro-
grams by successive correctness-enhancing transformations
(using relative correctness) starting from abort. One of the
attributes of our approach is that it captures in the same
mathematical model, not only the derivation of programs
from scratch, but also most (if not all) of the activities that
arise in software evolution. Given that most software is
developed nowadays by evolving existing products rather
than from scratch, any advance in the technology of pro-
gram transformation by correctness enhancement stands to
yield significant practical benefits.

Keywords
Program correctness, Relative correctness, Absolute cor-
rectness, software maintenance, software evolution, correc-
tive maintenance, adaptive maintenance, software merger,
software upgrade.

1. SOFTWARE EVOLUTION
Relative correctness is the property of a program to be

more-correct than another with respect to a given specifica-
tion. Intuitively, program P ′ is more-correct than program
P with respect to specification R if and only if P ′ obeys R
more often (for a larger set of inputs) than P , and violates
R less egregiously (in fewer ways) than P . We came across
relative correctness in our attempt to define what is a fault
in a program, and what is fault removal [2, 13]. We have
since explored the impact of relative correctness in software
engineering [3], in software testing [5], and in software de-
sign [4]. In this paper, we build upon our results of [4]
by showing that relative correctness can be used not only
for program development from scratch, but also for various
forms of program evolution. We argue, in fact, that virtu-
ally all software evolution is nothing but an effort to make

∗DOI reference number: 10.18293/SEKE2016-095

some program more-correct with respect to some specifica-
tion. Given that today most software is developed, not from
scratch, but rather by evolving existing software products,
we feel that exploration of this avenue may yield substantial
returns across software engineering practice. Our purpose,
in this paper, is not to offer polished/ validated/ scalable
solutions; rather, it is merely to highlight some of the op-
portunities that are opened by relative correctness in the
field of software evolution.

All our definitions and results are formulated in terms
of (binary) relations, hence we assume the reader familiar
with elementary relational concepts, though we will intro-
duce our own notations as we go. In section 2 we introduce
a general framework in which we model relevant concepts
such as specifications, program functions, program correct-
ness, refinement, etc; and in section 3 we define relative cor-
rectness for deterministic and non-deterministic programs,
then we review some relevant properties that we need in
the remainder of the paper. In sections 4 to 7, we use rel-
ative correctness to model several aspects of software evo-
lution, including: the derivation of a correct program from
a specification; the derivation of a (not necessarily correct
but sufficiently) reliable program from a specification; the
merger of two programs; the upgrade of a program with a
new feature; the removal of a fault from a program (correc-
tive maintenance); and the transformation of a program to
satisfy a new specification (adaptive maintenance).

2. A PROGRAMMING FRAMEWORK
When a program p manipulates variables x and y, say,

of type X and Y , we let S be the cartesian product X ×Y ,
and we refer to S as the space of p and to an element of
S as a state of p. We denote the X-component (resp. Y -
component) of state s by x(s) (resp. y(s)), and we may
write simply x (resp. y) if no ambiguity arises; whatever
decoration a state has (e.g. s′, or s′′) is carried over to vari-
able names (hence we write x′ for x(s′) and x′′ for x(s′′)).
Given a program p on space S, we let the function of p be
the set of pairs of states (s, s′) such that if execution of p
starts in state s then it terminates in state s′; we denote this
function by upper case P and we may, by abuse of notation,
refer to a program p and its function P interchangeably.

Given two relations R and R′ on set S, we say that R′

refines R (denoted by R′ ⊒ R or R ⊑ R′) if and only if
RL ∩ R′L ∩ (R ∪ R′) = R, where L is the universal re-
lation on S (i.e. L = S × S) and the concatenation of
two relations represents their product (RR′ = {(s, s′)|∃s′′ :
(s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}). Note that RL can be writ-



ten as {(s, s′)|s ∈ dom(R)}; it represents the domain of R
in relational form. A program p is said to be correct with
respect to a specification (relation) R on S if and only if
P ⊒ R. This definition is equivalent to traditional defini-
tions of total correctness [7], [8].

The refinement ordering has lattice-like properties, which
we briefly present below:

• Two relations admit a least upper bound if and only
if they satisfy the following condition, which we call
the consistency condition: RL ∩ R′L = (R ∩ R′)L.

• Whenever two relations R and R′ do satisfy the con-
sistency condition, their least upper bound (join) is
defined by: R ⊔ R′ = R′L ∩ R ∪ RL ∩ R′ ∪ (R ∩ R′).

• Two relations have a least upper bound if and only if
they have an upper bound.

3. RELATIVE CORRECTNESS

3.1 Definition
Given a specification R and a program P , we refer to the

domain of (R∩P ) as the competence domain of program P
with respect to specification R. When P is deterministic,
the competence domain of P with respect to R is the set of
initial states for which P behaves according to R; when P
is not deterministic (i.e. it may assign more than one final
state for a given initial state), the competence domain of P
is the set of initial states for which the set of images by P
and the set of images by R overlap (i.e. have a non-empty
intersection). We have the following definition, due to [2]:

Definition 1. Given two programs p and p′ on space S
and a specification R on S, we say that p′ is more-correct
than p with respect to R (written as: P ′ ⊒R P or P ⊑R P ′)
if and only if (R∩P )L ⊆ (R∩P ′)L∧(R∩P )L∩R∩P ′ ⊆ P .
We say that p′ is strictly more-correct than p if one of the
inclusions above is strict (⊂ vs. ⊆).

The first clause provides that p′ has a larger competence do-
main than p; the second clause provides that on the compe-
tence domain of p, p′ violates R in fewer ways than p (since
any pair (s, s′) such that s is in the competence domain of
p and (s, s′) is in P ′ and is not in R, is necessarily in P ). In
[2], we find that whenever P ′ is deterministic, the condition
of relative correctness can be simplified as follows.

Proposition 1. Given two programs p and p′ on space
S such that p′ is deterministic, and given a specification R
on S, p′ is more-correct than p with respect to R if and only
if: (R ∩ P )L ⊆ (R ∩ P ′)L.

In the remainder of this paper, we restrict our study to de-
terministic programs. Figure 1 shows an example of two
deterministic programs p and p′ and a specification R such
that p′ is more-correct than p; the competence domains
of p and p′ are highlighted. Two observations are in or-
der regarding this example: Note that p′ is more correct
than p with respect to R, but they are both incorrect; also
note that even though p′ is more-correct than p, it does not
duplicate the correct behavior of p, rather it has its own
correct behavior.

Definition 2. A fault in program p with respect to a
specification R is any feature f (lexeme, expression, state-
ment, set of statements, etc) that admits a substitute that
would make the program strictly more-correct. A fault re-
moval is a pair of features (f, f ′) such that f appears in
p and program p′ obtained by replacing f with f ′ in p is
strictly more-correct than p.

In the same way that refinement provides a formal model for
program derivation, relative correctness, as defined herein,
provides a formal model for fault removal; see Figure 3 (a).
To give the reader some confidence in the soundness of our
definition of relative correctness, we present the following
properties, due to [13]:

• Relative correctness is reflexive and transitive, but not
antisymmetric.

• Relative correctness culminates in (absolute) correct-
ness, i.e. a correct program is more-correct than (or
as correct as) any candidate program.

• Relative correctness logically implies (but is not equiv-
alent to) higher reliability; relative correctness and
higher reliability are not equivalent because the for-
mer is a logical property, whereas the latter is a stochas-
tic property.

• The fourth property is the subject of the next propo-
sition.

Proposition 2. Given two programs P and P ′, P ′ re-
fines P if and only if P ′ is more-correct than P with respect
to any specification R. We write this as:

P ′ ⊒ P ⇔ (∀R : P ′ ⊒R P ).

3.2 Relative Correctness and Refinement
Refinement is usually viewed as the touchstone of the

derivation of provably correct programs; in such a deriva-
tion process, each transformation maps an artifact into a
more-refined artifact. But Proposition 2 provides that p′

refines p if and only if p′ is more-correct than p with re-
spect to any specification. If we are trying to derive a pro-
gram that is correct with respect to a given specification
R, then R and only R ought to be the focus of our deriva-
tion effort. In [4] we argue that it is possible to derive a
correct program from a specification by stepwise correct-
ness enhancing transformations using relative correctness,
rather than by stepwise correctness preserving transforma-
tions using refinement. In this section, we briefly discuss the
difference between a correctness-preserving transformation
and a correctness-enhancing transformation.

As an illustrative example, we consider a space S de-
fined by two integer variables x and y and we let R be the
following specification on S: R = {(s, s′)|x′ = x + y}. We
consider the following candidate programs:

p0: {while (y!=0) {y=y-1; x=x+1;}},
P0 = {(s, s′)|y ≥ 0 ∧ x′ = x + y ∧ y′ = 0}.

p1: {x=x+y;}. P1 = {(s, s′)|x′ = x + y ∧ y′ = y}.

p2: {x=x+y; y=0;}, P2 = {(s, s′)|x′ = x + y ∧ y′ = 0}.



4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

�������:�������:�������:

XXXXXXXz

XXXXXXXz

-

-

XXXXXXXz

XXXXXXXz

XXXXXXXz

XXXXXXXz

�������:�������:�������:�������:
R P P ′

�

�

�

�

�

�

�

�

Figure 1: Enhancing correctness without duplicating behavior: P ′ ⊒R P

The reader can check (by referring to the definition of re-
finement given in section 2 and by Proposition 1) that p1 is
more-correct than p0 but does not refine it, whereas p2 re-
fines p0 hence (according to Proposition 2) is more-correct
than p0. We have a simple explanation for this observa-
tion: if we consider the functional attributes of p0, we can
distinguish between two sources of information:

• Functional attributes that are mandated by the spec-
ification, such as the clause {x′ = x + y} in P0.

• Functional attributes that are not mandated by the
specification, but stem from design decisions, such as
the clause {y′ = 0} in P0.

In order for a program to refine P0, it has to preserve all
the functional attributes of P0, regardless of their origin
(specification or design); this is the case for p2. But in order
for a program to be more-correct than P0, it suffices for
it to preserve the functional attributes that are mandated
by R; it may, in the process, override / alter functional
attributes that stem from design decisions; this is the case
for program p1 which overrides {y′ = 0} with {y′ = y}. Not
surprisingly, p1 is simpler than p2, because it is subject to
a less stringent condition.

4. PROGRAM DERIVATION

4.1 Correct Programs
To derive a correct program for a specification R, we

have to find an artifact that has two properties: it is a (ex-
ecutable) program; and it is correct with respect to R. To
do this in a stepwise manner, we can either preserve correct-
ness until we achieve executability (this is the traditional
refinement-based process), or we can maintain executability
until we achieve correctness (as we advocate in [4]). These
two processes being iterative, we can characterize them by
their initial state, their invariant assertion, their variant
function, and their exit condition, as shown in Figure 2.
See also Figure 3 (b).

4.2 Reliable Programs
In many applications, correctness is unnecessary, and the

cost of achieving correctness (as opposed to sufficient reli-
ability) may be unjustified by the stakes attached to (suffi-
ciently infrequent) program failure. In such cases, it may be
sufficient to produce a reliable program, rather than a cor-
rect program. Thankfully, the derivation model presented
herein encompasses the derivation of reliable programs as
well as the derivation of correct programs: as we remember
from section 3, relative correctness logically implies higher

Attribute Refinement Based Based on Relative
Correctness

Initialization a = R a = abort

Invariant a is correct a is a program
Assertion

Variant
Function

a increasingly conc-

rete (program-like)
a increasingly
correct

Exit test when a is a program when a is correct

Figure 2: Iterative Paradigms of Programming

reliability; hence the successive programs generated by this
process are increasingly reliable; so that the derivation of
a reliable program proceeds in the same way as the deriva-
tion of a correct program, except that it terminates as soon
as the reliability reaches or exceeds the required threshold.
Given that correctness is the culmination of reliability, it
is only fitting that the derivation of a correct program be
the culmination of the derivation of a reliable program. See
Figures 3 (b) and (c).

5. PROGRAM MERGER
We consider a specification R and two candidate pro-

grams P1 and P2 (i.e. programs that are written to satisfy
R –they may or may not satisfy it in fact), each of which
fulfills the requirements of R to some limited extent, but not
necessarily to the full extent. We are interested to merge
programs P1 and P2 into a program that fulfills the require-
ments of R to the extent that P1 fulfills them, and to the
extent that P2 fulfills them. We submit the following defi-
nition.

Definition 3. Given a specification R and two candi-
date programs P1 and P2, a merger of P1 and P2 with re-
spect to R is any program P ′ that is more-correct than P1

and more-correct than P2 with respect to R.

We mandate that a merger program be merely more-
correct than programs P1 and P2, rather than to refine
them, for the following reasons:

• Refinement is Unnecessary. When we resolve to re-
fine a program, we commit to refine all its functional
attributes, those that are mandated by the specifica-
tion as well as those that stem from design decisions.
But we have no reason to preserve design decisions of
P1 and P2 that do not advance the cause of relative
correctness.



Correct

Program P ′

Specifi-

cation R

Incorrect
Program P

Correct

Program P ′

Specifi-

cation R
abort

Correct

Program P ′

Specifi-

cation R
abort

Reliable

Program P ′′

? ? ?

�������)

HHHHHj
⊑R

⊑R

⊑R

⊑

⊑

⊑

⊑

⊑

⊑

⊑

⊑

⊑

⊑

⊑

⊑

Imperfect

Design

Monotonic
Fault
Removal

(a)

A Framework for Fault Removal

(b)

Program Derivation

by Correctness Enhancement

(c)

Deriving Reliable Programs

�
A
A
A
A
A
AAU

�
A
A
A
AU

⊑R

⊑R

⊑R

⊑R

⊑R

⊑R

⊑R

InitializationInitialization

Figure 3: Alternative Program Evolution Paradigms

• Relative Correctness is Sufficient. If program P ′ is
more-correct than P1 and P2 with respect to specifica-
tion R, then it delivers all the specification-mandated
behavior of P1 and all the specification-mandated be-
havior of P2.

• Refinement may be Impossible. Not only is it unnec-
essary to refine the design-related information of P1

and P2, it may actually be impossible: whereas the
specification-mandated information of P1 and P2 is
bounded by R, hence (according to section 2) can be
combined by the least upper bound operation, the
design-related information of P1 and P2 may be in-
compatible, hence cannot be combined.

We consider the space S defined by three variables x, y and
z of type integer, and we let R be the following specifica-
tion: R = {(s, s′)|x′ = x + y ∧ z′ ≥ z + 2}. Let p1 and p2

be the following candidate programs for specification R:
p1: {z=z+2; while (y!=0) {y=y-1; x=x+1;}}

p2: {z=z+3; while (y!=0) {y=y+1; x=x-1;}}

The functions of these programs are, respectively:
P1 = {(s, s′)|y ≥ 0 ∧ x′ = x + y ∧ y′ = 0 ∧ z′ = z + 2}
P2 = {(s, s′)|y ≤ 0 ∧ x′ = x + y ∧ y′ = 0 ∧ z′ = z + 3}.

Indeed, the first program terminates only for initial y greater
than or equal to zero, and when it terminates, the final value
of x contains x + y, the final value of y is zero, and z is in-
cremented by 2. As for the second program, it terminates
only for non-positive y, and when it does terminate, the
final value of y is zero, z is increased by 3 and x contains
x+y. So that each program does some of what R asks, but
neither is correct. A merger of these two programs is any
program P ′ that is more-correct than P1 and more-correct
than P2 with respect to R. The systematic derivation of the
merger of two programs is beyond the scope of this paper;
we content ourselves with presenting a candidate program
then showing that it satisfies the definition of a merger. We
propose:

p’: {z=z+4;

if (y>0) {while (y!=0) {y=y-1; x=x+1;}}

else {while (y!=0) {y=y+1; x=x-1;}}}

As far as x and y are concerned, this program imitates the
behavior of P1 for non-negative values of y, and the behav-
ior of P2 for non-positive values of y; as far as z is concerned,
this program overrides the behavior of both P1 and P2 and
increments z by 4. We argue that this program is more-
correct than P1 and more-correct than P2 with respect to
R. The function of this program is:

P ′ = {(s, s′)|x′ = x + y ∧ y′ = 0 ∧ z′ = z + 4}.
Space restrictions preclude us from showing details, but it is
easy to verify that the competence domain of P ′ ((R∩P )L)
is equal to L, hence P ′ is more-correct than P1 and P2. Note
that while we found a program that is more-correct than P1

and P2, we could not find a program that refines P1 and P2.
Indeed we can easily check that P1 and P2 do not sarisfy
the consistency condition, hence they admit no joint refine-
ment. Indeed, no program can simultaneously increase z by
2 (to refine P1) and by 3 (to refine P2). This discrepancy be-
tween what P1 does and what P2 does precludes P1 and P2

from having a joint refinement, but does not preclude them
from having a program P ′ that is more-correct than them.
The reason is: the statements {z=z+2} (in P1) and {z=z+3}

(in P2) are not mandated by the specification (which only
requires {z′ ≥ z + 2}) but stem instead from arbitrary de-
sign decisions; hence both can be overridden by the merger
program P ′. The difference between refinement and rel-
ative correctness is that the former attempts to refine all
the behavior of a program, regardless of its source, whereas
the latter only refines the behavior that is mandated by the
specification. As we see in this simple example, refining all
the behavior of P1 and all the behavior of P2 is not only un-
necessary, it is actually impossible. See Figure 4 (a), where
R1 and R2 represent the specification-mandated behavior
of P1 and P2 (we have explicit formulae for these, but their
study is beyond the scope of this paper).

6. PROGRAM UPGRADE
We are given a specification R and a candidate program

P , and we are interested to augment program P with a new
feature that is specified by some relation Q. Typically, P
may be a large, complex, comprehensive application that
delivers a wide range of services, and Q is a punctual addi-
tional function or service that we want to incorporate into
P (for example, P is a sprawling corporate data process-
ing application, and Q specifies an additional report to be
delivered, or an additional output screen, or an additional
statistic on corporate transactions, etc). In transforming P
into P ′, we have every expectation that P ′ refines Q, be-
cause Q is a fairly simple requirement and because it is the
main goal of the operation. But we have no expectation
that P ′ refine P , because the implementation of Q may re-
quire that some of the behavior of P be altered. Nor do we
expect that P ′ refines R, because in fact we are not even
sure P refines R (P is typically incorrect, i.e. it fails to cor-
rectly deliver all the required services in all circumstances).



• •

• •

•

@
@

@
@

@
@

�
�

�
�

�
�

B
B
B
B
B
B
B
B
B

�
�

�
�
�

�
�
�
�

@
@

@

�
�

�

P1

R1 R2

P2

P ′

⊒⊒

⊒⊒

⊒R⊒R

(a)

Merger of P1 and P2

•

• •

•

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

@
@

@

P1

R1

Q

P ′

⊒

⊒

⊒⊒R

(b)

Upgrading P1 with Feature Q

Figure 4: Merger and Upgrade

While we do not expect P ′ to refine P nor R, we most cer-
tainly expect P ′ to be more-correct than P with respect
to R; in other words, we do not want that in the process
of adding feature Q to P , we degrade the correctness of P
with respect to R.

Definition 4. Given a specification R and a candidate
program P , and given a feature Q that we want to add to
P , an upgrade P ′ of P with feature Q is any program that
refines Q and is more-correct than P with respect to R.

Given a specification R on space S defined by integer vari-
ables x and y, R = {(s, s′)|x′ = x + y} and given the fol-
lowing candidate program,

p1: {x=x+10; while (y!=10) {y=y-1; x=x+1;}}

we consider the problem of upgrading program P1 with fea-
ture Q defined by: Q = {(s, s′)|y > 0∧y′ = 0}. The function
of program p1 is:

P1 = {(s, s′)|y ≥ 10 ∧ x′ = x + y ∧ y′ = 10}.
Note that P1 and Q do not satisfy the consistency condi-
tion, since P1 sets y to 10 while Q mandates that we set
it to 0 (for positive values of y). Therefore it is impossi-
ble to fulfill requirement Q without altering the behavior of
P1. Fortunately, the feature of P1 that precludes us from
refining Q, namely the clause y′ = 10, is not a specification-
mandated requirement, but stems instead from the specific
design of P1. Hence while it is impossible for the upgrade
program P ′ to refine P , it is not impossible for P ′ to be
more-correct than P with respect to R. We consider the
following program:

p’: {while (y!=0) {y=y-1; x=x+1;}}

The function of this program is:
P ′ = {(s, s′)|y ≥ 0 ∧ x′ = x + y ∧ y′ = 0}.

While space limitation preclude us from showing detailed
calculations, it is easy to check that P ′ does refine Q. On
the other hand, we can easily check that the competence
domain of P1 is {(s, s′)|y ≥ 10} whereas the competence
domain of P ′ is {(s, s′)|y ≥ 0}. Hence P ′ is more-correct
than P1 with respect to R. While it is not possible to sat-
isfy Q while preserving all the behavior of P1, it is possible,
and sufficient, to satisfy Q while enhancing the correctness
of P1; this is what P ′ does. See Figure 4 (b).

7. SOFTWARE MAINTENANCE

7.1 Corrective Maintenance

We argue in this section that corrective maintenance is
nothing but an instance of program transformation by rel-
ative correctness: in fact it is merely a step in the process
we have outlined for program derivation by correctness en-
hancement; it starts at the current program (rather than
abort) and it ends a step later (rather than necessarily at a
correct program). See Figure 5. As an illustration, we con-
sider the following program on the space S defined by its
variable declarations (due to [6], with some modifications):

p: #include <iostream> ... ... ... // line 1

main {(char q[]); int let, dig, other, i, l; char c;// 2
i=0; let=0; dig=0; other=0; l=strlen(q); // 3
while (i<l) { // 4

c = q[i]; // 5
if (’A’<=c && ’Z’>c) let+=2; // 6

else // 7
if (’a’<=c && ’z’>=c) let+=1; // 8
else // 9

if (’0’<=c && ’9’>=c) dig+=1; // 10
else // 11

other+=1; // 12
i++;} // 13

We define the following sets: αA = {′A′ . . .′ Z′}. αa =
{′a′ . . .′ z′}. ν = {′0′ . . .′ 9′}. σ = {′+′,′ −′,′ =′, ...′/′}, the
set of all the ascii symbols. We let list〈T 〉 denote the set of
lists of elements of type T, and we let #A, #a, #ν and #σ

be the functions that to each list l assign (respectively) the
number of upper case alphabetic characters, lower case al-
phabetic characters, numeric digits, and symbols. We con-
sider the following specification on S:

R = {(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉∧
let′ = #a(q)+#A(q)∧dig′ = #ν(q)∧other′ = #σ(q)}.

The competence domain of P is:
(R ∩ P )L = {(s, s′)|q ∈ list〈αa ∪ ν ∪ σ〉}.

This is different from the domain of R, which is
RL = {(s, s′)|q ∈ list〈αA ∪ αa ∪ ν ∪ σ〉},

hence P is not correct with respect to R. If we let P ′ be
the program obtained from P by changing {let=+2} into
{let=+1}, we find:

(R∩P ′)L = {(s, s′)|q ∈ list〈(αA \ {′Z′})∪αa ∪ ν ∪σ〉}.
Clearly, (R∩P ′)L ⊃ (R∩P )L. Hence statement {let+=2}
is a fault in P with respect to specification R and the sub-
stitution of {let+=2} by {let+=1} is a fault removal in P
with respect to R.

7.2 Adaptive Maintenance
Adaptive maintenance consists in taking a program P

which was originally developed to satisfy some specification



Correct

Program P ′

Specifi-

cation R
abort

Initiali-
zation

?

⊑

⊑

⊑

⊑

⊑

�
A
A
A
A
A
A
A
A
AAU

⊑R

⊑R

⊑R

⊑R

⊑R

Faulty

Program
-

Corrected
Program

�

Figure 5: Corrective Maintenance

Correct
Program wrt R

Specifi-

cation R
abort

Initialization

?

⊑

⊑

⊑

⊑

⊑

�
A
A
A
A
A
A
AU

⊑R

⊑R

⊑R

⊑
R′

⊑
R′

�
�

�
���

Correct

Program wrt R′

Figure 6: Adaptive Maintenance

R and changing it to make it satisfy some new specification
R′. We view this as simply trying to make P more-correct
with respect to R′ than it is in its current form. Clearly, one
does this if one believes that P is close enough to satisfy
R′ that it is more economical to evolve P than to start
from abort. Be that as it may, we argue that adaptive
maintenance is again a process of making a program more-
correct with respect to a given specification. See Figure
6.

8. CONCLUSION
In this paper, we consider the concept of relative cor-

rectness (due to [13]), and show that it pervades software
evolution, and is potentially more flexible, without being
less effective, than refinement-based program transforma-
tions. In particular, we find that this concept can provide
a formal model for a wide range of software evolution ac-
tivities, including software design, corrective maintenance,
adaptive maintenance, software upgrade, program merger,
etc. As a consequence, we argue that by evolving a tech-
nology of program transformation with relative correctness,
we stand to enhance a wide range of software engineering
activities.

Other authors have introduced similar-sounding but dis-
tinct notions of relative correctness [1, 9–12, 14]. Their work
differs from ours in terms of its specification format (exe-
cutable assertions vs. input/output relations), its program
semantics (execution traces vs. program functions), its def-
inition of correctness (successful assertions vs. refinement),

its definition of relative correctness (more successful/ less
unsuccessful assertions, vs. larger competence domains),
and its goals (fault diagnosis/ program repair vs. software
evolution).

9. REFERENCES
[1] Borzoo Bonakdarpour, Ali Ebnenasir, and Sandeep S.

Kulkarni. Complexity results in revising unity
programs. ACM Transactions on Autonomous and
Adaptive Systems, 4(1), January 2009.

[2] Jules Desharnais, Nafi Diallo, Wided Ghardallou,
Marcelo Frias, Ali Jaoua, and Ali Mili. Mathematics
for relative correctness. In Relational and Algebraic
Methods in Computer Science, 2015, pages 191–208,
Lisbon, Portugal, September 2015.

[3] Nafi Diallo, Wided Ghardallou, and Ali Mili.
Correctness and relative correctness. In Proceedings,
37th International Conference on Software
Engineering, Firenze, Italy, May 20–22 2015.

[4] Nafi Diallo, Wided Ghardallou, and Ali Mili.
Program derivation by correctness enhancements. In
Refinement 2015, Oslo, Norway, June 2015.

[5] Wided Ghardallou, Nafi Diallo, Ali Mili, and Marcelo
Frias. Debugging without testing. In Proceedings,
International Conference on Software Testing,
Chicago, IL, April 2016.

[6] A. Gonzalez-Sanchez, R. Abreu, H-G. Gross, and
A.J.C. van Gemund. Prioritizing tests for fault
localization through ambiguity group reduction. In
proceedings, Automated Software Engineering,
Lawrence, KS, 2011.

[7] D. Gries. The Science of programming. Springer
Verlag, 1981.

[8] E.C.R. Hehner. A Practical Theory of Programming.
Prentice Hall, 1992.

[9] Barbara Jobstmann, Andreas Griesmayer, and
Roderick Bloem. Program repair as a game. In
Computer Aided Verification, number 3576 in LNCS,
pages 226–238, 2005.

[10] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul
Sharma, and Chris Hawblitzel. Differential assertion
checking. In Proceedings, ESEC/ SIGSOFT FSE,
pages 345–455, 2013.

[11] Francesco Logozzo and Thomas Ball. Modular and
verified automatic program repair. In Proceedings,
OOPSLA, pages 133–146, 2012.

[12] Francesco Logozzo, Shuvendu Lahiri, Manual
Faehndrich, and Sam Blackshear. Verification modulo
versions: Towards usable verification. In Proceedings,
PLDI, page 32, 2014.

[13] Ali Mili, Marcelo Frias, and Ali Jaoua. On faults and
faulty programs. In Peter Hoefner, Peter Jipsen,
Wolfram Kahl, and Martin Eric Mueller, editors,
Proceedings, RAMICS: 14th International Conference
on Relational and Algebraic Methods in Computer
Science, volume 8428 of Lecture Notes in Computer
Science, pages 191–207, Marienstatt, Germany, April
28–May 1st 2014. Springer.

[14] Hoang Duong Thien Nguyen, DaWei Qi, Abhik
Roychoudhury, and Satish Chandra. Semfix: Program
repair via semantic analysis. In Proceedings, ICSE,
pages 772–781, 2013.


