

Conformance Testing of Balana: An Open Source Implementation of

the XACML3.0 Standard

Sung-Ju Fan Chiang

Department of Computer Science

Boise State University

Boise, ID 83725, USA

sungjufanchiang@u.boisestate.edu

Daniel W. Chen

Department of Economics

University of Chicago

Chicago, IL 60637, USA

danielwchen@uchicago.edu

Dianxiang Xu

Department of Computer Science

Boise State University

Boise, ID 83725, USA

dianxiangxu@boisestate.edu

Abstract—As a new generation access control method,

Attribute-Based Access Control (ABAC) has gained increasing

attention. Currently, Balana is the only open-source

implementations of XACML 3.0, which is an OASIS standard for

specifying ABAC. Considering that XACML is much more

complex than traditional access control models, conformance

testing of any XACML implementation is an important problem.

Using a non-conformance implementation may lead to

misunderstanding of access decisions or even security violations.

This paper presents an approach to conformance testing of

Balana, focusing on the main elements of the XACML3.0

language, such as targets, rules, policies, and policy sets. In

particular, we have thoroughly tested the key rule combining

algorithms in policies and policy combining algorithms in policy

sets. This has revealed several conformance issues.

Keywords—attribute-based access control; Balana;

conformance testing; decision tables; XACML.

I. INTRODUCTION

Access control is a fundamental mechanism for preventing
malicious or accidental security violation. An access control
policy specifies the conditions under which access to resources
can be granted and to whom [12]. With the increasing system
complexity, access control methods have evolved from
Mandatory Access Control (MAC), Discretionary Access
Control (DAC), Role-Based Access Control (RBAC) to
Attribute-Based Access Control (ABAC). ABAC combines
various attributes of authorization elements into access control
decisions [6]. These attributes are predefined characteristics of
subjects (e.g., job title and age), resources (e.g., data, programs,
and networks), actions, and environments (e.g., current time
and IP address.

XACML (eXtensible Access Control Markup Language)
[11] is an OASIS standard for specifying ABAC policies in the
XML format. It can be used within a large enterprise or across
multiple organizations. Currently Balana [1] is the only open
source implementations of XACML 3.0. It is worth pointing
out that the original open source implementation of XACML
from Sun Microsystems, Inc. only supports 1.0 and 2.0. While
it is believed to be upgraded to 3.0 in Oracle’s Identity Server,
the upgraded version is no longer open source. XACML3.0 is
much more complex than traditional access control methods
such as RBAC. For example, XACML 3.0 provides various
combining algorithms to support rule and policy composition.
A combining algorithm aims at rendering a single access
decision by combining the decisions of individual access

control rules or policies. The standard specification of
XACML3.0 lacks a rigorous representation of the semantics of
the combining algorithms. Our prior work on the formalization
of the semantic differences between various combining
algorithms in XACML 3.0 shows that, for any pair of rule (or
policy) combining algorithms studied, they can be functionally
equivalent with respect to certain rules (or policies) [13]. The
similarities and differences among the combining algorithms
are subtle. This increases the likelihood of having errors. Thus,
conformance testing of any XACML3.0 implementation is an
important issue. Using a non-conformance XACML
implementation may lead to misunderstanding of access
decisions or even security violations.

In this paper, we present our work on the systematic testing
of conformance between Balana and XACML3.0. It focuses on
the main language elements of XACML3.0, such as targets,
rules, policies (including rule combining algorithms), and
policy sets (including policy combining algorithms). As
XACML is a logic-based language, we use decision tables as
the main technique for formulating the semantics of these
language elements and their test requirements. Although
decision tables are a traditional technique, the particular
decision tables resulted from this research provide an accurate
understanding of the meanings of the main XACML 3.0
elements. They offer important guidelines for XACML3.0
practitioners. In addition, they are useful for testing other
implementations of XACML3.0 in order to verify functional
conformance. Based on the decision tables, the conformance
tests for targets, rules, and policies are created manually. For
policy sets and policy combining algorithms, however, all
conformance tests are generated automatically from the
existing conformance tests. In our experiment, all conformance
tests are executed automatically. The results have revealed
several conformance issues in Balana.

The remainder of this paper is organized as follows.
Section II gives a brief introduction to the main XACML
language elements. Section III describes our conformance
testing method. Section IV presents the results of our
conformance testing experiment. Section V reviews related
work. Section VI concludes this paper.

II. XACML LANGUAGE ELEMENTS

The first-class entities in XACML are policy and policy set.
A policy is composed of an optional policy target, one or more
rules, and a rule combining algorithm. A policy set consists of

DOI reference number: 10.18293/SEKE2016-082

an optional policy set target, one or more sub-policy sets or
policies, and a policy combining algorithm. Figure 1 shows the
main elements of XACML 3.0 and their relationships.

A rule consists of a target, a condition, and an effect. The
target is a logical expression that specifies the set of requests to
which the rule is intended to apply. The logical operators are
AnyOf and AllOf. Specifically, a target consists of zero or more
AnyOf clauses, and each AllOf clause is made up of one or
more match predicate. The condition is a Boolean expression
that refines the applicability of the rule established by the
target. Predicates in target and condition are defined over
attributes and attribute values (e.g., gender is male).

Figure 1. Main language elements of XACML 3.0 [11]

An access request consists of attribute and value pairs.
Given a request, the decision of a policy depends on the policy
target, the decisions of individual rules in the policy, and the
rule combining algorithm. Each rule may yield one of the
following decisions if the policy target evaluates to true:

• Permit: access is granted when the rule effect is
Permit and the rule target evaluates to Match and the
rule condition evaluates to true.

• Deny: access is denied when the rule effect is Deny,
the rule target evaluates to Match, and the rule
condition evaluates to true.

• Not-Applicable, denoted as N/A in this paper: either
the rule target evaluates to No Match or the rule
condition evaluates to false.

• Indeterminate Deny, denoted as I(D): An error
occurred when the rule target or the rule condition
was evaluated. The decision could have evaluated to
Deny if no error had occurred.

• Indeterminate Permit, denoted as I(P): An error
occurred when the rule target or the rule condition
was evaluated. The decision could have evaluated to
Permit if no error had occurred.

The rule combining algorithm combines the decisions of
individual rules into a single policy-level decision. In addition

to the above decisions, a policy decision can be Indeterminate
Deny Permit, denoted as I(DP). I(D), I(P) and I(DP) will be a
plain Indeterminate if it is the final decision returned by the
XACML engine.

XACML3.0 provides 11 rule combining algorithms. Four
of them are for compatibility support of old versions - Legacy
Ordered-deny-overrides, Legacy Permit-overrides, Legacy
Ordered-permit-overrides, and Legacy Ordered-permit-
overrides. In Balana, the implementations of Ordered-deny-
overrides and Ordered-permit-overrides are the same as Deny-
overrides and Permit-overrides. Thus this paper focuses on the
following five rule combining algorithms:

 Deny-overrides: Intended for those cases where a Deny
decision should have priority over a Permit decision;

 Permit-overrides: Intended for the cases where a Permit
decision should have priority over a Deny decision.

 Deny-unless-permit: Intended for those cases where a
Permit decision should have priority over a Deny
decision, and an Indeterminate or N/A must never be the
result.

 Permit-unless-deny: Intended for those cases where a
Deny decision should have priority over a Permit
decision, and an Indeterminate or N/A must never be the
result.

 First-applicable: Rules are evaluated in the order in
which they are listed. If a rule’s target matches and
condition evaluates to True, then return the rule’s effect
(Permit or Deny). If the target or condition evaluates to
False, the next rule is evaluated. If no further rule
exists, then return N/A. If an error occurs, then return
Indeterminate, with the appropriate error status.

 Given a request, a policy set yields one of the six decisions:
Permit, Deny, N/A, I(D), I(P), and I(DP). It depends on the
policy set target, the decisions of individual policy sets and
policies in the policy set, and the policy combining algorithm.
XACML 3.0 specifies 12 policy-combing algorithms. Similar
to the reasons for the selected rule combining algorithms, this
paper focuses on the six policy combining algorithms: Deny-
overrides, Deny-unless-permit, Permit-overrides, Permit-
unless-deny, First-applicable, and Only-one-applicable.

III. THE CONFORMANCE TESTING METHOD

Although XACML has a number of language elements,
policy and policy set are the first-class executable units. Thus,
an executable conformance test case must include a policy (or
policy set), an access request, and expected response. The
policy (or policy set) and access request are called test input,
whereas the expected response is called test oracle. Test oracles
of all conformance tests are defined per the XACML3.0
standard specification. When creating conformance tests for
other language elements such as policy targets, rule targets,
rule conditions, and rules, we also need to create policy files.
When a conformance test is executed with Balana, we verify
whether the actual response produced by Balana is the same as
the test oracle. If not, Balana does not conform to the standard
specification and the test is called a non-conformance test.

The main technique used for the conformance testing is
decision tables because XACML is essentially a logic-based
language. Unlike the traditional mathematical logic that has
two truth values (true and false), XACML is more like multi-
valued logic due to the consideration of error conditions. For
example, a match predicate could evaluate to True, False, or
Indeterminate (which means an error has occurred during the
evaluation).

We build decision tables for the main XACML language
elements based on their semantics described in the standard
specification. The decision tables capture the requirements of
conformance testing. Concrete conformance tests are then
created or generated to cover every entry. Specifically, the tests
for targets, rules, and policies are created manually, whereas
the tests for policy sets (i.e., sample policy sets and access
requests) are generated from the existing tests for policies (i.e.,
sample policies and access requests).

In the following, we present the test requirements of the
main XACML language elements in the form of decision
tables. The decision tables are not only useful for the
conformance testing, but can help XACML users get an
accurate understanding of XACML policies. We start with the
basic elements (i.e., targets and rules) and then focus on
policies and policy sets.

A. Conformance Testing of Targets

The target in a rule, policy, or policy set consists of zero or
more AnyOf clauses. An AnyOf clause consists of a sequence of
AllOf clauses. An AllOf clause consists of a sequence of match
predicates, which are the basic element of targets. A match
predicate matches an attribute name with an attribute value. A
match predicate evaluates to True, False, or Indeterminate (i.e.,
an error has occurred during evaluation). A target can evaluate
to Match, No Match, or Indeterminate. Table 1 shows the
decision table of target evaluation per the XACML3.0 standard
specification. AllOf is similar to the logical operator “and” – an
AllOf clause evaluates to Match if and only if all match
predicates in the AllOf clause evaluate to true. It evaluates to
indeterminate if one of the match predicate evaluates to
Indeterminate. AnyOf is similar to the logical operator “or”. An
AnyOf clause evaluates to true if one of the AllOf clauses
evaluate to true.

Table 1 essentially specifies the minimum test requirements
for the target element in XACML 3.0. Our test design ensures
that each entry in the decision table is covered by at least one
conformance test.

TABLE 1. DECISION TABLE FOR TARGET EVALUATION

AnyOf1 AnyOf2
Deci

sion
AllOf1 AllOf2 AllOf3 AllOf4

Mat
ch1

Mat
ch2

Mat
ch3

Mat
ch4

Mat
ch5

Mat
ch6

Mat
ch7

Mat
ch8

T T T T T T T T M

T T T T T T T I M

T T T T T T T F M

T T T T T I T I I

T T T T T I T F I

T T T T T F T F N

T T T I T T T I M

T T T I T T T F M

T T T I T I T I I

T T T I T I T F I

T T T I T F T F N

T T T F T T T F M

T T T F T I T I I

T T T F T I T F I

T T T F T F T F N

T I T I T I T I I

T I T I T I T F I

T I T I T F T F N

T I T F T I T F I

T I T F T F T F N

T F T F T F T F N

T stand for "True", I stand for "Indeterminate", F stand for "False", M stand for "Match", N stand for
"No match".

B. Conformance Testing of Rules

A rule consists of rule target, rule condition, and rule effect
(either Permit or Deny). Rule target (or rule condition) is
optional and evaluates to Match (or True) when it is absent.
Rule condition evaluates to True, False, or Indeterminate.
Table 2 shows the decision table of rules, where D/C refers to
“don’t care”. In the case of rule condition, D/C means that the
evaluation result of the rule condition is either True, False, or
Indeterminate. In the case of rule effect, D/C means either
Permit or Deny. For example, when the rule target evaluates to
Indeterminate and the rule effect is permit, the rule’s decision
is I(P), regardless of the evaluation result of the rule condition.
When the rule target evaluates to No Match, the rule’s decision
is N/A regardless of the rule condition and rule effect. Our test
design ensures that each entry is covered by at least one test.

TABLE 2. DECISION TABLE FOR RULE EVALUATION

Evaluation

of Rule

Target

Evaluation of

Rule

Condition

Rule

Effect

Rule

Decision

Match True Permit Permit

Match True Deny Deny

Match False D/C N/A

Match Indeterminate Permit I(P)

Match Indeterminate Deny I(D)

No Match D/C D/C N/A

Indeterminate D/C Permit I(P)

Indeterminate D/C Deny I(D)

C. Conformance Testing of Policies

The main elements of a policy include a policy target, one
or more rules, and a rule combining algorithm. Table 3 shows a
general decision table about how a policy is evaluated per the
XACML3.0 specification. Given a request, if it matches the
policy target, then the policy decision depends on the decisions
of individual rules and the rule combining algorithm. If the
request does not match the policy target, the policy decision is
N/A regardless of the decisions of individual rules. If the policy
target evaluates to Indeterminate (i.e., an error has occurred),
the policy decision depends on the rule decisions.

The decision tables for rule combining algorithms are
created according to the descriptions and pseudo code in the
XACML3.0 specification. They are applied when a given

request matches the policy target. Table 4 shows the decision
table for the Deny-overrides rule combining algorithm. The
decision of an individual rule can be Permit, Deny, N/A, I(D),
or I(P). Table 4 shows all of the 25 combinations of two rules.
In particular, if one rule evaluates to Deny, the combined
decision is Deny - this reflects the meaning of Deny-overrides.
When there are more than two rules, the combined decision of
n-1 rules can be combined with the n-th rule to obtain the
policy-level decision.

TABLE 3. DECISION TABLE FOR POLICY EVALUATION

Evaluation Result

of Policy Target

Rule

Decisions Policy Decision

Match Deny

Specified by the

rule-combining

algorithm

Match Permit

Match N/A

Match I(D)

Match I(P)

No Match D/C N/A

Indeterminate Deny I(D)

Indeterminate Permit I(P)

Indeterminate N/A N/A

Indeterminate I(D) I(D)

Indeterminate I(P) I(P)

TABLE 4. DECISION TABLE FOR THE DENY-OVERRIDES RULE-
 COMBINING ALGORITHM

Deny-overrides
Decision of the first rule

Permit Deny N/A I(D) I(P)

Decision

of the

second

rule

Permit Permit Deny Permit I(D) Permit

Deny Deny Deny Deny Deny Deny

N/A Permit Deny N/A I(D) I(P)

I(D) I(D) Deny I(D) I(D) I(DP)

I(P) Permit Deny I(P) I(DP) I(P)

When the name of a rule combining algorithm is also used
as a policy combining algorithm, the decision table for the
policy combining algorithm (e.g., Table 6) is more general than
the decision table of the corresponding rule combining
algorithms (e.g., Table 5). Thus, this paper does not present the
decision tables of other rule combining algorithms.

Based on the decision tables for the policy evaluation and
the rule combining algorithms, we create policy files and
request files to cover all entries of each decision table. A policy
file and a request file form the input of a conformance test. The
test oracle is the corresponding policy decision in the decision
table. For an entry of D/C, we create a conformance test to
cover each possible value of that entry.

To execute the tests automatically, we specify all the
conformance tests (policy file, request file, and oracle value) in
a spreadsheet. For each entry of the spreadsheet, our test
execution framework will invoke Balana with the
corresponding policy file and request file, compare the actual
response from Balana with the oracle value, and report the
verdict (pass/fail).

D. Automated Conformance Testing of Policy Sets

The main elements for a policy set include a policy set
target, sub-policies or policy sets, and a policy combining

algorithm. The evaluation of a policy set is similar to that of
policy evaluation. Table 5 shows the general decision table for
policy set evaluation. Given a request, if it matches the policy
set target, then the policy set decision depends on the decisions
of individual sub-policies/policy sets, and the policy combining
algorithm. If the request does not match the policy set target,
the policy set decision is N/A regardless of the decisions of
individual sub-policies/policy sets. If the policy set target
evaluates to Indeterminate (i.e., an error has occurred), the
policy set decision depends on the decisions of individual sub-
policies/policy sets.

TABLE 5. DECISION TABLE FOR POLICY SET EVALUATION

Policy Set

Target

Decisions of Sub-

Policies or Policy

Sets

Policy Set

Decision

Match Deny
Specified by

the policy-

combining

algorithm

Match Permit

Match N/A

Match I(D)

Match I(P)

No Match D/C N/A

Indeterminate Deny I(D)

Indeterminate Permit I(P)

Indeterminate N/A N/A

Indeterminate I(D) I(D)

Indeterminate I(P) I(P)

Indeterminate I(DP) I(DP)

Tables 6-11 are the decision tables for the six policy
combining algorithms. An important feature of this work is that
we automatically generate conformance tests for policy sets
from the decision tables of the policy combining algorithms
and the existing conformance tests for policies.

Let us use the Deny-overrides policy combining algorithm
as an example. Table 6 is its decision table. We need to create a
conformance test for each entry in Table 6 (i.e., a total of 36
tests for Table 6). Consider the entry where the decision of the
first policy in the policy set is Permit and the decision of the
second policy in the policy set is Deny. Our goal is to create a
policy set file and a request file such that (a) the policy set has
two policies, (b) the policy combining algorithm is Deny-
overrides, (c) the first policy evaluates to Permit with respect
to the request, and (d) the second policy evaluates to Deny with
respect to the request. We generate such a policy set file and a
request file as follows:

(1) Find an existing policy test including a policy file and
a request file such that the policy decision should be
Permit. Let us denote the policy file as P1 and the
request file as R1.

(2) Find an existing policy test including a policy file and
a request file such that the policy decision should be
Deny. Let us denote the policy as P2 and the request as
R2.

(3) Find the attribute names in both policy tests. For any
attribute that appears in both policy tests, rename the
attribute in the second policy test (P2 and R2). Let P2’
and R2’ be the revised policy and request.

(4) Generate a policy set file from P1 and P2’ using the
Deny-overrides as the policy combining algorithm.
The policy set target is set to empty (which always
evaluates to Match) or move the target of P1 or P2’ to
the policy set target.

(5) Generate a request file by composing the attributes and
their values in R1 and R2’.

(6) The oracle value of the policy set conformance test is
Deny, according to the decision table.

Note that the renaming in step (3) is critical. It resolves the
naming conflicts – the same attribute from different tests may
have different meanings. Without this step, (4) and (5) would
not guarantee that the first policy in the policy set evaluates to
Permit or the second policy in the policy set to Deny.

For each policy combining algorithm, the generated
conformance tests (including policy set file, request file, and
oracle value) are specified in a spreadsheet. For each entry of
the spreadsheet, the test execution framework will call Balana
with the corresponding policy set file and request file, compare
the actual response from Balana with the oracle value, and
report the verdict (pass/fail).

TABLE 6. DECISION TABLE FOR THE DENY-OVERRIDE POLICY-

 COMBINING ALGORITHM

Deny-overrides
Decision of the first policy or policy set

Permit Deny N/A I (D) I (P) I (DP)

Decision

of the

second

policy or

policy set

Permit Permit Deny Permit I (DP) Permit I (DP)

Deny Deny Deny Deny Deny Deny Deny

N/A Permit Deny N/A I (D) I (P) I (DP)

I(D) I (DP) Deny I (D) I (D) I (DP) I (DP)

I(P) Permit Deny I (P) I (DP) I (P) I (DP)

I(DP) I (DP) Deny I (DP) I (DP) I (DP) I (DP)

TABLE 7. DECISION TABLE FOR THE PERMIT-OVERRIDE
POLICY- COMBINING ALGORITHMS

Permit-overrides
Decision of the first policy or policy set

Permit Deny N/A I (D) I (P) I (DP)

Decision of

the second

policy or

policy set

Permit Permit Permit Permit Permit Permit Permit

Deny Permit Deny Deny Deny I (P) I (DP)

N/A Permit Deny N/A I (D) I (P) I (DP)

I(D) Permit Deny I (D) I (D) I (DP) I (DP)

I(P) Permit I (P) I (P) I (DP) I (P) I (DP)

I(DP) Permit I (DP) I (DP) I (DP) I (DP) I (DP)

TABLE 8. DECISION TABLE FOR THE DENY-UNLESS-PERMIT
 POLICY-COMBINING ALGORITHMS

Deny-unless-

permit

Decision of the first policy or policy set

Permit Deny N/A I (D) I (P) I (DP)

Decision of

the second

policy or

policy set

Permit Permit Permit Permit Permit Permit Permit

Deny Permit Deny Deny Deny Deny Deny

N/A Permit Deny Deny Deny Deny Deny

I(D) Permit Deny Deny Deny Deny Deny

I(P) Permit Deny Deny Deny Deny Deny

I(DP) Permit Deny Deny Deny Deny Deny

TABLE 9. DECISION TABLE FOR THE PERMIT-UNLESS-DENY
 POLICY-COMBINING ALGORITHMS

Permit-unless-

deny

Decision of the first policy or policy set

Permit Deny N/A I (D) I (P) I (DP)

Decision

of the

second

policy or

policy set

Permit Permit Deny Permit Permit Permit Permit

Deny Deny Deny Deny Deny Deny Deny

N/A Permit Deny Permit Permit Permit Permit

I(D) Permit Deny Permit Permit Permit Permit

I(P) Permit Deny Permit Permit Permit Permit

I(DP) Permit Deny Permit Permit Permit Permit

TABLE 10. DECISION TABLE FOR THE FIRST-APPLICABLE
POLICY- COMBINING ALGORITHMS

First-applicable

Decision of the first policy or policy set

Permit Deny N/A I (D) I (P) I (DP)

Decision

of the

second

policy or

policy set

Permit Permit Deny Permit I (D) I (P) I (DP)

Deny Permit Deny Deny I (D) I (P) I (DP)

N/A Permit Deny NA I (D) I (P) I (DP)

I(D) Permit Deny I (D) I (D) I (P) I (DP)

I(P) Permit Deny I (P) I (D) I (P) I (DP)

I(DP) Permit Deny I (DP) I (D) I (P) I (DP)

TABLE 11. DECISION TABLE FOR THE ONLY-ONE-APPLICABLE
 POLICY-COMBINING ALGORITHM

Only-one-

applicable

Decision of the first policy or policy set

Permit Deny N/A I (Indeterminate)

Decision of

the second

policy or

policy set

Permit I I Permit I

Deny I I Deny I

N/A Permit Deny N/A I

I I I I I

IV. RESULTS OF CONFORMANCE TESTING

Our conformance testing has revealed several non-
conformance cases as summarized below. It is worth pointing
out that these cases do not necessarily lead to security
violations in an XACML application. It depends on how the
responses are handled by the application’s policy enforcement
point. However, understanding the differences between Balana
and the XACML standard specification is important for the
users of Balana to correctly enforce access control policies.

The current implementation of the Permit-overrides rule
and policy combining algorithm does not conform to the
XACML3.0 specification with respect to the error conditions.
Table 12 shows the three non-conformance tests for which
Balana’s responses are different from the test oracles per the
XACML standard specification (refer to the decision table for
Permit-overrides in Table 7). When the decisions of two
policies in a policy set are N/A and Indeterminate Deny, or
both Indeterminate Deny, the decision of the policy set should
be Indeterminate Deny. However, the actual response of
Balana is N/A.

TABLE 12. NON-CONFORMANCE TESTS OF THE PERMIT-
OVERRIDES POLICY-COMBINING ALGORITHM

Non-

Conformance

Test

Test Input Test

Oracle

per

XACML

Actual

Result by

Balana

Decision

of Policy

1

Decision

of Policy

2

1 N/A I(D) I(D) N/A

2 I(D) N/A I(D) N/A

3 I(D) I(D) I(D) N/A

The current implementation of the Deny-overrides
combining algorithm also has four non-conformance tests as

shown in Table 13. For example, when the decisions of two
policies in a policy set are I(D) and Permit, the decision of the
policy set should be I(DP). However, the actual response of
Balana is I(D). When the decision of this policy set is the final
response to the user, there will be no difference because both
I(DP) and I(D) will result in a plain Indeterminate. However,
when such a policy set is used by other policy sets, the non-
conformance results may lead to different final decisions for
access requests.

TABLE 13. NON-CONFORMANCE TESTS OF THE DENY-OVERRIDES
POLICY-COMBINING ALGORITHM

Non-

Conforma

nce Test

Test Input Test

Oracle

per

XACML

Actual

Result by

Balana
Decision of

Policy 1

Decision

of Policy 2

1 I(D) Permit I(DP) I(D)

2 I(D) I(P) I(DP) I(D)

3 Permit I(D) I(DP) I(D)

4 I(P) I(D) I(DP) I(D)

In addition, the initial version of Balana used in our project
failed the conformance tests of the Permit-unless-deny policy-
combining algorithm. Examination of the source code revealed
that the bugs resulted from the copy-paste of the Deny-unless-
permit policy-combining algorithm. This has been fixed in the
current version of Balana, though.

V. RELATED WORK

Existing work on XACML-related testing has focused on
the testing of XACML policies, not the implementation of the
XACML standard. Thus, no literature is directly comparable to
this paper. In Cirg [8], tests are generated from
counterexamples produced by the change-impact analysis of
two synthesized versions of an XACML policy. The difference
of the two versions of a policy targets a test coverage goal
(e.g., rule, or condition). Targen [9] is a test generator for
XACML policies that derives access requests to satisfy all the
possible combinations of truth values of the attribute id-value
pairs found in a given policy. Access requests generated by
Cirg and Targen typically use a limited number of subject,
resource, action, and environment attributes. A real request,
however, could use any combination of attributes. Because
requests are encoded in XML, they must conform to the XML
Context Schema. To address this issue, Bertolino et al., have
developed several test generation algorithms [2][3][4][5].
These algorithms can generate requests that use more than one
subject, resource, action, or environment attribute. They can
also produce robustness tests, where invalid attribute values are
generated randomly. Li et al. have applied symbolic execution
technique to generation of access requests for testing XACML
policies [7]. They convert the policy under test into
semantically equivalent C Code Representation (CCR) and
symbolically execute CCR to create test inputs and translate
the test inputs to access control requests. Xu et al., have
proposed a fault-based testing approach for determining
existence or absence of incorrect combining algorithms in
XACML 3.0 policies [12].

VI. CONCLUSIONS

We have presented an approach to the conformation testing of

Balana, which is currently the only open source

implementation of the XACML3.0 standard. Our experiment

has revealed subtle conformance issues. The decision tables

used to define the conformance test requirements are not only

useful for testing XACML3.0 implementations, but also

provide important guidelines for understanding the meanings

of XACML3.0 language elements. In particular, the various

rule combining algorithms and policy combining algorithms

have subtle differences and similarities.

ACKNOWLEDGMENT

This work was supported in part by US National Science
Foundation (NSF) under grants CNS 1359590 and 1461133.
Dr. Yunpeng Zhang and Mr. Ning Shen participated in the
initial conformance testing of XACML combining algorithms.

REFERENCES

[1] Balana, “Open source XACML 3.0 implementation,”
http://xacmlinfo.org/2012/08/16/balana-the-open-source-xacml-3-0-
implementation/, 2012.

[2] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "Automatic
XACML requests generation for policy testing." Fifth IEEE
International Conference on Software Testing, Verification and
Validation (ICST), 2012, pp.842-849.

[3] A. Bertolino, S. Daoudagh, F. Lonetti, and E.marchetti. "The X-
CREATE Framework-A Comparison of XACML Policy Testing
Strategies." Proc. of the 8th International Conference on Web
Information Systems and Technologies (WEBIST). pp.155-160.

[4] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti. "Xacmut:
Xacml 2.0 mutants generator." Sixth IEEE Int’l Conf. on Software
Testing, Verification & Validation Workshops (ICSTW). 2013, pp.28-
33.

[5] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti and L. Schilders.
"Automated testing of extensible access control markup language-based
access control systems." Software, IET 7.4 (2013), pp.203-212.

[6] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnizer, K. Sandlin, R. Miller and
K. Scarfone. "Guide to Attribute Based Access Control (ABAC)
Definition and Considerations." NIST Special Pub 800 (2014): 162.

[7] Y. C. Li, Y. Li, L. Z. Wang, and G.Chen. "Automatic XACML Requests
Generation for Testing Access Control Policies." Proc. of the 26th
International Conf. on Software Engineering and Knowledge
Engineering (SEKE'14), Vancouver. July 2014.

[8] E. Martin and T. Xie. “Automated test generation for access control
policies,” in Supplemental Proc. of ISSRE, November 2006.

[9] E. Martin, and T. Xie. "Automated test generation for access control
policies via change-impact analysis." Proceedings of the Third
International Workshop on Software Engineering for Secure Systems.
IEEE Computer Society, 2007, pp.5-11.

[10] E. Martin, and T. Xie. "A fault model and mutation testing of access
control policies." Proceedings of the 16th International Conference on
World Wide Web. ACM, 2007, pp.667-676.

[11] OASIS, “eXtensible Access Control Markup Language (XACML)
Version 3.0,” http://www.oasisopen.org/committees/xacml/, 2013.

[12] D. Xu, N. Shen, Y. Zhang, “Fault-based testing of combining algorithms
in XACML 3.0 policies,” Proc. of the 27th Int’l Conf. on Software
Engineering and Knowledge Engineering (SEKE'15), 2015.

[13] D. Xu, Y. Zhang, N. Shen, “Formalizing semantic differences between
combining algorithms in XACML 3.0 policies,” Proc. of the 2015
International Conference on Software Quality, Reliability and Security
(QRS’15), pp. 163-172. Vancouver, Canada. August 2015.

