
Distribution and Continuity of Developers’ Contributions in
OSS Projects: A Case Study

Zhongjie Wang1, Dewayne E. Perry2, Xiaofei Xu1

1 Harbin Institute of Technology, Harbin, China 150001
2 The University of Texas at Austin, Austin, TX, USA 78712
rainy@hit.edu.cn, perry@ece.utexas.edu, xiaofei@hit.edu.cn

Abstract– Open Source Software (OSS) is usually develope-
d by geographically-distributed developers in a collabora-
tive manner. Different developers exhibit different behav-
iors and make diversified contributions to OSS projects.
Objective of this paper is to discover individualized char-
acteristics and common patterns of how developers con-
tribute to OSS projects. Continuity is used to delineate how
a developer actively contributes to the project over time.
Case studies on two OSS projects reveal some significant
phenomena on the distribution of developers’ contribution-
s relative to absolute time and relative to the milestones (i.e.,
releases) of OSS projects. We have found that OSS devel-
opers’ contributions exhibit the “temporal locality”, and
most of the releases of an OSS project are dominated by
the contributions of a limited number of developers.

Keywords– Open Source Software; social development;
developers’ contributions; continuity; temporal distribution

1. Introduction

Different developers have different social and technical back-
grounds. They joined an OSS project with different motivations
[1, 2]. Consequently, the degree of their participation and the
level of their contributions are diversified [3]. A set of indi-
vidualized characteristics on the behaviors of OSS developers
that distinguish one from others who belong to the same OSS
project team do indeed exist [4].

Most of the recognized characteristics are closely related
to externally visible behaviors that developers exhibit in the
history of OSS projects. This paper is focused on exploring the
personalized contributing styles of developers from a temporal
dimension. A developer initiatively enforces to make contribu-
tions to OSS projects, especially code commits. Targeting at
the contributions, a metric called “continuity” which delineates
how frequently and consecutively a developer makes contri-
butions to a project and is measured by the times, contributed
Line of Code (LoC), and temporal distribution of his active
behaviors, is studied. We introduce an approach of identifying
and measuring the continuity of contributions from public data

in OSS repositories, in which the continuity is refined into a
set of fine-grained metrics based on the temporal distribution
of the active behaviors of each developer, with respect to the
absolute timeline (defined by calendar time) and the relative
timeline (defined by a series of releases, or milestones, of an
OSS project). Entropy is employed to give an overall measure-
ment of the continuity. Case studies are conducted on two OSS
projects (JUnit and Guava) hosted on GitHub. The identi-
fied characteristics are visualized, and developers are compared
in terms of these characteristics to discover the difference and
similarities among their behaviors.

This study tries to answer three research questions:

RQ1: How are a developer’s contributions distributed on the
absolute timeline?

RQ2: How are a developer’s contributions distributed rela-
tive to the milestones of the OSS project?

RQ3: Are there distinct characteristics of different develop-
ers on the distribution/continuity of their contributions?

By case studies we find that, (1) Contributions of a developer
often show temporal locality, and there are some long intervals
that split a developer’s contributions into stages; the more con-
tributions a developer makes, the more evenly his contributions
are distributed over time, with averagely shorter intervals; (2)
Most of the releases of an OSS project are dominated by con-
tributions of a limited number of developers, respectively, i.e.,
the active behaviors of a few developers contribute most of the
changes of a release relative to its previous one. These would
help OSS project coordinators get a good understanding on the
working habits of developers in the project team, thus facilitate
proactive and accurate project management activities such as
task allocations.

The remainder is organized as follows. Candidate projects
and the independent/dependent variables of the case study are
presented in Section 2. Section 3 is the study approaches and
results, followed by threats of validity in Section 4. Section 5
and 6 are the related work and conclusions.

1

Wang Zhongjie
Rectangle

Wang Zhongjie
Typewritten Text
DOI reference number: 10.18293/SEKE2016-008

2. Study Setup

2.1. Candidate OSS Projects

Two OSS projects from GitHub, JUnit1 and Guava2, are
selected for the case study. They are diversified in many per-
spectives. From the perspective of time to live, JUnit is much
older for above 14 years and Guava is for nearly 6 years. From
the perspective of scale, Guava is larger with more than 1,700
source files and above 400K LoC, and JUnit is a medium
project with 300-400 files and 40K LoC. From the perspective
of team size, JUnit has a larger team with more than 130 de-
velopers, while Guava has a relatively smaller team. From the
perspective of behavior intensity, Guava has the larger number
of commits than JUnit, and on average, although Guava has
a smaller team, its developers seem more active and commit
more average LoC than JUnit.

2.2. Variable Selection

2.2.1 Independent Variables (IVs)

An OSS project has a team T and a sequence of code commits
CS. Every time a developer submits code to the project reposi-
tory, does he carry out an active behavior explicitly exhibited
as the expansion or modification of existing source code in two
forms: addition and deletion.

A commit c ∈ CS is defined as c = 〈PC,F, d, t〉, where
PC is c’s parent commits on which c’s code changes are based,
and each commit might have 0, 1 or multiple parent commits;
F is the files contained in c, and ∀f ∈ F , l+(f),l−(f) are
the code lines added into and deleted from f , respectively,
compared with the corresponding files in PC; d is the developer
who authored the code changes in c; and t is the commit time
of c.

Commits of a project form a sequence in which they are
sorted by commit time in chronological order. In terms of a de-
veloper di, all the commits authored by di form a sub-sequence
of CS and is denoted by CSi. Multiple developers alternately
check out codes from repository and commit changes back, so
their commit sequences are interwoven with each other. Denote
ϕi = |CSi|, and

∑τ
i=1 ϕi = |CS|.

In GitHub, a set of commits could be grouped together as
a release being a phase achievement of the project3. Here we
simply define a release rj as a set of commits (the number
of commits is |rj |). Suppose there are totally γ releases in a
project and they form a sequence 〈r1, ..., rγ〉 in terms of the
release date.

A set of git commands are used to collec-
t above-mentioned variables from git repositories,

1https://github.com/junit-team/junit
2https://github.com/google/guava
3https://help.github.com/articles/creating-releases/

such as git rev-list, git diff, git show,
git for-each-ref ‘‘refs/tags’’, etc.

2.2.2 Dependent Variables (DVs)

The dependent variables (DVs) are constructed in terms of two
timelines: (1) The absolute timeline defined by calendar time;
(2) The relative timeline defined by the date of releases;

For the former, the lifespan of a project is split into N num-
ber of timeslots 〈p1, ..., pN 〉. The length of a timeslot may be 1
day, 1 week, 1 month, or any length of time. The following are
the DVs used under the absolute timeline:

(1) Vtimes(di),Vloc(di): a developer di’s distribution vectors
of the times and LoC of active contributing behaviors in N
timeslots, i.e., Vtimes(di) = 〈ϕi1, ϕi2, ..., ϕiN 〉, Vloc(di) =
〈l+i1, l

+
i2, ..., l

+
iN 〉.

We define CSik = {cj |cj ∈ CSi ∧ t(cj) ∈ pk} as the
commits that belong to CSi (the commit sequence of di) and
fall into the timeslot pk(1 ≤ k ≤ N). Then, ϕik = |CSik|
is di’s times of active behaviors occurring during pk; l+ik =∑
cj∈CSik

l+(cj) is the total LoC that di contributes during pk,
in which l+(cj) =

∑
f∈F (cj)

l+(f) is the sum of “additions”
contained in the files of cj , indicating the di’s total contribution
made in the commit cj .

(2) Vinterval(di): the vector of intervals between two
consecutive active behaviors of di, i.e., Vinterval(di) =
〈δi1, ..., δi(ϕi−1)〉 where δij = t(ci(j+1)) − t(cij) measures
the time interval between cij and ci(j+1) both included in di’s
commit sequence CSi.

(3) Htimes(di),Hloc(di): the continuity entropy of active
contributing behaviors of a developer di. Entropy has been
widely applied in software engineering for various measure-
ment on software entities and software development activities,
such as software complexity entropy [5] and software change
entropy [6]. Here we borrow this concept to measure how a de-
veloper’s contributions on source code are distributed over time.
The first entropy is “times entropy” measuring the uncertainty
in the times distribution of di’s active behaviors in N times-
lots 〈p1, ..., pN 〉, i.e., Htimes(di) = −

∑N
k=1(

ϕik

ϕi
) log(ϕik

ϕi
).

The second one is “LoC entropy” which measures the con-
tinuity of the LoC in di’s active behaviors, i.e., Hloc(di) =

−
∑N
k=1(

l+ik
l+i

) log(
l+ik
l+i

) where l+i =
∑
cj∈CSi

l+(cj) is the to-
tal LoC that di has contributed during the lifespan of the project.

For relative timeline, V (rk) delineates the relative distribu-
tion characteristics w.r.t. the releases of a project:

(4) V (rk): the vector of the contribution ratios of al-
l the developers in one release period rk, i.e., V (rk) =
〈σ1k, σ2k, ..., στk〉 where σik is the ratio of di’s contribution
(LoC) relative to the total contributions that all developer-
s have made during the period from the release rk−1 to rk,

i.e., σik =
l+i (rk)

l+(rk)
, and l+i (rk) =

∑
cj∈rk∧cj∈CSi

l+(cj),
l+(rk) =

∑
cj∈rk l

+(cj) ,
∑τ
k=1 σik = 1, and τ = |T | is

(a) Vtimes(d1) of Guava.

(b) Vloc(d2) of JUnit.

Figure 1. Barcode visualizing contribution dis-
tribution w.r.t. absolute timeline

the total number of developers.

3. Study Results

3.1. Contribution Distribution w.r.t. Absolute Time

To exhibit the distribution of developers’ contribution w.r.t.
the absolute timeline, “barcode” is employed to visualize the
distribution vectors Vtimes(di) and Vloc(di) for each developer
di.

Fig. 1 gives the barcode of two developers from JUnit and
Guava, respectively. Fig. 1(a) is the times distributions of a
Guava developer, and Fig. 1(b) is the LoC distribution of a
JUnit developer. The timeline is split into N timeslots (the
length of timeslot is 1 day; N=5,235 for JUnit and N=2,003
for Guava). The red vertical bars are active contributions, and
the height of the bars shows the times or LoC of behaviors
occurring in the specific timeslot. As a reference, blue bars
represent the releases of the project.

Barcode is a straightforward way to visualize the temporal
distribution of developers behaviors. Without more precise
quantitative metrics, the continuity and the intensity of active
behaviors at different times can be intuitively observed from
the barcode. For example, d1 has intensive and continuous
active behaviors from the middle of the project, d2’s active
behaviors are split by two long intervals, and d3’s behaviors are

(a) Htimes of JUnit.

(b) Hloc of JUnit.

Figure 2. Comparison of the continuity entropy
among developers

concentrated in a very short period.
By observation of the barcode for 133 developers in JUnit

and 44 in Guava, we find that the shapes of barcode of dif-
ferent developers are quite diversified. Result of Chi-squared
test of independence has shown that there are significant differ-
ence between the distribution vectors of any pair of developers
belonging to the same project. It confirms that the distribu-
tion vectors of active behaviors can be used as individualized
characteristics of OSS developers.

Fig. 2 demonstrates the continuity entropy Htimes and Hloc

of developers in JUnit. Developers are sorted by Htimes in
descending order. A higher entropy indicates that the develop-
er’s contributions are distributed over time in a more balanced
way. The entropy of some developers in the right equals to
0 because all their active behaviors concentrate in only one
timeslot.

From the comparisons betweenHtimes andHloc for JUnit,
and between the ones for Guava, the distributions of Htimes

and Hloc show almost the same shape. The Spearman’s rank-
order correlation test shows that the two entropy are highly
correlated. For JUnit, the correlation coefficient is 0.863
(p <0.01); for Guava, it is 0.907 (p <0.01).

Nevertheless, there are still some inconsistencies between
them. For example, a developer has higher Htimes while his
Hloc is comparatively smaller. This implies that, the distribu-
tion of LoC in his active behaviors is more unbalanced and

(a) Developer 3 of JUnit.

(b) Developer 4 of Guava.

Figure 3. Distribution of intervals between
neighboring contributing behaviors

changes more drastically than the distribution of behavior times.
For example, there is a developer in JUnit with almost all
his LoC (nearly 45 KLoC) contributed in the last period of his
participation, and the LoC in other periods are very small, thus
his Htimes is in rank 24 among all developers while his Hloc is
in rank 70 only.

We observe from the barcode that, contributions of many
developers are distributed in a stage-wise manner, i.e., between
two phases of intensive active behaviors, there is usually a long
interval. Fig. 3 shows Vinterval of two developers in JUnit
and Guava, respectively. Although a majority of the intervals
are close to x-axis (indicating the intervals are short and the
contributions are approximately consecutive), there are obvious-
ly some outliers that have relatively higher values and represent
the long gaps between stages of behaviors. For example, the
developer in Fig. 3(a) has two obvious intervals, the first one
is one year, and the second is two years. By contract, although
Fig. 3(b) seems to have more frequent fluctuations, the ampli-
tudes of these fluctuations are actually smaller than the ones of
the first developer (see the different scale of y-axis in the two
figures).

Summary: (1) Barcode is an intuitive method for visializing
temporal distribution of a developer’s contributions, and entropy
can measure the continuity of contribution distribution; (2)
There are temporal locality in the contributions of developers,
i.e., most of the intervals between neighboring behaviors are

(a) JUnit.

(b) Guava.

Figure 4. Stacked barchart of the relative contri-
bution ratio of developers in releases

short; but there are a small number of long intervals that split
the behavior sequence into stages.

3.2. Distribution of Contributions w.r.t. Releases

V (rk) = 〈σ1k, σ2k, ..., στk〉, vector of the contribution ra-
tios of developers in one release period rk, is visualized first.
In the form of stacked barchart in Fig. 4, all the releases appear
side by side for comparison. The x-axis is a set of releases
sorted in chronological order, and the y-axis is the ratio of con-
tributions. Sub-bars with the same color in different releases
represent the same developer.

Some significant facts are observed: (1) There are usually a
few developers whose contributions dominate one release. The
number of dominant developers is so few that the contributions
of other developers involving in the same release eventually
become less obvious. (2) A small number of releases possess
a large number of developers (e.g., 4th release from the end in
JUnit and the last release in Guava). (3) Significant contribu-
tions that a developer makes are generally located in one single
or multiple consecutive releases.

We use 5% as the threshold of judging whether a developer

is a “significant contributor” of a release, i.e., if the ratio of
the added LoC of a developer relative to the total added LoC
of a release is above 5%, he is considered to be a significant
developer of this release. Sensitivity analysis has shown that the
value of this threshold ranging from 2% to 10% yields similar
results.

In JUnit, the range of number of contributors in one release
is [1, 59], but most of releases have less than 10 developers,
above 80% releases have less than 3 significant contributors,
and the contribution ratio of the leading developer is usually
far beyond the one of the runner-up. Similar situation can be
found in Guava, too. Comparing the two projects we find that
the average and median number of contributors of one release
in JUnit are both larger than the ones in Guava (average:
9.42 > 3.30; median: 5 > 2), and the average variance of
contribution ratios of these contributors in JUnit is smaller
than the one of Guava (0.025 < 0.04). These statistical results
show that the participation degree of developers in JUnit is
higher than the one in Guava; in other words, developers in
JUnit are more active than the ones in Guava.

In the heat chart of Fig. 5, if a developer in y-axis is a sig-
nificant contributor of a release in x-axis, the corresponding
grid is filled with red color. Developers who are not signifi-
cant contributors of any releases are not included in the figure.
The heart chart further demonstrates the continuity (temporal
locality) of the active behaviors of developers relative to the
milestones of OSS projects, i.e., for most of developers, their
active behaviors dominate one or several releases which are
adjacent or close to each other.

To note that, the absolute timespan of different release peri-
ods are quite different (see the distance between blue vertical
bars in Fig. 1), and the total LoC of different releases are great-
ly different, too; thus, even if the contributions of a developer
dominate a release, it does not indicate that his absolute LoC
contribution are large. Once again, what Fig. 4 shows are the
ratio of contributions in each release period.

To sum up, the conclusions drawn in this section are: (1)
Being the milestones of an OSS project, a majority of releases
are dominated by very few developers whose active behaviors
constitute the main code changes of the releases. The num-
ber of contributors of most releases is usually low, and only
very few releases have a large number of contributors whose
contributions are relatively balanced. (2) Contributions of a
developer tend to be distributed in neighboring or near releases.
This demonstrates the temporal locality of a developer’s active
behaviors relatively to the staged milestones of the project. (3)
The distribution of the number of dominating releases of all the
developers exhibits approximate power law.

4. Threats to Validity

We select DVs in three levels, i.e., the temporal distribution
of contributions for the most detailed level; the intensity and

(a) JUnit.

(b) Guava.

Figure 5. Heat chart of significant developers
relative to releases

contribution ratio relative to project releases for the middle
level; and the entropy for the global level. These DVs are
calculated from the IVs which are derived from the open data
of the OSS repositories hosted on Github. Such multi-level
DVs ensure the comprehensiveness and understandability of
the measurement.

Active behaviors are defined as the contributing activities
that developers take on their own initiatives, mainly the commit-
ting activities that have explicit code contributions to projects.
The exclusion of other types of activities (such as forking a
project, commenting, or reporting an issue) from the study
would result in some incompleteness of the identified individu-
alized behavioral characteristics. Nevertheless, many existing
research adopted similar approaches as ours.

Only the added lines of code in commits are considered but
the “deletions” are ignored. However, if a developer removes
redundant or buggy code without adding new lines, he still has
contributions to the project. It makes the measurement on the
continuity of contributions a little biased.

Two OSS projects are selected for the case studies. In an
attempt to address the generalizability of our findings, more s-
tudies conducted on larger-scale and longer-living OSS projects
are necessary.

5. Related Work

Code commitment is considered as the dominant behaviors
of developers because they take direct effect on the source code

of OSS projects, e.g., Teyton et al [7] extracted a developer’s
contribution by delta analysis on source code changes being
the result of developer behaviors. Yang et al [8] analyzed
the commit activities of developers and found that they are
not regularly distributed along with time, thus “barcode” is
used to visualize the distribution of commit sequence of each
developer. Our study extends their barcode by (1) using the
height instead of the width of bars to signify the attributes
(times, LoC, and intensity) of behaviors, and (2) putting the
barcode into a timeline, so that the temporal distribution of
contributions is visualized more precisely.

Siy et al [9] presented a method to summarize work history
of developers in terms of the files they have modified over time
using the time series segmentation technique, and the segmen-
tation result is used as an individualized feature of developers
and some evolution patterns of developer behaviors are found.
In our study, we use two types of time segmentation approaches
to split the developer behaviors into segments, i.e., absolute and
relative timelines.

Lin et al [10] studied the relationship between the distri-
bution of commit behaviors and the releases of OSS projects
and identified five distinct zones in the distribution of commit
activities across various releases; their conclusion indicates
that developer behaviors are not independent but partially influ-
enced by global constraints of projects such as “deadline”. In
our study, we borrow this idea and use releases as the relative
timeline to study the correlation between developers’ contribu-
tions and project milestones.

Weissgerber et al [11] used a transaction visualization tech-
nique to show commit sequences in a project and used file-
author matrix to visualize evolution history of a file in terms of
developers. This approach stands on the file’s point of view; by
contrast, we use a line of code as basic change unit rather than
a large-grained file, thus the result would be more accurate.

6. Conclusion

We conduct an case study on the individualized features and
common patterns of contributions of OSS developers. Continu-
ity of active contributing behaviors is focused to explore how
developer behaviors are distributed over time by a set of fine-
grained metrics. The conclusions are: (1) Active behaviors of
a developer often show temporal locality. Some long intervals
split a developer’s behaviors into stages, and the more contribu-
tions a developer makes, the more evenly his active behaviors
are distributed over time, with averagely shorter intervals be-
tween neighboring stages of intensive active behaviors. (2)
Most of releases of a project are dominated by limited number
of developers, respectively, and the total number of contributors
in each release is usually low. Active behaviors of a developer
tend to be distributed in neighboring or near releases.

The findings of this study would help OSS project coordina-
tors get deep insight in the behavioral characteristics of team

members so as to improve their project management practices.
Future work will be conducted on this perspective.

Acknowledgment

Work in this paper is supported by the Natural Science Foun-
dation of China (No. 61272187, 61472106).

References

[1] J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Under-
standing the motivations, participation, and performance
of open source software developers: A longitudinal study
of the apache projects,” Management Science, vol. 52,
no. 7, pp. 984–999, 2006.

[2] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of
software developers in open source projects: an internet-
based survey of contributors to the linux kernel,” Research
Policy, vol. 32, no. 7, pp. 1159–1177, 2003.

[3] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg,
“Who is an open source software developer?” Comm. the
ACM, vol. 45, no. 2, pp. 67–72, 2002.

[4] M. Y. Allaho and W.-C. Lee, “Trends and behavior of de-
velopers in open collaborative software projects,” in 2014
Int’l Conf. Behavior, Economic and Social Computing.
IEEE, 2014, pp. 1–7.

[5] W. Harrison, “An entropy-based measure of software
complexity,” IEEE Trans. Software Engineering, vol. 18,
no. 11, pp. 1025–1029, 1992.

[6] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta,
“How changes affect software entropy: an empirical study,”
Empirical Software Engineering, vol. 19, no. 1, pp. 1–38,
2014.

[7] C. Teyton, M. Palyart, J.-R. Falleri, F. Morandat, and
X. Blanc, “Automatic extraction of developer expertise,”
in 18th Int’l Conf. Evaluation and Assessment in Software
Engineering. ACM, 2014, p. 8.

[8] W. Yang, B. Shen, and B. Xu, “Mining github: Why com-
mit stops–exploring the relationship between developer’s
commit pattern and file version evolution,” in APSEC’13.
IEEE, 2013, pp. 165–169.

[9] H. Siy, P. Chundi, and M. Subramaniam, “Summarizing
developer work history using time series segmentation:
challenge report,” in MSR’08. ACM, 2008, pp. 137–140.

[10] S. Lin, Y. Ma, and J. Chen, “Empirical evidence on devel-
oper’s commit activity for open-source software projects,”
in SEKE’13, 2013, pp. 455–460.

[11] P. Weissgerber, M. Pohl, and M. Burch, “Visual data
mining in software archives to detect how developers
work together,” in MSR’07. IEEE, 2007, pp. 9–16.

	. Introduction
	. Study Setup
	. Candidate OSS Projects
	. Variable Selection
	Independent Variables (IVs)
	Dependent Variables (DVs)

	. Study Results
	. Contribution Distribution w.r.t. Absolute Time
	. Distribution of Contributions w.r.t. Releases

	. Threats to Validity
	. Related Work
	. Conclusion

