
From Design to Code: An Educational Approach
Candice Eckert∗, Brian Cham∗, Jing Sun† and Gillian Dobbie†

∗Department of Electrical and Computer Engineering
†Department of Computer Science

The University of Auckland, New Zealand
Emails: ∗{ceck002, bcha899}@aucklanduni.ac.nz, †{jing, gill}@cs.auckland.ac.nz

Abstract—Model Driven Engineering (MDE), despite having
many advantages, is often overlooked by programmers due to
lack of proper understanding and training in the matter. This
paper investigates the advantages and disadvantages of MDE and
looks at research results showing the adoption rates of design
models. In light of the findings, an educational tool, namely
Lorini, was developed to provide automated code generation from
the design models. The implemented tool consists in a plug-in for
the Astah framework aimed at teaching Java programming to
students through UML diagrams. It features instantaneous code
generation from three types of UML diagrams, code-diagram
matching, a feedback panel for error displays and on-the-fly
compilation and execution of the resulting program. Evaluation
of the tool indicated it to be successful with unique educational
features and intuitive to use.

I. INTRODUCTION

The development of a software product includes many
steps such as requirement analysis, design, coding and testing.
The design phase usually involves formal design models. A
more efficient alternative to manual coding is automated code
generation from design models. This approach is known as
Model Driven Engineering (MDE). The main advantages of
MDE are its efficiency in terms of development time[1] and
the reduction of human errors. This last property plays an im-
portant role in real-time embedded systems, where the slightest
mistake could lead to lethal consequences[2]. However, the
structure of auto-generated code is more complex than manual
code, making it harder to understand and re-use[3]. It is
also less efficient in terms of number of calls per executable
statement, number of executable statements, and time taken
by stack allocation/deallocation[1].

The main issue regarding MDE remains the low adoption
rate. Only 11% of programmers often use formal design
models, others using it scarcely, for communication purposes
only, or not at all[4]. This is mostly due to a lack of under-
standing and training in the matter. An experiment conducted
on a software design class showed that most students did
not use MDE before the course, and 70% of them found
MDE to be useful in order to understand software design[5].
By combining these research results, the emerging factor
seems to be the lack of educational tools for programmers to
learn formal design modelling. This has the unfortunate effect

DOI reference number: 10.18293/SEKE2016-007

of reducing the adoption rate of MDE, even though many
improvements could be introduced by using design models.

Giving a new direction to the research, it was found that
teaching modelling before programming is feasible and even
beneficial, considering that modelling is applicable to different
disciplines and can favour a more structured learning[6]. It is
suspected that complex object oriented concepts could be more
easily grasped by students if they were introduced through
design models. As a consequence of these findings, we decided
to develop an educational tool for students to learn object
oriented programming starting from formal design models,
specifically learning Java from UML. An overview block
diagram of the implemented tool is shown in Figure 1.

Fig. 1. Overall Approach to UML to Code Generation

The tool adopts the approach described by Rivera-Lopez
et al.[7] in teaching the foundations of object oriented pro-
gramming using UML. We make use of three types of UML
diagrams, namely class, sequence and activity diagrams, and
the following generation steps:

• Design the class diagram showing the relationships
among the classes, and generate the Java class skeleton
code from the class diagram.

• Design the sequence diagram describing the method calls
from one class to another, and generate the main class
(the main program) using the sequence diagram.

• Design the activity diagram corresponding to the code of
each method, and generate the methods of the Java class
from the activity diagrams.

It allows the automatic generation of executable Java pro-
gram from UML design models, and visually highlights the
relationships between the design model and the code. It is
important to note that the implemented tool is not intended
to be used in place of a programming course but rather as a
supplementary learning aid aiming to facilitate the students’
understanding of the subject. There are many different systems
and plug-ins that perform code generation from design models.



After a brief analysis of thirty-five of them, a number of free,
open-source tools were extracted and investigated in more
depth. Some tools were found to be too complicated to use or
difficult to install due to lack of documentations. With careful
consideration, the Astah framework was elected as the best
option. Its interface is user-friendly and easy to understand for
intuitive users. A clear set of APIs is available, making it easily
extendible. Moreover a free licence is dispensed to students,
thus facilitating both the design and evaluation processes.
Astah is available on Windows, Linux and Mac OS X, and
the plug-ins are easy to install. The tools used were Eclipse
IDE for code development and a Github repository for version
control, helping with collaboration and synchronization. The
outcome of the project was an interactive plug-in for the Astah
modelling framework.

The rest of the paper was structured as follows. Section
II discusses the findings of related research in the field,
including surveys and existing solutions. In section III, we
outline the objectives and technical decisions behind the plug-
in to explain the rationale of the project. Section IV describes
the implementation details of the plug-in to explain how it
was developed. In section V, we list the criteria and conduct
evaluations to assess the success of the plug-in. Finally, section
VI concludes the paper and outlines the future work.

II. LITERATURE REVIEW

The development method of automatically generating soft-
ware from design models is referred to as Model-Driven
Engineering. In this practice, the design of software is fully
specified in a standard modelling notation before executable
program code is derived [2]. Often, changes in the design
model or source code will result in an instant update of the
other representation. In some implementations, the software
may be changed in real-time while it is running by using
metamodels, specifications for how one software model maps
onto a different one[8]. To further understand the field and
guide conceptual development of the project, four research
questions were pursued as follows.

What are the key benefits of Model-Driven Engineering?
Becucci, et al. [1] report that when implemented and used well,
the automatic code generation process could aid development
efficiency by reducing coding time. This in turn frees up time
to spend on design, simulation, validation and testing. The
use of implementation-independent design models ensures that
software is interoperable between systems [1]. The conversion
can also avoid human error and guarantee correctly functioning
code, which is especially important for embedded systems and
safety-critical applications [9].

What are challenges in Model-Driven Engineering? This
question was investigated to identify key areas that the project
may contribute to. Clarke et al. [5] educational experience
highlighted some problems in the field. The most salient
is the scarcity of software modelling education in the first
place, which leads to low modelling skills in graduates. When
they were teaching Model-Driven Engineering to university

students, the main problems were related to the software in-
frastructure. They bemoaned the lack of dedicated pedagogical
tools for teaching Model-Driven Engineering in particular. The
majority of the students felt that the software they used (EMF),
while effective, was too difficult to learn and needed more
explanations, documentation and tutorials.

What are the most common design models used in industry?
Gorschek et al. [4] survey of over three thousand developers
showed that most respondents (76.2%) did not use any design
models at all. This was followed by personal informal notation
(10.9%), UML (7.9%), then all others (5%). Most software
modelling was used only for communication, co-ordination or
temporary brainstorming. Uptake of UML was unexpectedly
low; respondents felt it was unnecessary, too big and too com-
plicated. Even though Java is a widely used object-oriented
program and can map directly to UML class diagrams, usage
of UML was still low amongst Java developers too.

What other solutions exist? In order to gauge the benefits
and drawbacks of current solutions, thirty-five programs and
plug-ins were informally investigated by looking at their
documentation and reviews. Out of those, eight were iden-
tified as free, open source and possibly extendible – Astah,
AnyCode, Eclipse Epsilon, Open ModelSphere, RISE Editor,
Sirius, TASTE and Yakindu Statechart. Each of these eight
were personally installed and evaluated. The research and
experience with these programs showed that most common
problems were related to usability and convenience. Many
could not be installed because of dependency issues or lack of
installation instructions. Those that could be installed tended
to have very complex interfaces, a scarcity of basic tutorials,
vague error messages and no helpful documentation. Some
even required learning a specialised language to use.

The general conclusion was that Model-Driven Engineering
had intrinsic advantages but adoption was too low for industry
to benefit from these. Developers generally do not see the
benefits of software modelling, which may arise from a good
introduction at the educational level. For the development of
the project itself, Astah was identified as the easiest automatic
code generation software to install, use and extend.

III. TECHNICAL DESIGN

A. Project Scope

After research and discussion, the project scope was fi-
nalised as an educational plug-in to teach Object-Oriented
Programming using automatic code generation with UML and
Java, at the earliest stage of programming education. This was
chosen for three main reasons:

Firstly, the consistent use of design models and UML in
industry is very low. This has been attributed to a lack of good
educational tools that can persuasively teach the usage and
importance of software design modelling [5]. The evaluation
of existing solutions revealed that they are only suited for those
who are already deeply familiar with the practice of model-
driven development, and do not cater for beginners.

Secondly, the usage of software modelling is very low for
Java developers in particular, despite the potential benefits [4].



Teaching UML with Java as a well-known reference language
may help users to understand the simple link between Java
code constructs and the design model elements.

Thirdly, personal experience suggests that students find
Object-Oriented Programming difficult to conceptualise when
introduced. This may be remedied by starting Object-Oriented
Programming education with the higher level of abstraction
found in visual design models, which Starett [6] showed was
feasible as early as high school.

B. Software Used

The project was developed in the form of a plug-in for an
existing application. This was decided to avoid “reinventing
the wheel”, especially with a constrained time frame. The
selected code generation application was Astah, because of
the following factors identified in the solution investigations:

• Astah is free to download, meaning it is easy to obtain
for the developers and users.

• Astah is compatible with all three major operating system
families – Windows, Mac OS X and Linux.

• Astah is easy to install as a plug-in on any platform. This
process requires only a single drag-and-drop operation.

• Astah is open source and has a free, fully documented
API. This makes it possible to create new extensions of
the application.

• Astah’s API supports a myriad of potential features and
data queries.

C. Key Features

Rivera-Lopez, et al. [7] outlined a successful educational
methodology in teaching programming through design model,
which formed the basis of the project. The rough steps were, in
this order: 1) Design a class diagram from a description of the
problem, 2) Design a sequence diagram to determine messages
between the objects, 3) Design an activity diagram to specify
the internal logic of objects’ methods, 4) Design Java class
code from the class diagram, 5) Design Java Main class from
method calls in the sequence diagram, and 6) Design method
based on activity diagrams. The student becomes aware of the
simple, one-to-one relationship between the visual and textual
languages.

Our project supports this educational approach by imple-
menting a software tool for realising these steps. The UML
diagrams and equivalent Java code are displayed simultane-
ously. The code automatically updates upon each change to
the diagrams, in real-time. For ease of understanding, elements
and changes in both views can be colour coded to visually
establish the links between design model diagrams and source
code. Constant feedback is available to guide the user. At
the end, if the diagrams have been constructed correctly,
the generated program can be compiled and executed. These
desired features were all deemed to be possible with the Astah
API which allows for access to diagram details, editing of
diagrams and standard Java Swing components.

Throughout, it helps learners take their first steps by avoid-
ing complex terminology (e.g. “polymorphism”) or complex

programming concepts. The interface complexity is also re-
stricted to a minimum to avoid overwhelming or confusing
new learners. The plug-in is not intended to function as a
fully self-contained educational experience. It is fundamentally
a flexible tool to be used in conjunction with customisable
teacher exercises. It includes a simple tutorial that explains
the usage, for any interested readers who wish to try it out1.

IV. IMPLEMENTATION

A. Tool Overview

The tool development used Windows Command Prompt to
build and launch the base Astah application, Eclipse IDE to
code the plug-in itself and Github for back-ups and collabo-
ration. The regular Astah interface includes a main diagram
panel in the centre, a project panel on the left and a plug-in
panel at the bottom. The project panel features a list of UML
diagrams in the open project. Each one can be clicked to show
the diagram in the main diagram panel, where they can be
created, edited and deleted with reference to the underlying
software model.

The implemented tool consists in a plug-in for Astah, as
shown in Figure 2. It allows the automatic generation of
Java code from UML diagrams, i.e., class, sequence and
activity. The interface appears inside the plug-in panel at the
bottom, which contains the interface of any loaded plug-in.
The majority of the space is taken up by the text of the
generated code. One class is shown at a time, and the user can
navigate between classes using tabs. On the right is a small
feedback section which lists errors to the user. In the corner is
a button to compile and execute the code in a pop-up window,
another to view the tutorial and another to view information
about the plug-in itself. The plug-in automatically generates
code from three types of UML diagram in the project – class
diagrams for the class skeleton code, activity diagrams for the
method contents (including if-branches and while-loops) and
sequence diagrams for method calls between classes.

The code is generated as soon as the diagram is modified,
providing the user with a fast, real time learning experience.
Each Java file is represented by a tab displaying the class
name. This allows for a clear and easy way to switch between
files. The tool helps the user’s understanding of the code by
matching code and diagrams: when selecting an element in a
diagram, the corresponding line of code is highlighted in red.
Conversely, when clicking on a line of code, the corresponding
diagram element gets selected. If the relevant file or diagram
is closed, it is automatically opened in order to facilitate
the transition. The code updates in real-time, i.e. every time
something in the diagram changes.

At all times, any errors in the diagrams will be described
in the feedback section, e.g. if an activity diagram is missing
a final node, if a sequence diagram contains a call to a non-
existent method, or if a class diagram contains an attribute with
the reserved Java keyword “if”. After creating a project using

1The developed tool, namely - Lorini, is available online for reviewing at
https://briancham1994.wordpress.com/portfolio/lorini/.



Fig. 2. Graphical User Interface of the Lorini Tool

UML diagrams, the user can click on a button in a corner to
compile and execute the generated code, and see the results
or compilation errors if any.

A feedback panel on the left hand side of the code panel
displays explanations about the errors made by the user,
helping the user understanding their mistakes and correcting
them. At the bottom of this feedback panel, a button is used to
launch the compilation of the Java code. Upon compilation,
the output of the program is displayed, or if need be, the
compilation errors arisen.

B. Technical Details

The code generation was implemented by retrieving infor-
mation contained in the UML diagrams using the Astah’s
API and editing the diagrams as needed. In the case of
class diagrams, the class name, attributes and methods are
obtained and stored in string format. Each one in the open
project is retrieved as an “IClassDiagram” object using the
Astah API. These contain references to its name, attributes,
methods, superclasses, subclasses and more. The details of
these elements were extracted and put into the right locations
in a String along with necessary brackets and tabbing. Each
String represented the code contents of each class, and they
were displayed in ScrollPanes. These were contained within a
TabbedPane which allows users to switch between each class
by clicking on a tab. These interface elements use regular
Java Swing components, though the ScrollPanes have been
extended to allow for line numbers.

In a sequence diagram, lifelines are the graphic representa-
tions of each instance of a class and messages correspond to
method calls. The main method is generated from a sequence
diagram by analysing the messages sent between the lifelines.

The tool checks that an instance of the class has been created
before calling its methods, and displays an error message if
needed. In the case of synchronous messages, corresponding
to non-void method calls, an error message is displayed if
no return message is present. Sequence diagrams having been
restricted to depicting the main method, an error is also
displayed if a lifeline other than the class containing the main
method is sending a message to another lifeline, i.e., trying
to call a method from another class. Similarly, the following
situations will result in an error being displayed:

• Multiple sequence diagrams created.
• Name of the diagram not following the convention

“class.method”.
• Lifeline missing for the main class.
• Multiple lifelines created for the main class.
• Invalid lifeline created.
The activity diagram was harder to convert to Java code

because of the non-linear nature of the code structure, which
can include if-else statements and loops. The first step was to
retrieve the correct order of the statements, which was done by
following the “flows”, i.e. the arrows linking each node to the
next, and storing the nodes in a tree. Then, each statement was
extracted and stored to be printed. However it was necessary
to insert lines of code such as “else {” or closing brackets “}”
as well as re-ordering the if-else statement by inserting the
“if” part before the “else”. This was done by analysing the
incoming and outgoing flows and looking for the “true” and
“false” guards. Extra care had to be taken in the cases where
one of the branches was empty.

One of the main difficulties was to be able to differentiate
between a loop and an if-else statement, given that they both
use the true and false guards in the exact opposite manner,



Fig. 3. Example of Loop Containing If Statement

as shown in Figure 3. Error checking had to be implemented
to detect errors such as secluded nodes, if-else statements or
loops missing a “true” or “false” guard and incorrect use of
node types. Those errors are displayed in the feedback panel in
order for the user to acknowledge and correct them, improving
their learning experience.

Another example is the feedback section on the right which
tells the user if there is anything wrong. This is implemented
with an extended JScrollpane called “ErrorPane”. It is highly
encapsulated and any other class can add an error message
with only a reference to the ErrorPane object, and without
having to deal with formatting. It simply has to call the method
“error (String s)” with the message to display, and ErrorPane
will automatically append it to the end of a single formatted
bullet list.

V. EVALUATION

In order to evaluate the quality of the implemented tool,
two types of evaluation methodologies were carried out, i.e.,
comparison with existing tools and user evaluation.

A. Tool Comparison

The implemented tool was compared to existing tools
against the following criteria:

• Compatibility and portability
• Generating skeleton code from class diagrams
• Generating method code from activity diagrams
• Generating interaction code from sequence diagrams
• Code and diagram matching
• Instantaneous code generation
• Code compilation and execution
• Generating code in multiple programming languages
• Generating code from design models directly and auto-

matically, without requiring the user to learn a dedicated
language, diagram or syntax.

The implemented tool was found to be competitive on many
aspects. Firstly, being portable and free for students, it is very
accessible. It also benefits from an intuitive interface and uses
only common standards such as Java and UML, avoiding the

overhead of having to learn a specific language or diagram
syntax. The educational aspect of the tool makes it unique
compared to its competitors, allowing users to match diagrams
and code with the help of highlighting and instantaneous
code generation. Finally, the availability of feedback and
compilation tools yields a better understanding of the process.

Partial comparison results 2 against a set of common UML
tools can be found in Figure 4. Overall, the comparison
highlighted the factors that make the project unique amongst
similar tools:

• Convenient – It is free of charge and compatible on all
platforms.

• Intuitive to use – It does not require learning any special
syntax or diagrams to perform the code generation. It
uses standard UML and Java, not a dedicated language
or format.

• Educational – It performs automatic highlighting of
match between code and diagram, and vice-versa, which
constantly update to reflect each other (i.e. on-the-fly code
generation). This allows users to understand and explore
at their own pace. Other tools assume that the user is
already familiar with this relationship and does not help
them to learn it. The ones that include these features
either have limited functionality, or use their own formats
instead of standards like UML and Java, limiting their
educational use.

• Feedback – It tells the user basic details of anything
wrong with the software model. It can also compile and
check results of the code.

B. User Evaluation

User testing was performed in order to get a first-hand
feedback on the implemented tool. The eight volunteers were
aged 18 to 25 and included both males and females, expe-
rienced and neophytes in terms of programming and UML
design. One of them had previous experience with Astah.
Participants were asked to perform some basic tasks with the
plug-in such as designing a “Hello World” program using the
three supported types of UML diagrams. They were presented
with a set of Likert-scale based questions[10]. For an easier
analysis, the Likert items were converted to a numerical scale,
1 corresponding to “strongly disagree” and 5 corresponding
to “strongly agree”. The results were then averaged and are
presented in Figure 5.

In average, the plug-in was considered very intuitive and
uncluttered. Users found the code-diagram matching useful in
order to understand the design process. However, some bugs
were uncovered and some of the feedback messages were
judged to be ambiguous and confusing. Moreover, the need
for a tutorial was noticed. Following the evaluation results,
improvements were made to the plug-in. A full testing session
was carried out to identify and fix a plethora of remaining
bugs. All problematic feedback messages were rewritten until
users found them clearer. Thorough testing was performed and

2More detailed tool comparisons are available on the Lorini web page.



Fig. 4. Tool Comparison Results

Fig. 5. User Evaluation Results

all uncovered bugs were fixed. The full tutorial was embedded
into the plug-in to help with the understanding of the tool.

VI. CONCLUSION

While Model Driven Engineering is proven to be time-
efficient and less prone to human errors, research showed
that design models are scarcely used, mostly due to lack
of education and training in the matter. In parallel, it has
been shown that teaching design modelling to students before
programming is feasible and even beneficial. These formed
the basis of an educational approach that uses automatic
code generation to teach Object-Oriented Programming and
its relationship with design models. The implemented tool is
a plug-in for Astah able to automatically generate Java code
from three types of UML diagrams, namely activity, sequence
and class diagrams. The tool includes the following features:

• Instantaneous code generation
• Code-diagram matching
• Feedback panel displaying user errors
• Compilation and execution of the code

Evaluation of the tool indicated it to be competitive in many
aspects, mainly due to its unique educational features, as well
as being easy to install and very intuitive to use.

In the future, we plan to conduct a large scaled user
evaluation and focus more on measuring the education aspects
of the developed tool. On the technical side, we would like
to extend the current implementation to support the code
generation in different programming languages, and from other
types of UML diagrams.

REFERENCES

[1] M. Becucci, A. Fantechi, M. Giromini, and E. Spinicci, “A comparison
between handwritten and automatic generation of c code from sdl using
static analysis,” Software: Practice and Experience, vol. 35, no. 14, pp.
1317–1347, 2005.

[2] G. Nisha, “A model driven approach for design and development of a
safety critical system,” in Electronics Computer Technology (ICECT),
2011 3rd International Conference on, vol. 4, April 2011, pp. 15–18.

[3] H. Zhu, J. Sun, J. S. Dong, and S.-W. Lin, “From verified model
to executable program: the pat approach,” Innovations in Systems and
Software Engineering, vol. 12, no. 1, pp. 1–26, 2015.

[4] T. Gorschek, E. Tempero, and L. Angelis, “On the use of software
design models in software development practice: An empirical
investigation,” J. Syst. Softw., vol. 95, pp. 176–193, Sep. 2014.

[5] B. Tekinerdogan, “Experiences in teaching a graduate course on
model-driven software development,” Computer Science Education,
vol. 21, no. 4, pp. 363–387, 2011.

[6] C. Starrett, “Teaching uml modeling before programming at the high
school level,” in Advanced Learning Technologies, 2007. ICALT 2007.
Seventh IEEE International Conference on, July 2007, pp. 713–714.

[7] R. Rivera-Lopez, E. Rivera-Lopez, and A. Rodriguez-Leon, “Another
approach for the teaching of the foundations of programming using
UML and Java,” in Proceedings of the 3rd WSEAS International
Conference on Computer Engineering and Applications, ser. CEA’09.
Stevens Point, Wisconsin, USA: World Scientific and Engineering
Academy and Society (WSEAS), 2009, pp. 279–283.

[8] F. Krichen, B. Hamid, B. Zalila, M. Jmaiel, and B. Coulette,
“Development of reconfigurable distributed embedded systems with a
model-driven approach,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 6, pp. 1391–1411, 2015.

[9] M. Hinchey, J. Rash, and C. Rouff, “Requirements to design to
code: Towards a fully formal approach to automatic code generation,”
Technical Report TM-2005-212774, NASA Goddard Space Flight
Center, Greenbelt, MD, USA, Tech. Rep., 2004.

[10] O. Laitenberger and H. M. Dreyer, “Evaluating the usefulness and
the ease of use of a web-based inspection data collection tool,” in
Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth
International, Nov 1998, pp. 122–132.


