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Abstract—In recent years, cross-project defect prediction (CPDP) 
has become very popular in the field of software defect prediction. 
It was treated as a binary classification or regression problem in 
most of previous studies. However, the existing methods to solve 
this problem may be not suitable for those projects with limited 
manpower and time. In this paper, we revisit the issue and treat 
it as a ranking problem. Inspired by the idea of the Point-wise 
approach to Learning to Rank, we propose a ranking-oriented 
CPDP approach called ROCPDP. The empirical results obtained 
based on AEEEM show that the defect predictor built with our 
method under a specific CPDP context, in general, outperforms 
those predictors trained by using the benchmark methods in both 
CPDP and WPDP (within-project defect prediction) scenarios in 
terms of two common evaluation metrics for rank correlation. So, 
our work could be an initial attempt to construct new ranking-
oriented CPDP models for newly created or inactive projects. 

Keywords-cross-project defect prediction; ranking; single-
objective optimization; gradient descent; multiple linear regression 

I. INTRODUCTION 
Due to the importance of software defect prediction in 

quality assurance and software maintenance, in recent years it 
has gradually become one of the most active research fields in 
software engineering [1]. To the best of our knowledge, there 
are two mainstream techniques for software defect prediction, 
namely, within-project defect prediction (WPDP) and cross-
project defect prediction (CPDP). 

Generally speaking, WPDP has one major disadvantage 
that the training of WPDP models needs sufficient historical 
data from the same project [2]. Therefore, it is difficult to apply 
WPDP models to those newly created or inactive projects. 
With the increasing amount of labeled defect data available on 
the Internet, till now, CPDP has already been the most popular 
technique for software defect prediction, though it is still 
getting criticized for relatively poor prediction performance 
compared with WPDP [3, 4]. 

The vast majority of prior studies on CPDP treat software 
defect prediction as a binary classification problem [1-8], and 
their main objective is to improve the prediction accuracy of 
CPDP models using various machine learning techniques [4, 6-
8], such as feature selection, dimensionality reduction, and data 
sampling. However, estimating the defect-proneness of a given 
set of classes or software modules has limited effect on actual 
activities in software testing and software maintenance [7, 9, 
10], especially when there is a lack of human resources. That is 
to say, from a software developer’s point of view, a ranking list 

of defect-prone software entities is definitely more useful than 
the information about how many the software entities in 
question are possibly buggy. 

Motivation: Now take a typical application scenario as an 
example. Two software developers develop a new software 
project written in Java, and one of the developers (whose name 
is Jack) is responsible for software testing. Due to the tight 
deadline for a new release (composed of 1000+ Java classes), a 
sound technical solution for Jack is to identify the classes of the 
release that are most likely to be defect-prone before executing 
unit tests. Therefore, Jack builds a CPDP model based on 
commonly-used software metrics (such as lines of code and CK 
suite metrics [11]) using the Naïve Bayes (NB) classification 
algorithm. According to the prediction result of the CPDP 
model trained by other similar mature projects, only a very 
small percentage (about 7%) of the classes in question may be 
buggy, but the efficiency of the entire testing process is still 
relatively low because Jack has to perform random testing. In 
such a situation, Jack actually prefers to obtain a class ranking 
list that identifies the priority of each defect-prone class, so as 
to work out a cost-effective testing plan. 

 
Figure 1.  An illustration of the difference between various CPDP methods 

Research Objective: Unlike the studies of CPDP based on 
binary classification, in this paper we focus on the prediction of 
ranks of defect-prone software entities. An illustration of the 
difference between them is shown in Figure 1. In short, the 
main goal of this paper is to propose a ranking-oriented 
approach to CPDP (abbreviated as ROCPDP), which can rank 
buggy software entities according to priority. In addition, we 
also want to validate the feasibility of ROCPDP using a case 
study based on five open-source projects from the publicly-
available data set AEEEM [12]. 
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The contributions of this paper are summarized below. 

(1) We consider CPDP as a ranking (prediction) problem 
and propose a new, easy-to-use method called ROCPDP, which 
utilizes a simple multiple linear regression model with single-
objective optimization. Besides, we optimize the model’s 
parameters using the gradient descent method. 

(2) We conduct an empirical study based on AEEEM, and 
the result shows that in different CPDP scenarios our approach 
outperforms other benchmark methods in terms of two 
common evaluation metrics, i.e., Spearman’s rank correlation 
coefficient and Kendall rank correlation coefficient. 

The rest of this paper is organized as follows: Section II 
introduces the related work of CPDP, and Section III presents 
the details of our approach; in Section IV, a case study is given 
to demonstrate that our approach is better than the benchmark 
methods with regards to the given evaluation metrics; potential 
threats to the validity of our study are presented in Section V; 
in the end, Section VI summaries this paper and outlines future 
work directions. 

II. RELATED WORK 
As mentioned before, CPDP is a popular defect prediction 

technique used to predict defects in a given project with the 
prediction models (also called predictors) trained based on 
labeled defect data from other projects [13]. After Briand et al. 
made an early attempt to validate the applicability of CPDP 
[14], many researchers in this field have tried to improve the 
performance of CPDP models using different techniques such 
as data mining and machine learning. Fortunately, recent 
studies have shown that it is indeed a feasible method for 
defect prediction in software projects with different sizes [13, 
15-20]. Due to space limitations of this paper, for more details 
about CPDP approaches, please refer to the latest surveys [6, 7]. 

In these CPDP scenarios, the focus of the researches most 
relevant to the topic of this paper is on predicting or estimating 
the number of software defects/faults in a given software entity, 
which could be deemed as a specific problem with predictive 
analytics [10, 21]. In fact, this is not a new field of study. 
Earlier studies often trained this type of predictors using linear 
regression [22] or multiple regression analysis [23]. That is to 
say, according to training examples, these predictors were used 
to estimate the relationships among variables, including a 
dependent variable, viz. the number of defects, and one or more 
independent variables, viz. software metrics. More precisely, 
such predictors help us predict the unknown value of dependent 
variable from the known values of independent variables. 

Subsequently, many other types of predictors have been 
built with various regression methods such as decision trees 
(DT), support vector regression (SVR), and Bayesian ridge 
regression (BRR). Moreover, our prior empirical study [10] 
shows that in WPDP and CPDP scenarios the DTR-based 
predictor is the best estimator for the number of defects among 
the six prediction models under discussion. To further improve 
the accuracy of predictions, some optimization methods have 
been applied to the construction of these types of predictors. 
For example, Wang et al. [24] applied the Discrete Time 
Markov Chain (DTMC) model to predict the number of defects 

at each state in future based on a defect state transition model; 
Rathore et al. [25] presented an approach to predicting the 
number of faults using Genetic Programming. 

On the other hand, in recent years a few researchers tried to 
investigate software defect prediction from a new perspective. 
That is, they formulated this problem as a ranking problem 
rather than a binary classification problem or a regression 
problem [9, 21]. Therefore, the approaches to Learning to Rank 
(LTR) [26] in the field of information retrieval have been 
recently introduced to investigate software defection prediction. 
However, the above studies were conducted based on the 
assumption that the rank of a defect-prone software entity is 
proportional to the actual number of defects that it contains. In 
addition, they were also performed in WPDP scenarios using 
the conventional validation (e.g., partitioning the data set from 
a project into two sets of 80% for training and 20% for test) or 
10-fold cross-validation. Hence, it is still unknown whether 
these methods proposed in prior studies [9, 21] can be used in 
practical CPDP scenarios. 

III. A RANKING-ORIENTED CPDP APPROACH 
Considering the research objective of this paper, we focus 

on the method for predicting buggy software entities’ ranks in 
CPDP scenarios. Unlike previous similar studies [9, 21], we 
assume that the rank of a buggy software entity is proportional 
to the score determined by both the number of defects within 
the entity and the severity of each defect. The higher the score 
of a software entity receives, the higher its rank becomes.  

A. Problem Definition 
First of all, we build a predictor based on training examples 

from different software projects. Suppose that there are two 
ranking lists Lr and Lp for a given test set. Lr and Lp denote the 
actual and predicted results of defect-prone software entities, 
respectively, and they are partially ordered sets sorted in 
descending order according to the score of each software entity. 
So, the problem of this paper is how to minimize the difference 
between Lp and Lr. In other words, we want to make Lp 
approximate Lr as closely as possible, formally defined as  

max  ( , ),p rsim L L                                  (1) 

where sim is a function used to calculate the similarity between 
two given ranking lists. 

B. Description of Our Approach 
Inspired by the idea of the Point-wise approach to LTR [26], 

in this paper the above problem can be approximated by a 
regression problem: given the values of a set of software 
metrics for a software entity, predict its score. This implies that 
our approach is required to predict the scores of defect-prone 
software entities as accurately as possible. We then present the 
formal definition of actual/real scores as follows: 
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where w is the severity score of a bug and k is a positive integer. 
Note that w can be rated on a five-point or ten-point scale to 
score a bug’s severity. 

Because multiple liner regression (MLR) models have 
proven useful in software defect prediction [9, 27, 28], in this 
paper we define a simple MLR model predicting the scores of a 
given set of software entities, as described below. 
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where mi denotes the value of a given software metric, d 
indicates the number of software metrics, and θi is an unknown 
parameter of the model. 

During the supervised learning process of a MLR model, 
the main goal of our method is to minimize all possible 
differences between values predicted by the model and the 
corresponding actual/real values. According to the principle of 
least squares, the estimation of model parameters in our method 
can be formulated as the minimization of a loss function, which 
is defined below. 
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where θ is a vector written as (θ0, θ1, θ2, …, θd), N is the 
number of training examples, and λ is a small regularization 
parameter. 

C. Estimation of Model Parameters 
As far as we know, gradient descent is a widely used first-

order optimization algorithm. In this paper, we utilize it to find 
a local minimum of the above loss function, so as to estimate 
the unknown parameters of the model. For a given training set, 
the derivative with respect to θ of L(θ) is denoted as follows: 
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where the derivative with respect to any parameter θj of L(θ) is 
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Because the gradient descent method often takes multiple 
iterations to calculate a local minimum that meets the demand 
of accuracy, we update the value of θj in the negative direction 
of the gradient with a small learning rate (or known as step size) 
on each iteration, as defined below. 
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where α is the learning rate (α > 0) and the symbol “:=” denotes 
a assignment operator. 

 
Figure 2.  An algorithm to estimate model parameters 

Figure 2 displays the algorithm used for estimating the 
model’s parameters. Once all of the unknown parameters are 
fixed based on training examples, the entire learning process 
ends, and such a MLR model can be used for prediction. It is 
worth noting that evaluating the sum of gradients (see Eq. (6)) 
becomes very expensive if training examples are enormous. In 
this case, we can also utilize stochastic gradient descent to 
optimize the model’s parameters when dealing with very large-
scale data sets. That is, the gradient of θj is approximated by a 
gradient at a single example, thus leading to a low computation 
cost. Therefore, Eq. (6) can be rewritten as 
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IV. CASE STUDY 

A. Data Collection 
The data set used in our case study is AEEEM [12], which 

consists of five open-source software projects written in Java 
and is available for free download on the Internet (website: 
http://bug.inf.usi.ch). Data statistics of the projects in this data 
set are presented in Table I. More details of the data set refer to 
the literature [4, 12]. 

TABLE I.  DATA STATISTICS OF AEEEM 

Project Type # of Files % of Buggy Files # of Metrics 
Equinox (EQ) OSGi framework 325 36.69% 71 

Eclipse JDT Core 
(JDT) IDE Development 997 20.66% 71 

Eclipse PDE UI 
(PDE) IDE Development 1492 14.01% 71 

Mylyn (MYL) Task management 1862 13.16% 71 
Apache Lucene 

(AL) 
Search engine 

library 399 9.26% 71 

------------------------------------------------------------------------------------------ 
Algorithm 1: Estimation of Model Parameters Using Gradient Descent 
------------------------------------------------------------------------------------------ 
Input: θ, α, λ, and N training examples with d metrics and a score  
Output: θ 
  1: Initialize θ, α, and λ; 
  2: Randomly shuffle the training examples; 
  3: repeat 
  4:    Calculate the value of s according to Eq. (3); 
5:    Calculate the gradient of θ according to Eq. (6); 
6:    Update the value of θ according to Eq. (7); 
7: until convergence 
8: return θ; 

------------------------------------------------------------------------------------------ 



B. Experiment Design 
Data preprocessing. There are six types of software metrics 

in AEEEM, including process metrics, entropy-of-source-code 
metrics, entropy-of-change metrics, churn-of-source-code 
metrics, previous-defect metrics, and source code metrics. 
Because they are different in the scales of numerical values, we 
have to normalize the raw data from AEEEM. Although there 
exist many normalization methods for machine learning and 
data mining, prior studies [10, 13, 16, 17, 18] have proven that 
the normalization of training data using z-score can, to some 
extent, improve prediction performance of defect classification 
models. Hence, in this paper we apply z-score normalization to 
every example in AEEEM. 

Experiment Context Configuration. Unlike the prior studies 
that focus on WPDP [9, 21], in CPDP scenarios we design two 
types of experiment contexts, namely, one-to-one (O2O) and 
many-to-one (M2O). For a target project treated as a test set, 
the training set is a project chosen randomly from the rest of 
the projects in AEEEM, which is referred to as O2O. On the 
contrary, M2O indicates that the remaining AEEEM projects 
(except the target project) are used as the training set. Because 
some prior studies [2, 10, 13] have shown that defect prediction 
performs well within projects and cross projects when there is a 
sufficient amount of training data, in this paper we also want to 
examine whether our method can achieve better performance 
under the context of M2O. 

Defect Predictor Training. According to training data, three 
types of defect predictors are trained in the experiment contexts. 
The first is simply built with a few typical regression methods 
such as DT and SVR, the second is trained by using two classic 

optimization algorithms (i.e., gradient descent and genetic 
algorithm), and the third is obtained by using LTR approaches 
like RankSVM [29]. The detailed introduction to the above 
methods/algorithms refers to subsection IV.C. 

Performance comparison. For each project in AEEEM, we 
can obtain four ( 1

5 1−C ) prediction results and one prediction 
result under the contexts of O2O and M2O, respectively. Such 
prediction results are evaluated in terms of the metrics defined 
in subsection IV.D. To make a reasonable comparison between 
our approach and the benchmark methods, we will make 
twenty (5×4) O2O predictions and five (5×1) M2O predictions, 
respectively, and then analyze their mean values of the 
evaluation metrics for these predictions under different CPDP 
contexts (see Table III).  

C. Learning Methods  
In general, regression analysis methods are a category of 

quantitative methods which can predict the outcome of a given 
dependent variable according to the relationships with other 
related independent variables. In this paper, we build the first 
type of defect predictors with five typical regression analysis 
methods, namely, Linear Regression (LR), Random Forests 
(RF), Gradient Boosting (GB), DT, and SVR, and they are 
used to predict the score of each example in the test set. Due to 
space limitations of this paper, if readers are interested in the 
details of these methods, their descriptions refer to the 
corresponding Wikipedia entries. Note that all of the five 
methods are implemented with Weka [30]. Unless otherwise 
specified, the default parameter settings for these regression 
methods used in our experiments are specified by Weka. 

TABLE II.  BRIEF INTRODUCTION TO BENCHMARK APPROACHES 

Approach Brief Description 

LR 
Linear Regression is a widely used statistical approach to modeling the relationship between a scalar dependent variable y and one or more 
independent variables denoted as X, and it focuses on the conditional probability distribution of y given X. Moreover, the effectiveness of this 
method for predicting the number of bugs has been validated by prior studies [22, 23, 27, 28]. 

RF 
Random Forests, known as a notion of the general technique of random decision forests, are an ensemble learning method for regression and 
other tasks. For regression analysis, random forests are used by building a number of decision trees according to training data and generating an 
outcome that is the mean prediction of the individual decision trees, and they have been utilized as a benchmark method in [9, 10, 27]. 

GB 
Gradient Boosting, which is a well-known machine learning technique for regression and classification problems, combines weak prediction 
models into a single prediction model that has a greater capacity to deal with a given task, in a stage-wise fashion, and it often generalizes them 
by optimizing an arbitrary differentiable loss function. Moreover, it has been utilized as a benchmark method in [10]. 

DT 
Decision trees are one of the common predictive modeling approaches used in data mining and machine learning, and they are of two main 
types: classification tree and regression tree. When predicted results are continuous values (typically real numbers), this type of decision trees is 
called regression tree. Decision trees have been used as a benchmark method in [9, 10, 21, 27]. 

SVR 
Support vector machines (SVMs) are supervised learning models that can be used for classification and regression analysis, and a version of 
SVM for regression is called support vector regression (SVR). The models built based on SVR require only a small subset of training data and 
maintain all the main features that characterize the maximum-margin algorithm. Moreover, SVR has been used as a benchmark method in [10]. 

GA 
An approach to predicting the number of bugs in software systems using Genetic Programming is presented in [25], and its effectiveness has 
been evaluated in terms of three evaluation metrics (namely, average relative error, Recall, and Completeness) for ten data sets collected from 
PROMISE (http://promisedata.org).  

RankSVM 
RankSVM is an instance of SVM for efficiently training Ranking SVMs as defined in [29], which is used to solve certain ranking problems. In 
general, it belongs to one of the Pair-wise ranking methods in information retrieval field. Moreover, RankSVM has been utilized as a benchmark 
method in [21]. 

RankBoost 
RankBoost [31] is a boosting method for ranking a given set of examples. It trains one weak learner that produces a weak ranking at each 
iteration, and combines these weak rankings as the final ranking function. Like all boosting algorithms, RankBoost adjusts the weights assigned 
to pairs of examples after each round of iteration. Moreover, RankBoost has been utilized as a benchmark method in [21]. 

 

Obviously, the above defect predictors are learned without 
additional optimization. To improve the accuracy of CPDP 
predictors while maintaining their generality, we train the 
second type of defect predictors with typical single-objective 

optimization algorithms. In addition to gradient descent used 
in this paper, there are actually many optimization algorithms 
for the single-objective optimization problem, such as Genetic 
Algorithm (GA) and Evolutionary Programming (EP). Since 



GA is the most popular type of evolutionary algorithms, we 
optimize this problem with GA for the purpose of comparing 
with the prior study [25] similar to our work. 

In a word, the ranks of test examples are calculated based 
on their scores which are predicted by the two types of defect 
predictors described above. Note that if two or more examples 
in test set get the same score, they will be sorted by example 
number in ascending order by default. In contrast, LTR-based 
defect predictors are obtained by optimizing the performance 
of ranking directly. In this paper, we utilize two commonly 
used Pair-wise approaches to LTR (i.e., RankSVM [29] and 
RankBoost [31]) in the field of information retrieval to train 
defect predictors. 

The brief introduction to these benchmark approaches used 
in our experiments is presented in Table II. 

D. Evaluation Metrics 
Here, we choose two widely used statistical indicators to 

quantify the results of defect predictors. One is the Spearman’s 
rank correlation coefficient (Spearman for short), which is 
defined as the Pearson correlation coefficient between the 
ranked variables; the other is the Kendall rank correlation 
coefficient (Kendall for short), which measures the association 
between two measured quantities [32]. The value of each 
evaluation metric ranges between -1 and 1, and higher values 
closer to 1 mean better prediction performance. 

E. Empirical Results 
Because the data set AEEEM does not actually contain the 

information about the severity of bugs, we have to make the 
assumption that the bugs in AEEEM are all identical. That is 

to say, the score of a class is equal to the number of bugs that 
it contains. Hence, all the buggy classes in AEEEM are ranked 
in terms of the number of bugs. 

TABLE III.  PREDICTION RESULTS UNDER CPDP CONTEXTS 

 Spearman Kendall 
O2O M2O O2O M2O 

LR 0.261 0.287 (+9.96%) 0.217 0.220 (+1.38%) 
RF 0.288 0.313 (+8.68%) 0.231 0.253 (+9.52%) 
GB 0.225 0.239 (+6.22%) 0.180 0.181 (+0.56%) 
DT 0.280 0.319 (+13.93%) 0.223 0.261 (+17.04%) 

SVR 0.242 0.259 (+7.02%) 0.194 0.205 (+5.67%) 
ROCPDP 0.416 0.449(+7.93%) 0.357 0.392 (+9.80%) 

GA 0.299 0.323 (+8.03%) 0.240 0.258 (+7.50%) 
RankSVM 0.281 0.308 (+9.61%) 0.229 0.256 (+11.79%) 
RankBoost 0.289 0.312 (+7.96%) 0.233 0.269 (+15.45%) 

There are two interesting findings that deserve attention, as 
presented in Table III.  

(1) For each of the nine approaches under discussion, the 
defect predictor trained under the context of M2O performs 
better than that trained under the context of O2O in terms of the 
two evaluation metrics. In particular, the defect predictor built 
based on DT achieves the most significant improvement of 
prediction performance under different CPDP contexts (as 
indicated by the numbers in bold in brackets). The finding, in 
agreement with previous studies on defect classification and 
regression [2, 10, 13], suggests that the prediction performance 
can be improved as long as there is sufficient training data 
collected from other projects. 

(2) According to the two evaluation metrics, our approach, 
by and large, outperforms the other eight approaches under the 
two experiment contexts, as shown by the numbers in bold. 

TABLE IV.  PERFORMANCE COMPARISON AMONG DIFFERENT METHODS 

 LR RF GB DT SVR ROCPDP GA RankSVM RankBoost 
S K S K S K S K S K S K S K S K S K 

JDT 0.437 0.385 0.424 0.363 0.321 0.277 0.451 0.412 0.304 0.245 0.455 0.395 0.429 0.366 0.434 0.380 0.447 0.408 
EQ 0.513 0.441 0.490 0.422 0.393 0.323 0.464 0.401 0.343 0.295 0.562 0.503 0.444 0.399 0.548 0.491 0.536 0.474 
AL 0.222 0.167 0.267 0.223 0.198 0.134 0.246 0.193 0.257 0.218 0.391 0.355 0.356 0.304 0.211 0.162 0.232 0.173 

MYL 0.252 0.198 0.196 0.137 0.189 0.132 0.278 0.212 0.230 0.183 0.486 0.413 0.304 0.247 0.237 0.185 0.249 0.198 
PDE 0.291 0.226 0.275 0.211 0.231 0.182 0.319 0.231 0.238 0.179 0.351 0.294 0.364 0.295 0.321 0.271 0.308 0.269 
Avg. 0.342 0.283 0.330 0.271 0.266 0.210 0.352 0.290 0.274 0.224 0.449 0.392 0.379 0.322 0.350 0.298 0.354 0.304 

S: Spearman, K: Kendall, and the best result determined by both the two evaluation metrics is highlighted in bold type. 
  

Because our prior study [10] has shown that CPDP models 
for bug numbers are comparable to (or sometimes better than) 
those WPDP models with respect to prediction performance. 
That is, there are actually no significantly statistical differences 
between the two types of defect predictors. To further validate 
the effectiveness of our method, we compared our method 
performed under the context of M2O with the benchmark 
approaches conducted in WPDP scenarios. 

We trained eight new defect predictors in a specific WPDP 
scenario that has been used in [21]. For each target project in 
Table IV (see the first column), we randomly selected 80% of 
class files of the project as training data, and the remainder of 
the files was used as test data. We repeated this step 20 times 
and used the average of prediction results for the 20 executions 
as the final result. As shown in Table IV, because our method 
obtains the best result three times under the context of M2O, it 

is, on average, better than the other eight approaches performed 
in the WPDP scenario in terms of both the two evaluation 
metrics. Compared with these benchmark methods, the 
performance improvements with respect to Spearman range 
from 18.47% (on GA) to 68.80% (on GB), and they span from 
21.74% (on GA) to 86.67% (on GB) in terms of Kendall. 
Generally speaking, according to the results of Tables III and 
IV, under the context of M2O our method outstrips the 
benchmark methods conducted in both CPDP and WPDP 
scenarios, which suggests that it can be applied to those 
projects with very little historical defect data. 

V. THREATS TO VALIDITY 
The most interesting result of this paper is that the defect 

predictor built with our method under the context of M2O is, 
on average, better than those trained by using different types 



of typical learning methods in both CPDP and WPDP 
scenarios. Even so, there are still some potential threats to the 
validity of our work, one of which concerns the generalization 
of the finding. The reasons mainly lie in the following aspects: 
1) only the 5 projects in AEEEM is used in our experiments, 
implying that we need to validate the general effectiveness of 
our method on larger data sets from real-world software 
projects; 2) because the information about the severity of bugs 
is missing in AEEEM, we have to rank all the examples in 
question in terms of the number of bugs instead of its actual 
score; 3) in the WPDP and CPDP scenarios, we select training 
data in a simple way, though there are many time-consuming 
but effective methods for feature selection and dimension 
reduction [21]; and 4) we only utilize eight typical methods 
that belong to three different categories, namely, regression 
analysis, single-objective optimization, and learning to rank, 
without additional optimization for a given data set. 

VI. CONCLUSION AND FUTURE WORK 
In recent years CPDP has become very popular in software 

engineering, but it is often treated as a binary classification or 
regression problem in most of prior studies. To facilitate actual 
development activities in projects with limited manpower and 
time, in this paper we consider it as a ranking problem and 
propose a ranking-oriented CPDP method. Interestingly, the 
empirical results obtained based on AEEEM show that the 
defect predictor built with our method under the context of 
M2O is, on average, better than those trained by using the 
benchmark methods in both CPDP and WPDP scenarios. This 
suggests that our method is a sound choice to train defect 
predictors for those newly created or inactive software projects. 

As an initial attempt to construct ranking-oriented defect 
predictors in different CPDP scenarios, the proposed approach 
in this paper needs to be improved. So, our future work is to 
accurately predict the Top-k ranking for buggy software entities.   
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