
Practical Combinatorial Testing Approaches:

A Case Study of a University Portal Application

Mary Frances Moore and Sergiy Vilkomir

Department of Computer Science

East Carolina University

Greenville, NC 27858 USA

{moorema, vilkomirs}@ecu.edu

Abstract—Time and quality are important factors when

determining the proper approach for software testing. A software

program can often be used in various environments (different

platforms, operating systems, browsers, networks, etc.) and

require thorough testing to provide high quality and reliability in

different configurations. Combinatorial testing is an effective

approach to testing hardware and software configurations.

However, testing resources are often restricted in real practice.

Because business goals require different testing methods, there is

no best one-size-fits-all testing approach. For this reason, we

experimentally investigated and analyzed several combinatorial

approaches based on Each Choice and pairwise methods (with

and without the consideration of operational profiles) through

the testing of an Adviser Scheduling application located in a

university web portal. Test sets with various configurations were

generated according to six different combinatorial strategies. The

Advanced Combinatorial Testing System (ACTS) tool, which was

provided by the National Institute of Standards and Technology

(NIST), was used to generate pairwise test sets automatically. The

case study software application was retested for each of the

proposed testing approaches, and the results were compared

after taking into account the number of test cases and the

corresponding detected faults. Based on this analysis, we provide

recommendations for the selection of testing approaches to align

with different business goals. The recommendation chosen for the

university web portal application allowed for improved quality

and reduced time for software testing.

Keywords—Combinatorial testing; pairwise; Each Choice;

Operational Profile

I. INTRODUCTION

A software program can often be used in various
environments, such as different platforms, operating systems,
browsers, networks, etc., and it requires comprehensive testing
for many configurations to provide high quality and reliability.
One of the best approaches in this situation is combinatorial
testing [1, 2], which has been confirmed to be practical and
effective [3-6].

Combinatorial t-way testing requires that any combination
of values of any t testing parameters or configuration items
should be included in some test case. This type of testing is
often used for t=1 (Each Choice testing) or t=2 (pairwise
testing) [7, 8]. Each Choice covers all values of all parameters,
but it does not consider combinations of values. Pairwise
testing covers all values and combinations of each value with

all others, i.e., it covers all pairs of values. A larger value of t
increases the effectiveness of t-way testing, but this requires
more test cases, obliging testers to compromise between
desirable effectiveness and available testing resources.

Testing resources (time, money, and human resources) are
often restricted in real practice. A company’s business goal
might include improving the quality or effectiveness of testing
while keeping the same degree of testing or even reducing the
number of test cases, while still maintaining the appropriate
level of testing quality. Because different business goals
require different testing approaches, there is no “best” testing
approach. Sets of different approaches should be considered to
select one suitable for the current situation and the specific
business goals.

In real practice, some configurations are more common
than others. For example, when a particular software
application is accessed by many users, Internet Explorer may
be used more often than Chrome, Windows 8 more often than
Windows Vista, etc. This can be described using an operational
profile, which is a quantitative characterization of how a
system or software will be used [9]. To achieve trustworthy test
results, software testing should be performed according to the
operational profile, namely, the proportion of tests for different
configurations should approximately reflect the occurrences of
these configurations in the software’s real usage [10, 11].
However, combinatorial approaches treat all testing
configurations equally. In order to reflect the operational
profile, these approaches should be modified and the number of
configurations extended.

In this paper, we analyzed several combinatorial testing
approaches based on Each Choice and pairwise methods, with
and without consideration of an operational profile. The paper
is organized as follows: Section II explains the organization of
our investigation and the proposed testing approaches. The
Advisor Scheduling application, used as a case study for
applying combinatorial testing, is described in Section III.
Section IV contains detailed information on test configurations
that were generated according to different combinatorial testing
methods. Section V provides experimental testing results of
these configurations and analyzes the effectiveness of the
proposed approaches. The conclusions are presented in Section
VI.

DOI reference number: 10.18293/SEKE2016-045

II. TESTING APPROACHES AND ORGANIZATION OF THE

INVESTIGATION

Our experimental investigation included retesting the
Advisor Scheduling application using six combinatorial
approaches based on Each Choice and pairwise testing. This
application, used as a case study and described in the next
section, has already been deployed and tested in depth but
without using combinatorial approaches. The first version of
this application, which contained all the bugs found and
removed in the original testing phase, was retested. Our results
were compared to the original test results, taking into account
the number of test cases and the corresponding bugs found for
each combinatorial approach. Our goal was to find an approach
comparable in size to the number of original test cases while
providing greater effectiveness in fault detection.

We investigated the following six approaches:

 Each Choice

 Each Choice with consideration of the operational

profile

 Each Choice with additional parameters

 Pairwise

 Pairwise with consideration of the operational profile

 Pairwise with additional parameters

The “pure” Each Choice and pairwise approaches used the
same configuration parameters and their values as the initial
testing. However, Each Choice required significantly fewer test
cases. Pairwise required approximately the same number of test
cases as the initial testing but provided much better coverage of
parameter value combinations. Taking into consideration the
operational profile, we suggested using the same method for
Each Choice and pairwise. Usually, the precise reflection of
operational profiles requires using probabilistic models and a
large number of test cases [12], but this was not possible for
practical testing in our case study. An approximate approach to
consider operational profiles has been suggested by Kuhn et al.
[1, pp. 61-64] by adding additional values of parameters. We
suggested another simple approximate method of adding one or
two additional test cases into the test sets with the most
frequently used parameter values. This made the distribution of
values in test sets closer to the real operational profile.

Because combinatorial approaches require a small number
of tests, it was possible to add additional configuration
parameters and still have a comparable number of test cases
compared to those in the original testing. In turn, new
parameters allowed testing new configurations that were not
tested originally. Detailed analysis of the generated test cases
(Section IV) and the results of testing for different approaches
(Section V) allowed for the provision of practical
recommendations for the selection of testing approaches to
align with different business goals.

III. A CASE STUDY: ADVISOR SCHEDULING APPLICATION

A. Description

Many universities use a web portal to provide students,
faculty, and staff with access to valuable data and applications

within one location. Access to a portal is usually granted with
university credentials. These credentials validate the access the
user should have. For instance, when an employee logs into a
portal, he or she may have access to applications such as Pay
History and Workplace Training. However, when a student
logs in, he or she would not get access to those applications.
Instead, other applications would be available such as GPA
Calculator, Grade History, and Course Schedule. Frequently,
applications are available to multiple user types, but each user
is granted a different level of access based on need. For
example, an employee user type could view announcements in
an application, but an administrator could add, edit, and delete
the announcements. Each application within a portal is
customized to fit the needs of all users having access to the
application.

Before each application within a portal is released to its
users, it must be tested thoroughly to ensure that it works for all
user types. Testing configurations should be created to include
user access testing, along with other parameters such as
browser, operating system, etc. Testing multiple configurations
can ensure that the application is ready for all users who will
access the application in different ways. This case study
reviews the original testing process for an Advisor Scheduling
application in a university portal and proposes and implements
practical combinatorial testing approaches.

The Advisor Scheduling application is used for advising
processes specified by an Academic Advising Collaborative.
The application has four main functions: scheduling, accepting
appointments, viewing academic information, and processing
appointment outcomes. The scheduling feature and processing
appointment outcomes feature is accessible by all users of the
application. The accepting appointments and viewing academic
information features are available only to advisors.

There are three different user permission groups in the
Advisor Scheduling application: administrators, advisors, and
delegates. Each group is given limited access to the application
based on the permission group they have been assigned. For
users to access the Advisor Scheduling application, they must
first log into the university portal. Once they have done so,
using their university credentials, they can find the Advisor
Scheduling application in the portal’s Tools section.

The application’s interface allows advisors to manage and
perform routine tasks with ease. After opening the application,
the advisor will see their calendar, the advisee roster, and
outstanding actions. The outstanding actions list contains
appointment requests created either by delegates within the
Advisor Scheduling application or by students using the
student scheduler application (which is a separate entity from
the Advisor Scheduling application). When an advisor accepts
or rejects an appointment displayed in their Outstanding
Actions list, the calendar and advisee roster is updated
accordingly. After accepting an appointment, the calendar
immediately displays the appointment in its allotted time slot.
At the same time, the advisee roster adds the student for the
newly created appointment to the top of the roster. If rejected,
the appointment is removed from the Outstanding Actions list
and not added to the calendar. Fig. 1 displays a portion of an
adviser’s calendar with student appointments.

Figure 1. Adviser Scheduling Application – Redacted for Confidentiality

B. The Original Testing Phase

When originally testing the Adviser Scheduling application,
one test set consisting of 11 configurations of parameters was
used, with a total of 121 tests completed for the application’s
21 test cases. The configuration parameters and their values
included:

 Browser: IE, Chrome

 User type: Faculty, Administrator, Delegate

 Operating System: Windows 7, OS X

 Network: On Campus–Secured, On Campus–

Unsecured, Off Campus

These configurations were determined by the testing time

allotted as the project’s deadline approached, along with tester
knowledge of the portal and experience of the types of bugs
normally found. The original testing procedure was found to be
adequate and thorough; however, there were not enough
resources to provide mobile testing. Table 1 shows the
configurations of the parameters listed above that were used in
testing and the number of tests completed for each
configuration.

TABLE I. ORIGINAL TESTING CONFIGURATIONS AND NUMBER OF

TESTS COMPLETED

Config Browser
User

Type

Operating

System
Network Tests

1 IE Faculty Win 7
On Campus–

Secured
21

2 IE Admin Win 7
On Campus–

Secured
10

3 IE Delegate Win 7
On Campus–

Secured
12

4 IE Faculty Win 7
On Campus–

Unsecured
7

5 IE Faculty Win 7 Off Campus 7

6 Chrome Faculty Win 7
On Campus–

Secured
21

7 Chrome Admin Win 7
On Campus–

Secured
10

8 Chrome Delegate Win 7
On Campus–

Secured
12

9 Chrome Faculty OS X
On Campus–

Secured
7

10 Chrome Faculty OS X
On Campus–

Unsecured
7

11 Chrome Faculty OS X Off Campus 7

C. The Operational Profile

According to the data collected by the Academic

Technologies team, 42 percent of users access the Adviser

Scheduling application with Internet Explorer. Faculty are the

only user type to have access to all 21 of the application’s test

cases, while the other user types perform auxiliary functions,

making the faculty user type the most common. Due to the fact

that the standard operating system provided to university

faculty is Windows 7 connected to the on-campus secured

network, they are most commonly used to access the

application. In addition, the data collected by the Academic

Technologies team suggested that 16 percent of user traffic

comes from mobile devices; however, that percentage has

risen and will continue to rise due to mobile device and tablet

popularity and convenience. When testing with the Each

Choice and pairwise testing methods, the operational profile

data can be considered while determining the test sets as a way

of tailoring the test sets to the user majority.

IV. APPLICATION OF THE TESTING APPROACHES

The two methods being explored through re-testing of the
Adviser Scheduling application are Each Choice testing and
pairwise testing, both with and without consideration of the
application’s operational profile. The Each Choice testing
method provides test sets that allow for a significant reduction
in the amount of testing while retaining or improving the
testing quality. The pairwise testing method provides test set
sizes similar to or slightly larger than the original testing
approach.

With both the Each Choice and pairwise testing methods,
variations can be made to the test sets to tailor the methods to
testing needs. Three sets of testing approaches were used for
both methods to test the Adviser Scheduling application. For
each testing method, at least one approach aims to reduce the
number of required test configurations, one takes the
application’s operational profile into consideration, and one
aims to increase the test coverage and number of detected bugs.

A. Each Choice Testing Approaches

The three test sets (Tables II, III, and IV) were created
using the Each Choice testing method. The goal of the results
from these tables is to maintain testing quality while
significantly reducing the number of required tests.

Each Choice Test Set 1: This Each Choice testing table
includes the application’s original testing parameters shown in
Table II. The table covers every parameter tested originally at
least once using three configurations.

TABLE II. EACH CHOICE TEST SET 1

Config Browser
User

Type

Operating

System
Network Tests

1 IE Faculty Win 7
On Campus–

Secured
21

2 Chrome Admin OS X
On Campus–

Unsecured
10

3 IE Delegate Win 7 Off Campus 12

Each Choice Test Set 2: With the resources provided by the
Academic Technologies team, the operational profile of the
Adviser Scheduling application was determined and considered
when testing with the Each Choice and pairwise testing
methods. The data in Table III include the most common
parameter values based on the operational profile. This extra
configuration was added to Test Set 1 to consider the
application’s operational profile, making Test Set 2 consist of
four configurations.

TABLE III. EACH CHOICE TEST SET 2

Config Browser
User

Type

Operating

System
Network Tests

4 IE Faculty Win 7
On Campus

–Unsecured
21

Each Choice Test Set 3: This Each Choice testing table
introduces a new parameter and values and consists of five
configurations (see Table IV). The aim of this test set is to
reduce the number of required tests while increasing the
number of bugs found by testing mobile devices, which were
not a part of the application’s original test range.

TABLE IV. EACH CHOICE TEST SET 3

Co

nf

Brow-

ser

User

Type

Oper.

System
Network

Mo-

bile
Tests

1 IE Faculty Win 7

On

Campus–

Secured

No 21

2 Chrome Admin Win 10

On

Campus–

Unsecured

No 10

3 Firefox Delegate OS X
Off

Campus
No 12

4 Safari Faculty iOS

On

Campus–

Secured

Yes 21

5 Stock Admin Android

On

Campus–

Unsecured

Yes 21

B. Pairwise Testing Approaches

To generate the test sets used for pairwise testing in this
case study, the Advanced Combinatorial Testing System
(ACTS) tool was used. Provided by the National Institute of
Standards and Technology, ACTS is a free tool that assists
users in generating t-way combinatorial test sets. Prior to using
the ACTS tool, the user must identify the parameters that will
be used in testing, along with their values and associated
constraints. The tool eliminates any combinations that violate
constraints between parameters as they were configured while
creating the system, and then it allows the user to build and
view the test set. For the Adviser Scheduling application case
study, the ACTS tool was used to create pairwise (2-way) test
sets for the application’s 21 test cases. Three test sets were
created using the ACTS tool.

Pairwise Test Set 1: This test set includes the parameters
used in the original testing phase to show that less testing could
be performed with a much higher level of coverage. This test
set includes nine configurations of the original testing

parameters, shown in Table V, which is two configurations
fewer than used originally.

TABLE V. PAIRWISE TEST SET 1

Config Browser
User

Type

Operating

System
Network Test

1 Chrome Faculty OS X Off Campus 21

2 IE Faculty Win 7

On

Campus–
Secured

21

3 Chrome Faculty Win 7

On

Campus–
Unsecured

21

4 IE Admin Win 7 Off Campus 10

5 Chrome Admin OS X

On

Campus–

Secured

10

6 IE Admin Win 7

On

Campus–

Unsecured

10

7 Chrome Delegate OS X Off Campus 12

8 IE Delegate Win 7
On

Campus–

Secured

12

9 Chrome Delegate OS X

On

Campus–
Unsecured

12

Pairwise Test Set 2: The second test set includes the
parameters used in the original testing phase, the same nine
configurations as in Test Set 1, and an additional two
configurations that are derived from the operational profile.
These additional two configurations are shown in Table VI.

TABLE VI. PAIRWISE TEST SET 2

Config Browser
User

Type

Operating

System
Network Tests

10 IE Faculty Win 7
On Campus–

Unsecured
21

11 IE Faculty Win 7 Off Campus 21

Pairwise Test Set 3: The third test set introduces more
parameters and parameter values to broaden the testing scope
with the intent to find new bugs. This test set includes 19
configurations, listed in Table VII, based on five parameters.
The new parameter introduced in this set is “Mobile” with
values “Yes” and “No.” Several new parameter values were
added for parameters “Browser” and “Operating System.”

V. RESULTS OF THE INVESTIGATION

Fig. 2 and Table VIII display the results of the investigation,

comparing the number of tests completed for each test set with

the number of bugs found. In addition, Table VIII compares

the number of parameters and their values and the number of

configurations tested per test set. A total of 43 tests were

performed while testing Each Choice Test Set 1. This test set

provided the same quality of testing as the original procedure,

while reducing the number of tests from 121 to 43, essentially

cutting the number of tests by 65%. While testing Each Choice

Test Set 2, 64 tests were performed that detected the same 53

bugs found during the original testing. Each Choice Test Set 2

consisted of 21 more test cases than Each Choice Test Set 1 to

include consideration of the operational profile. Each Choice

Test Set 3 consisted of 85 tests. This test set introduced testing

coverage for mobile devices. A total of 75 bugs were found

during testing. These bugs consisted of the same 53 bugs

detected during the original testing of the Advisor Scheduling

application, in addition to 22 new bugs that were specific to

mobile devices and mobile browsers.

TABLE VII. PAIRWISE TEST SET 3

Co

nf

Brow-

ser

User

Type

Oper.

System
Network

Mo-

bile
Tests

1 IE Admin Win 7

On

Campus–
Unsecured

No 10

2 IE Delegate Win 10
Off

Campus
No 12

3 Chrome Faculty Win 7

On

Campus–

Secured

No 21

4 Chrome Admin Win 10

On

Campus–
Unsecured

No 10

5 Chrome Delegate OS X
Off

Campus
No 12

6 Chrome Faculty Android

On

Campus–

Unsecured

Yes 21

7 Chrome Admin iOS
On

Campus–

Secured

Yes 10

8 Firefox Delegate Win 7
Off

Campus
No 12

9 Firefox Faculty Win 10

On

Campus–

Secured

No 21

10 Firefox Admin OS X

On

Campus–

Unsecured

No 10

11 Firefox Delegate Android
On

Campus–

Secured

Yes 12

12 Safari Faculty OS X
Off

Campus
No 21

13 Safari Delegate iOS

On

Campus–

Unsecured

Yes 10

14 Stock Admin Android
Off

Campus
Yes 12

15 Safari Faculty iOS
Off

Campus
Yes 21

16 IE Faculty Win 7

On

Campus–

Secured

No 21

17 Stock Faculty Android

On

Campus–

Unsecured

Yes 21

18 Safari Admin OS X
On

Campus–

Secured

No 10

19 Stock Delegate Android
On

Campus–

Secured

Yes 12

Figure 2. Comparison of the Number of Tests Completed to Number of Bugs

Found

TABLE VIII. NUMBER OF PARAMETERS AND CONFIGURATIONS FOR EACH

TESTING METHOD

 Test Sets
Para-

meters

Para-

meter

Values

Config.

per Test

Set

Tests Bugs

1 Original test 4 10 11 121 53

2
Each Choice

Test Set 1
4 10 3 43 53

3
Each Choice

Test Set 2
4 10 4 64 53

4
Each Choice

Test Set 3
5 16 5 85 75

5
Pairwise

Test Set 1
4 10 9 129 53

6
Pairwise

Test Set 2
4 10 11 171 53

7
Pairwise

Test Set 3
5 16 19 279 75

Pairwise Test Set 1 consisted of 129 tests. This test set

provided the same quality of testing as the original procedure.

However, it required slightly more test cases but fewer test

configurations. The amount of testing was approximately the

same as it was for original testing, but the provided level of

coverage was much better. While testing Pairwise Test Set 2,

171 tests were performed that detected the same 53 bugs as

found during the application’s original testing. Pairwise Test

Set 2 consisted of 42 more test cases than Pairwise Test Set 1

to include consideration of the operational profile. Pairwise

Test Set 3 consisted of 279 tests to include testing coverage

for mobile devices. A total of 75 bugs were found during

testing, as with Each Choice Test Set 3. Each Choice Test Set

3 provided the same quality of testing as Pairwise Test Set 3,

while reducing the number of tests from 279 to 85. While in

our case study pairwise testing did not demonstrate additional

benefits when compared with Each Choice, in other situations

results could be different.

VI. CONCLUSIONS

In conclusion, we found that the original testing of the

application was thorough, but while good enough to detect the

same bugs as the pairwise and Each Choice approaches, it was

not systematic and did not allow time for mobile testing. The

purely pairwise method and Each Choice method did not

reveal any new bugs but reduced the number of

configurations. Reducing these also reduces the effort required

in testing. Although pairwise testing requires completing more

tests than Each Choice, the latter cannot produce better results

than pairwise testing, although it can reduce the testing time.

The Each Choice testing method allowed for testing an extra

parameter (mobile) without exceeding the time and resource

restriction as originally faced in testing. While no new bugs

were found when considering the operational profile, there is

greater confidence in the test results that the application is

ready for use by its main audience.

In this case study, pairwise was not the most beneficial

testing method, but it is usually considered to be the better

testing alternative (compared to Each Choice) when sufficient

resources are available. Our case study is limited to one

application and does not intend to compare these approaches

in detail. However, even this one example demonstrates how

practical combinatorial testing approaches can minimize the

number of test cases and/or maximize the number of detected

faults.

With the results of fewer tests, new configurations, and

better detection rates, this study shows that the Each Choice

testing method with the inclusion of the mobile device

parameter can be implemented as the preferred testing

approach for applications within the university’s web portal.

ACKNOWLEDGMENT

This work was performed under the following financial
assistance award 70NANB15H217 from the U.S. Department
of Commerce, National Institute of Standards and Technology.

REFERENCES

[1] D. R. Kuhn, R. Kacker, and Y. Lei, Introduction to Combinatorial
Testing, Chapman and Hall/CRC, 2013, 341 pages.

[2] D. R. Kuhn, R. Kacker, Y. Lei, and J. Hunter, “Combinatorial software
testing, ” IEEE Computer, vol. 42, no. 8, August 2009, pp. 94–96.

[3] P. J. Schroeder, P. Bolaki, and V. Gopu, “Comparing the fault detection
effectiveness of n-way and random test suites,” Proceedings of the 2004
IEEE International Symposium on Empirical Software Engineering
(ISESE'04), 19–20 August 2004, Redondo Beach, CA, USA, pp. 49–59.

[4] D. R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing:
Beyond pairwise, ” IT Professional, 10.3, 2008, pp. 19–23.

[5] S. Vilkomir, K. Marszalkowski, C. Perry, and S. Mahendrakar,
“Effectiveness of Multi-Device Testing Mobile Applications,”
Proceedings of the 2nd ACM International Conference on Mobile
Software Engineering and Systems (MobileSoft 2015), May 16–17,
2015, Florence, Italy, pp. 44–47, in conjunction with the 37th
International Conference on Software Engineering (ICSE’15).

[6] S. Vilkomir, O. Starov, and R. Bhambroo, “Evaluation of t-wise
Approach for Testing Logical Expressions in Software, ” Proceedings of
the IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW 2013), 18–20 March
2013, Luxembourg, Luxembourg, pp. 249–256.

[7] J. Czerwonka, “Pairwise testing in Real World. Practical extensions to
test case generators,” Proceedings of 24th Pacific Northwest Software
Quality Conference, Portland, Oregon, October 9–11, 2006, pp. 419–
430.

[8] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:
a survey,” Software Testing, Verification and Reliability, vol. 15, no. 3,
March 2005, pp. 167–199.

[9] J. Musa, “Operational profiles in software-reliability engineering,” IEEE
Software, 10.2, 1993, pp. 14–32.

[10] C. Smidts, C. Mutha, M. Rodríguez, and M. J. Gerber, “Software testing
with an operational profile: OP definition,” ACM Comput. Surv. 46, 3,
Article 39, February 2014, 39 pages.

[11] P. A. Brooks and A. M. Memon, “Automated gui testing guided by
usage profiles,” Proceedings of the 22 IEEE/ACM international
conference on Automated software engineering, November 5–9, 2007,
Atlanta, Georgia, USA, pp. 333–342.

[12] J. A. Whittaker and M. G. Thomason, “A Markov Chain Model for
Statistical Software Testing,” IEEE Trans. Softw. Eng. 20, 10, October
1994, pp. 812–824.

