
Long-Term Active Integrator Prediction in the
Evaluation of Code Contributions

Jing Jiang, Fuli Feng, Xiaoli Lian, Li Zhang
State Key Laboratory of Software Development Environment, Beihang University, Beijing, China

{jiangjing, lily}@buaa.pku.edu.cn, fulifeng93@gmail.com, lxl tuizi@hotmail.com

Abstract—In open source software (OSS) projects, integrators
are given high-level access to repositories so that they could
maintain and manage projects. Although integrators play a
critical role in evaluating code changes for OSS projects, they
may be short-term active. Long-term active integrators keep
in evaluating code update submission and managing responses
from contributors. In order to survive and succeed, OSS projects
need to attract and retain long-term active integrators. To assist
OSS projects to retain active integrators, we propose a method
called LTAPredict to predict whether integrators will be long-
term active in the evaluation of code contributions. LTAPredict
collects activity data of integrators, extracts a rich set of features,
and makes prediction via machine learning techniques. We
perform experiments on 37 popular projects, containing a total
of 1,073 integrators. Results show that based on the Decision
Tree, LTAPredict achieves the accuracy as 0.829, the precision
as 0.81, the recall as 0.827 and the F1 as 0.818. Meanwhile, we
evaluate the feature importance to identify the most significant
indicators of long-term active integrators. We observe that
whether integrators becoming long-term active is associated with
the number of active months and social distance with contributors
in their first year as integrators. These findings assist OSS
projects to identify potential long-term active integrators and
adopt better strategies to retain them in the evaluation of code
contributions.

Keywords-Long-term active integrator; Code contributions;
Open source software

I. INTRODUCTION

In open source software (OSS) projects, contributors fix
bugs or improve functions, and then submit these code changes
to original projects [1]. Integrators are granted the privilege
of directly committing codes to source code repositories [2],
[3], [4]. Integrators are responsible for reviewing code updates
submitted by contributors, and deciding whether or not merge
these code changes into repositories. Integrators not only
merge satisfactory codes into repositories, but also discuss
with contributors and encourage them to keep in submitting
codes.

Although integrators play a critical role in evaluating code
changes for OSS projects, they may be short-term active in
the evaluation of code contributions. Due to the principle of
voluntary participation, integrators always have the freedom
to decide their activities and even leave the community [5].
Furthermore, some integrators may focus on writing codes
by themselves, and seldom spend time in evaluating code
contributions from others. Long-term active integrators keep in

DOI reference number: 10.18293/SEKE2016-030

evaluating code modifications and merging satisfactory codes
into repositories. Long-term active integrators in the evaluation
are crucial for projects success, because their participation
in a long period keeps the sustainable development for OSS
projects. In addition, if integrators always change, it is hard
for contributors to know evaluative criteria, which may further
discourage volunteers to make contributions [6].

Previous works have explored how new participants join
projects [1], make contributions [7], [8], enter the circle of
trust [9] and finally become integrators [10]. Some other works
have studied factors which impact decisions in the evaluation
of code contributions [2], [3]. However, it remains unknown
whether integrators are active in a long time or not, and what
affect their decisions. Thus there is a need for a comprehensive
analysis of long-term active integrators in the management of
code contributions.

In this work, we explore what make long-term active
integrators in open source project-hosting site GitHub [11].
GitHub is one of the world’s largest open source communities,
and it provides the pull request model for contributors to
submit code updates [2] We mainly study pull requests to
understand integrators’ contributions in code evaluation. We
use GitHub API to collect data, and obtain information of
37 popular projects and their 1,073 integrators. We study
active periods of integrators in the management of code
contributions. Based on analysis results, we define integrators
as long-term active if they have joined projects for more than 1
year and keep active in evaluating code contributions in more
than 30% of months.

We propose a method called LTAPredict to predict whether
integrators will be long-term active. LTAPredict extracts vari-
ous kinds of features to comprehensively describe integrators,
including willingness and capacity, environment, experience
and social status. LTAPredict uses these features and makes
prediction via machine learning techniques. Experimental
results show that based on the Decision Tree, LTAPredict
achieves the accuracy as 0.829, the precision as 0.81, the recall
as 0.827 and the F1 as 0.818. Meanwhile, we evaluate the
feature importance to identify the most significant indicators
of long-term active integrators. We observe that whether
integrators becoming long-term active is associated with the
number of active months and social distance with contributors
in their first year as integrators. These findings assist OSS
projects to identify potential long-term active integrators and
adopt better strategies to retain them in the evaluation of code

contributions.

II. BACKGROUND AND DATASETS

In this section, we begin by providing background informa-
tion about contribution evaluation process in GitHub. Then,
we introduce how our datasets are collected. Finally, we report
statistics of our datasets.

A. Contribution Evaluation Process

In GitHub, contributors fork repositories, use codes as their
own and make changes [2]. Contributors submit pull requests
when they want to merge their changes into main reposito-
ries. Integrators inspect code changes and evaluate potential
contributions. Integrators have several options towards pull
requests: If pull requests are deemed satisfactory, they merge
code changes into main repositories; otherwise, they may
directly reject and close them, or ask contributors to make
updates. Integrators may also ignore code contributions, and
leave pull requests open. For each pull request, an issue is
opened automatically, where integrators and other interested
users exchange comments.

Integrators, who evaluate the quality of code change submis-
sion, decide project evolution and play a critical role for OSS
projects. In order to becoming integrators, developers need to
successfully pass the evaluation of technical contributions and
social interactions [7], [9], [10]. After becoming integrators,
they are given high-level access to repositories, and have
the responsibility of evaluating code update submission and
managing responses from contributors. Although integrators
play a critical role in evaluating code changes for OSS
projects, they may be short-term active in the evaluation of
code contributions. The principle of voluntary participation
attracts a lot of people to join the OSS community, while it
also means that people always have the freedom to decide
their activities or even leave the community [5]. Furthermore,
some integrators may focus on writing codes by themselves,
and seldom spend time in evaluating code contributions from
others.

B. Data Collection

GitHub provides access to its internal data stores through an
API 1. It allows us to access a rich collection of OSS projects,
and provides valuable opportunities for research. We gather
information from GitHub API and create a dataset of projects
and integrators. The process of data collection is as follow:

We obtain project lists from MSR 2014 Mining Challenge
MySQL Dataset [12]. This dataset includes 90 popular soft-
ware projects for top programming languages in GitHub. We
focus on popular and active projects, because they may need
integrators. Small projects often have few integrators, and their
project owners can manage projects by themselves.

Next, we downloaded historical information of 90 projects
in July 2014, including their pull requests. Then the following
criteria is applied to exclude projects from the initial selection:
Firstly, projects should have at least one event of activities

1http://developer.github.com/v3/

within 1 month prior to data collection (July 2014), so as to
avoid inactive projects. Secondly, projects should be created at
least two years prior to data collection. It ensures that projects
have more than two years of historical information. We are
interested to explore how their integrators behave as time goes
on. Finally, projects should have at least 300 pull requests. For
our analysis, we use the evaluation process of pull requests to
identify active integrators. We choose projects which use pull
requests as the important method for code contributions in
GitHub.

After selection, our sample includes 37 projects. We make
basic analysis of projects in our dataset. 8 projects were
created earlier than July 2009, and have histories longer
than 5 years; 20 projects have histories longer than 4 years,
and 32 projects have histories longer than 3 years. Since
GitHub was founded in April 2008 2, these projects have long
histories in GitHub and provide great opportunities to explore
evolution of integrators. Our dataset includes projects written
in representative languages, such as PHP, Ruby, Python, C,
C++, JavaScript and Scala [13].

We collect detailed information of pull requests from all
developers in 37 projects through GitHub API. Then we
collect project integrators from pull requests. GitHub does
not provide the exact promotion time of integrator, and we
use the first activity time to estimate the promotion time and
determine the integrator. If a developer firstly merges the pull
request, or closes a pull request from another developer, then
this developer is considered as an integrator, and the promotion
time is estimated by this first activity time. We exclude activity
records before the first activity time, so as to make sure that
the user has already been promoted as the integrator. Next, we
extract pull request records for integrators. Integrators take
different kinds of actions to handle pull requests, such as
accepting, rejecting, closing or discussing pull requests. We
extract these activities from our datasets, and build records
about when pull requests are handled by which integrators
with which actions. GitHub is a social coding site [11], and
allows users to attract followers. We also collect follower
and following relationships of integrators. Finally, our dataset
includes 1,073 integrators and their 104,910 records of pull
request evalution.

C. Basic Statistics

In this subsection, we report basic statistics of our datasets.
The integrator’s age is defined as the number of months
between the integrator’s promotion time and data collection.
For every active integrator, we compute the number of active
months after the promotion, divided by the integrator’s age. In
our computation, we exclude integrators who join projects less
than 1 year before our data collection. This is because that the
time is too short to study their characteristics. Figure 1 shows
complementary cumulative distribution function (CCDF) of
the percentage of active months for active integrators. 64.1%
of integrators have the percentage of active months larger

2https://github.com/blog/40-we-launched

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f A
ct

iv
e

 In
te

gr
at

or
s

(C
C

D
F

)

% of Active Months

Fig. 1. Percentage of active months

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

N
um

be
r

of
 P

ul
l R

eq
ue

st
s

 E
va

lu
at

ed
 b

y
an

 In
te

gr
at

or

% of Active Months

Fig. 2. The relationship between active periods and productivity

than 30%, while other 35.9% of active integrators have the
percentage of active months less than 30%. The majority of
active integrators keep in evaluating code contributions in a
long time, while a minority of integrators occasionally handle
pull requests.

We study the relationship between the number of active
months and the amount of pull requests evaluated by the
integrator. Figure 2 shows the percentage of active months
versus the number of pull requests evaluated by the integrator.
When an integrator has the larger percentage of active months,
this integrator is likely to evaluate more pull requests. The
Pearson correlation between the percentage of active months
and the number of pull requests is as high as 0.51. The
productivity in contribution evaluation is strongly correlated
with the active time.

We consider the definition of long-term active and short-
term active integrators in the evaluation of pull requests. In
fact, there is no standard for the definition, and different people
may have various attitude. The definition of long-term active
integrators is mainly used to study impact factors of their
activities. We also try other thresholds of the percentage of
active months, and observe similar results of feature impor-
tance and prediction results. Figure 1 shows that 64.1% of
active integrators have the percentage of active months larger
than 30%. We choose 30% as the threshold to classify active
integrators. According to active periods and productivity, we
classify active integrators into three categories: short-term

Machine

Learning

Techniques
Training

Integrators

Willingness and

Capacity

Experience and

Social Status

Environment
Prediction

Model

New Integrator

Long-Term

Active or Not

Model Building Phase Prediction Phase

Feature

Extraction

Fig. 3. Overall framework of our method LTAPredict

active, long-term active and unclassified. Firstly, integrators
are long-term active if they have joined projects for more
than 1 year, and keep active in evaluating code contributions
in more than 30% of months. Joining projects at least 1
year before data collection ensures that our data is enough
for statistical analysis. Secondly, integrators are short-term
active if they have joined projects for more than 1 year, but
keep active in evaluating code contributions in less than 30%
of months. Finally, if integrators join projects less than 1
year before our data collection, there is not enough data to
make analysis. These integrators are unclassified, and they are
excluded in our research and left for future research. Figure 2
shows that the productivity has strong correlation with active
periods. Therefore, the percentage of active months is enough
to measure the productivity of integrators.

III. LTAPREDICT: A METHOD TO PREDICT LONG-TERM
ACTIVE INTEGRATORS

In this section, we describe our method LTAPredict to pre-
dict long-term active integrators. Figure 3 presents the overall
framework of LTAPredict. The entire framework contains two
phases: a model building phase and a prediction phase. In
the model building phase, our goal is to build a model from
training datasets. In the prediction phase, the model is used to
predict whether an integrator will be long-term or short-term
active.

As described in the subsection II-B, activity data of in-
tegrators is firstly collected. Next, we generate features for
our analysis based on prior literature about pull request
acceptance [2], [3], long-term contributor [1], social cod-
ing [11], [14] and committer promotion [9], [10]. We split
selected features into three categories, including willingness
and capacity, environment, experience and social status. We
make basic statistics of these features in Table I. We describe
detailed definitions and why we choose these features in
subsections III-A, III-B and III-C. Then we use different
machine learning techniques to build the prediction model, as
described in the subsection III-D. In the prediction phase, we
use the LTAPredict to predict whether an integrator will be
long-term or short-term active.

TABLE I
SELECTED FEATURES AND BASIC STATISTICS OF ACTIVE INTEGRATORS

Feature 5% Mean 95%
Willingness and Capacity

initial active month 12 7.19 1
handle time (day) 49.83 13.8 0.28

num comments 15 6.35 1
Environment

total pulls 2,872 707.95 17
Experience and Social Status

age (day) 1448.83 728.71 91.23
social distance 0.42 0.09 0
num follower 1680 326.77 1

num following 76 17.61 1

A. Willingness and Capacity

The probability for a new developer to become a long-
term contributor may be influenced by the willingness and
capacity [15]. Willing and capacity are important factors
to decide contributors’ activeness in future, and they may
also influence integrators’ activities. We use three features to
measure integrators’ willingness and capacity.

Initial Active Month: Gharehyazie et al. found that the num-
ber of patches a contributor submitted in early months was the
important factor to predict the promotion of integrators [10].
We wonder whether activity frequency is also important after
developers become integrators. We consider several features
to describe activity frequency of integrator in early months:
the number of pull requests the integrator evaluates in the first
year as an integrator, the number of pull requests the integrator
evaluates divided by the total number of pull requests in the
first year, and the number of active months in the first year.
To check whether these features are sufficiently independent,
we leverage Spearman’s rank correlation coefficient [16] (ρ).
We observe that ρ between any two features is more than
0.8, and these features are highly correlated. Therefore, our
analysis uses the number of active months in the first year as
an integrator.

Handle Time: After a contributor submits the pull request, it
takes some time for an integrator to evaluate the contribution
and give feedback. We compute the average interval time
between the pull request’s submission and the integrator’s
first responding. It describes whether the integrator handles
pull requests quickly or slowly. Note that the integrator may
take several actions towards a pull request, such as leaving
comments and then closing the pull request. We use the first
action in this feature. The interval time between the pull
request’s submission and the integrator’s last responding is
not used, because it is highly correlated with that of first
responding.

Num Comments: Marlow et al. observed that uncertain
contributions required explanation and discussion [17]. Pull
requests with many of comments may be more complicated
to evaluate [3], and cost integrators additional time to nego-
tiate with submitters. Due to the high degree of uncertainty,
integrators may be unwilling to evaluate these contributions.
To measure the level of discussion, we compute the average
number of comments in pull requests handled by the integrator.

B. Environment

Previous work showed that the project environment at the
joining time had obvious impact on the contributors’ behav-
ior [15]. We explore whether project environment influences
integrators’ activities.

Total Pulls: To study environment impact on the integrator,
we count the total number of pull requests accumulated in
the project, when the developer becomes an integrator. This
feature has strong correlation with other measures, including
the project’s age [10], current size of core team (number
of active integrators) [2], [3] and number of contributors
who have submitted pull requests before. Therefore, the total
number of pull requests is a representative feature to describe
the project environment.

C. Experience and Social Status

Sinha et al. observed that the prior experience influenced
the probability of the promotion from contributors to inte-
grators [9]. Tsay et al. found that the contributors’s social
status affected the probability of pull request acceptance [3].
We wonder whether experience and social status are also
associated with the likelihood of integrators becoming long-
term active. We use four features to measure the experience
and social status.

Age: We measure the age of the integrator when he or she
firstly handles the pull request in the project. It is calculated
as the interval time between the integrator’s registration in
GitHub and the first pull request evaluation in this project. It
measures whether the integrator is new or old in GitHub.

Social Distance: GitHub is a social coding site, and
integrates social media functionality with code management
tools [11]. Users follow interesting developers and build social
connections. Tsay et al. found that pull request acceptance was
influenced by social connections between integrators and sub-
mitters [3]. Social connections may also influence activeness
of integrators. For pull requests handled by the integrator, we
compute the percentage of submitters who directly follow this
integrator.

Num Follower: This feature is the number of followers
the integrator has at the data collection time. The number
of followers shows the status of the integrator in the OSS
community [3], [14]. A large number of followers means that
the integrator is more attractive and influential. We observe the
number of followers is highly correlated with the number of
repositories owned by the integrator. The number of follower
also indicates how actively the integrator creates projects.

Num following: This feature is the number of developers
followed by the integrator. It describes whether the integrator
actively builds social connections with others.

D. Prediction

We use machine learning techniques to make prediction.
In training datasets, we know whether the integrator becomes
long-term active or not. Each integrator belongs to a category,
namely long-term active or short-term active. Several machine
learning algorithms are known to perform well and have been

TABLE II
MEAN PERFORMANCE ON 10-FOLD CROSS VALIDATION

Model AUC ACC PRE REC F1
Decision Trees 0.876 0.829 0.81 0.827 0.818

Logistic Regression 0.899 0.808 0.846 0.717 0.776
Neural Network 0.882 0.792 0.796 0.743 0.769
Random Forests 0.848 0.82 0.789 0.835 0.811

Support Vector Machines 0.862 0.817 0.817 0.772 0.794
k-Nearest Neighbor 0.752 0.728 0.795 0.557 0.655

used in previous works [2], [18]. We run training datasets and
build the prediction model of LTAPredict through machine
learning classifiers, including Decision Trees (DT), Logistic
Regression (LR), Neural Network (NN), Random Forests (R-
F), Support Vector Machines (SVM) and k-Nearest Neighbor
(kNN). We implement LTAPredict on top of the software
Rapidminer Toolkit 3. According to project requirements and
experimental results, a suitable machine learning classifier can
be chosen for LTAPredict.

For a new integrator, we use LTAPredict to predict the
category which the integrator will belong to. If the category
is long-term active, this integrator is predicted to be long-term
active in the evaluation of code contributions; otherwise, the
integrator is predicted to be short-term active.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate our method LTAPredict. The
experimental environment is a windows server 2012, 64-bit,
Intel(R) Xeon(R) 1.90 GHz server with 24GB RAM. We
consider 5 metrics to evaluate experimental results, including
Precision (PRE), Recall (REC), F-measure (F1), Accuracy
(ACC) and Area under the receiver operating characteristic
curve (AUC). We use these metrics, because they have been
used in the acceptance prediction of code contributions [2]. In
addition, 10-fold cross validation is applied on our experiments
and every value of measurement on performance is average of
that of each iteration.

Table II illustrates the mean performance of LTAPredict
based on different classifiers. Based on the Decision Tree,
LTAPredict achieves the accuracy as 0.829, the precision as
0.81, the recall as 0.827 and the F1 as 0.818. Except the k-
Nearest Neighbor, LTAPredict based on other classifiers gets
the AUC over 0.8, and LTAPredict based on the Logistic
Regression achieves the AUC as 0.899. LTAPredict based
on k-Nearest Neighbor also achieves the lowest value of
ACC. Based on different classifiers, LTAPredict maintains
PRE at about 0.8 with a very small fluctuation. When REC is
considered, LTAPredict based on the Random Forests performs
the best. LTAPredict based on the Decision Trees has the F1 as
0.818, and LTAPredict based on the Random Forests has the
F1 as 0.811, which are better than other classifiers. Different
machine learning classifiers bring various results for LTAPre-
dict. In practice, a specific machine learning classifier can be
chosen, according to project requirements and experimental
results.

Previous work [2] uses performance decrease to identify
important indicators of pull request acceptance. We also use

3http://rapidminer.com/

TABLE III
PERFORMANCE DECREASE ON 10-FOLD CROSS VALIDATION, WHEN EACH

ATTRIBUTE IS FILTERED OUT

Attribute AUC ACC PRE REC F1
social distance -0.012 -0.165 -0.049 -0.439 -0.295

initial active month -0.105 -0.2 -0.142 -0.435 -0.317
num follower -0.023 -0.127 -0.032 -0.338 -0.211

age -0.046 -0.106 -0.026 -0.278 -0.167
num comments -0.027 -0.118 -0.057 -0.27 -0.174
num following -0.028 -0.09 -0.024 -0.232 -0.137

handle time -0.017 -0.051 -0.14 -0.148 -0.144
total pulls -0.02 -0.047 0.006 -0.148 -0.074

social_distance

initial_active_month

num_follower

age

num_comments

num_following

handle_time

total_pulls

REC decrease

0.0 0.1 0.2 0.3 0.4 0.5

Fig. 4. Feature importance

performance decrease to estimate the importance of a feature,
when it is filtered out by the select attribute operator. Since we
care most on the percentage of real long-term active integrators
identified by the classifier, we choose LTAPredict based on the
Random Forests, which achieves the highest REC. Then we
use the REC decrease to rank feature importance.

Based on the Random Forests, the LTAPredict’s perfor-
mance decrease caused by absence of each attribute is illus-
trated in Table III. It shows that REC will drop significantly if
any feature is absent and some of them would bring disastrous
influence on performance of LTAPredict. Rank of feature
importance can be seen in Figure 4. It is obvious that an almost
half drop of REC could happen without either social distance
or initial active month. Therefore, whether an integrator will
keep handling pull-requests is mostly decided by the social
distance with the contributors and the number of active months
in the first year. In Figure 4, social distance, number follower
and age cause great REC decrease, which shows that the
experience and social distance are strongly associated with
the likelihood of integrators becoming long-term active.

V. THREATS TO VALIDITY

Threats to internal validity relate to experimenter bias and
errors. Firstly, there is not any standard definition of long-
term active integrators. As a result, we define integrators as
long-term active, if they have joined projects for more than 1
year and keep active in evaluating code contributions in more
than 30% of months. Then we use this definition to identify
long-term active integrators and find dominant features. We
also try other thresholds of the percentage of active months
and obtain similar results of feature importance and prediction

results. The choice of the percentage of active months has
few impacts on our results. Secondly, we use integrators’
activities in the first year to make prediction. In future work,
we will explore whether integrators’ activities in a shorter
period can be used to make prediction. Thirdly, we use the
first activity time of contribution evaluation to estimate the
promotion time. If the integrator keeps inactive for a long
time after the promotion, the actual promotion time is much
earlier than the estimation time. In this case, the estimation
time is not correct, but it has few impacts on results. This
is because we mainly study activities in code evaluation, and
this integrator has no activities of code evaluation between the
actual promotion time and estimation time.

Threats to external validity relates to the generalizability of
our study. Our empirical findings are based on open source
projects in GitHub, and it is unknown whether our results can
be generalized to other OSS platforms. In the future, we plan to
study a similar set of research questions from other platforms
such as Bitbucket, and compare their results with our findings
in GitHub.

VI. RELATED WORKS

Some previous works explored how new participants joined
projects, made contributions and became core members final-
ly [1], [7], [8], [9], [10], [19], [20]. Herraiz et al. found that
volunteers tended to follow a step-by-step joining process,
while hired developers were usually promoted as integrators
suddenly [7]. Gharehyazie et al. observed that the amount
of two-way communications a person participated in, was a
significant predictor of one’s likelihood to becoming a integra-
tor [10]. Our work differs in that we focus on understanding
of long-term active integrators who keep in handling pull
requests.

Some significant works [2], [3], [4] studied factors which
affected decisions to merge pull requests in GitHub. Tsay et
al. found that core members both used technical and social
information to evaluate potential contributions [3]. Gousios et
al. investigated factors that affected the decision to merge pull
requests, and factors that affected the time it took to process
pull requests [2]. We also make research on pull requests, but
we mainly study integrators who evaluate these pull requests.

VII. CONCLUSION

In this work we examine what make long-term active
integrators in the evaluation of code contributions. We conduct
the statistical analysis of integrator activeness in GitHub. Then
we use machine learning techniques to predict long-term active
integrators and discover important indicators. Results show
that based on the Decision Tree, LTAPredict achieves the
accuracy as 0.829, the precision as 0.81, the recall as 0.827
and the F1 as 0.818. We observe that whether integrators
becoming long-term active is associated with the number of
active months and social distance with contributors in their
first year as integrators. These findings assist OSS projects
to identify potential long-term active integrators and adopt

better strategies to retain them in the evaluation of code
contributions.

ACKNOWLEDGMENT

This work is supported by National Natural Science Founda-
tion of China under Grant No.61300006, the State Key Lab-
oratory of Software Development Environment under Grant
No.SKLSDE-2015ZX-24, and Beijing Natural Science Foun-
dation under Grant No.4163074.

REFERENCES

[1] M. Zhou and A. Mockus, “Does the initial environment impact the future
of developers?” in Proc. of ICSE, Honolulu, USA, May 2011.

[2] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model,” in Proc. of ICSE,
Hyderabad, India, July 2014.

[3] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proc. of ICSE, Hyder-
abad, India, July 2014.

[4] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrators
perspective,” in Proc. of ICSE, Florence, Italy, May 2015.

[5] K. Crowston, K. Wei, J. Howison, and A. Wiggins, “Free/libre open
source software development: What we know and what we do not know,”
ACM Computing Surveys, vol. 44, no. 2, pp. 1–35, 2012.

[6] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Leveraging transparen-
cy,” IEEE Software, vol. 30, no. 1, pp. 37–43, 2013.

[7] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M. G. Barahona,
“The processes of joining in global distributed software projects,” in
Proc. of GSD, Shanghai, China, May 2006.

[8] C. Jensen and W. Scacchi, “Role migration and advancement processes
in ossd projects: A comparative case study,” in Proc. of ICSE, Minnesota,
USA, May 2007.

[9] V. S. Sinha, S. Mani, and S. Sinha, “Entering the circle of trust:
Developer initiation as committers in open-source projects,” in Proc.
of MSR, Honolulu, USA, May 2011.

[10] M. Gharehyazie, D. Posnett, and V. Filkov, “Social activities rival patch
submission for prediction of developer initiation in oss projects,” in Proc.
of ICSM, Eindhoven, The Netherlands, September 2013.

[11] L. Dabbish, C. Stuart, and J. Herbsleb, “Social coding in github:
Transparency and collaboration in an open software repository,” in Proc.
of CSCW, Washington, USA, February 2012.

[12] G. Gousios, “The ghtorent dataset and tool suite,” in Proc. of MSR,
Hyderabad, India, May 2014.

[13] T. F.Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere, “Popularity,
interoperability, and impact of programming languages in 100,000 open
source projects,” in Proc. of COMPSAC, Kyoto, Japan, July 2013.

[14] J. Jiang, L. Zhang, and L. Li, “Understanding project dissemination on
a social coding site,” in Proc. of WCRE, Koblenz, Germany, October
2013.

[15] M. Zhou and A. Mockus, “What make long term contribu-
tors:willingness and opportunity in oss community,” in Proc. of ICSE,
Zurich, Switzerland, June 2012.

[16] E. L. Lehmann and H. J. M. D’Abrera, Nonparametrics: Statistical
Methods Based on Ranks. Prentice-Hall, 1998.

[17] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: Activity traces and personal profiles in github,” in Proc.
of CSCW, San Antonio, USA, February 2013.

[18] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, and J. Sun, “A comparative
study of supervised learning algorithms for re-opened bug prediction,”
in Proc. of CSMR, Genova, Italy, March 2013.

[19] G. von Krogh, S. Spaeth, and K. R. Lakhani, “Community, joining,
and specialization in open source software innovation: a case study,”
Research Policy, vol. 32, no. 7, pp. 1217–1241, 2003.

[20] B. Shibuya and T. Tamai, “Understanding the process of participating
in open source communities,” in Proc. of FLOSS, Vancouver, Canada,
May 2009.

