
QCC:A novel cluster algorithm based on Quasi-

Cluster Centers 
 

Jinlong Huang1, Qingsheng Zhu1, Lijun Yang1, Dongdong Cheng1 

 
1Chongqing Key Lab. of Software Theory and Technology, College of Computer Science, 

Chongqing University, Chongqing 400044, China 

Email: qszhu@cqu.edu.cn; 352720950@qq.com 

 

 

Abstract—Cluster analysis is aimed at classifying elements 

into categories on the basis of their similarity. And cluster analysis 

has been widely used in many areas such as pattern recognition, 

and image processing. In this paper, we propose an approach 

based on the idea that the density of cluster centers are highest in 

its k nearest neighborhood or reverse k nearest neighborhood, and 

clusters is divided by sparse region. We firstly define the similarity 

between clusters. Based on this idea, no matter non-spherical data 

or complex manifold data, the proposed algorithm is applicable. 

And the proposed algorithm has a certain capacity on outliers 

detection. We demonstrate the power of the proposed algorithm 

on several test cases. Its clustering performance is better than 

DBSCAN, DP and K-AP clustering algorithms. 
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I.  INTRODUCTION  

Clustering is a primary method of data mining and data 
analysis. The aim of clustering is to classify elements into 
categories, or clusters, on the basis of their similarity. Clusters 
are collections of objects whose intra-class similarity is high and 
inter-class similarity is low. Now the study on clustering 
algorithm has been very active. Several different clustering 
methods have been proposed[1]. They can be roughly divided 
into Partitioning Methods[2-4], Hierarchical clustering[5-7], 
Density-Based Clustering[8-9], Grid-Based Clustering[10-11], 
Model-Based Method[12-13].  

For many clustering algorithm, it is important that finding 
cluster center to clustering. In K-means[2] and K-medoids[3] 
methods, the data was classified to a cluster by a small distance 
to the cluster center. An objective function, typically the sum of 
the distance to a set of putative cluster centers, is optimized until 
the best cluster centers candidates are found. In 2007, Brendan 
and Delbert proposed a new clustering algorithm by passing 
messages between data points, called “affinity 
propagation”(AP)[14]. AP takes as input measures of similarity 
between pairs of data points. Real-valued messages are 
exchanged between data points until a high-quality set of 
exemplars and corresponding clusters gradually emerges. 
However, AP clustering algorithm con not directly specify the 
final class number. In order to generate K clusters, Zhang et al. 
proposed K_AP clustering algorithm[15]. 

However, these above center-based methods are not able to 
detect non-spherical clusters[16], since data points are always 

assigned to the nearest center. In 2014, Rodriguez et al. proposed 
a  new clustering algorithm in Science, called DP[17]. The DP 
algorithm has its basis in the assumptions that cluster centers are 
surrounded by neighbors with lower local density and that they 
are at a relatively large distance from any points with a higher 
local density. And the non-spherical shape clusters can be easily 
detected by DP[17] clustering algorithm. But DP is not 
application to complex manifold data sets. In 2014, Hongjie et 
al. proposed the DAAP clustering algorithm[18] that can solve 
the complex manifold problem by computing the particular 
similarity that defined in paper[18]. However, the time 
complexity of DAAP is higher than AP, K_AP and DP for 
computing the particular similarity that the sum of the Edge-
Weight in shortest path. And the clustering result of DAAP is 
effected by many parameters such as the number of neighbors 
and clusters, damping coefficient, the maximum iteration. 
Moreover, generally, the clustering effect of DAAP is bad on 
datasets with noise points. Detailed description see paper[18].  

In this paper, we propose a new clustering method. The 
proposed algorithm has its basis in the assumptions that the 
density of cluster centers is the maximum of its neighbors or 
reverse neighbors and clusters are divided by sparse area. 
Similar to the above methods, it based on the cluster centers. 
However, unlike these above methods, the cluster centers of the 
proposed algorithm are not ‘real’ cluster centers that one center 
corresponds to one final cluster, but the Quasi-Cluster Center 
that one Quasi-Cluster Center corresponds to one initial cluster. 
Then we obtain the final cluster by merging the clusters that the 
similarity is greater than alpha. The proposed clustering 
algorithm and it’s related definitions will be detailed descripted 
in section 3. 

II. RELATED WORK 

Most of density based clustering algorithms, such as 
DBSCAN, DP, AP and K-AP, define the number of neighbors 
that distance is smaller than 𝑑𝑐  as the density of each point. 
And the density of points as the follows formula. 

𝜌𝑖 = ∑ 𝑋(𝑑𝑖𝑗 − 𝑑𝑐)𝑛
𝑗               (1) 

Where 𝑋(𝑑𝑖𝑗 − 𝑑𝑐) = 1  if 𝑑𝑖𝑗 − 𝑑𝑐 < 0  and 𝑋(𝑑𝑖𝑗 −

𝑑𝑐) = 0 otherwise, and 𝑑𝑐 is a cutoff distance. Basically, 𝜌𝑖 

is equal to the number of points that are closer than 𝑑𝑐 to point 
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i. However, once the intra-class density variations is great, the 
value of 𝑑𝑐 is hard to set. For example, as shown in Figure 1, if 
the value of 𝑑𝑐  is set inappropriately, then there are no 
neighbors in the neighborhood of point a and b within 𝑑𝑐, but 
the neighbors of the center of 𝐶1 include all of the points of 𝐶1. 
Moreover, although point a and b are normal point, they will be 
regard as the noise in density-based algorithms. And point a and 
b will be regard as the cluster center in DP algorithm, since the 
local density of point a and b is the biggest in its neighborhood. 

 

 

 

 

 

 

 

 

 

As the most of exist density based clustering algorithm, the 
proposed method need to compute the density of every point so 
that we can get the cluster centers that the density peaks. In order 
to avoid the above question, we introduce the follow definitions.  

Let D be a database, p and q be some objects in D, and k be 
a positive integer. We use d(p,q) to denote the Euclidean 
distance between objects p and q. 

Definition1 (K-distance and Density): The k-distance of p, 

denoted as 𝐾𝑑𝑖𝑠𝑡(𝑝), is the distance d(p,o) between p and o in 

D, such that: 

 (1) For at least K objects o’ ∈  D/{p} is holds that 
d(p,o’)<=d(p,o), and 

 (2) For at most (K-1) objects o’ ∈ D/{p} it holds that 
d(o,o’)<d(p,o) 

The 𝐾𝑑𝑖𝑠𝑡(𝑝) can represent the density of the object p. The 
smaller 𝐾𝑑𝑖𝑠𝑡(𝑝) is, the much denser the area around p is. So, 
like paper [19], we define the density of p, denoted as Den(p), 
as the follows equation: 

Den(p) = 1
𝐾𝑑𝑖𝑠𝑡(𝑝)⁄                 (2) 

Definition2 (K Nearest Neighbor and Reverse K Nearest 
Neighbor) If d(p, q) ≤ 𝐾𝑑𝑖𝑠𝑡(𝑝), then call the object q as the K 
Nearest Neighbor of p. All of the K Nearest Neighbor compose 
the K Nearest Neighborhood, denote as KNN(p). Conversely,  
call the object p as the Reverse K Nearest Neighbor of q, and all 
of the Reverse K Nearest Neighbor compose the Reverse K 
Nearest Neighborhood, denote as RKNN(q). The formulation of 
KNN(p) and RKNN(p) as following: 

KNN(p) = {q|d(p, q) ≤ 𝐾𝑑𝑖𝑠𝑡(p)} 

RKNN(q) = {p|d(p, q) ≤ 𝐾𝑑𝑖𝑠𝑡(p)} 

III. THE PROPOSED ALGORITHM 

In this paper we divide the neighbors of every point into 
Dense Neighbors and Sparse Neighbor, defined as the 
Definition3. 

Definition3 (Dense and Sparse Neighbor): If the density of q 
is greater than p and q ∈ KNN(𝑝), then call the object q as the 
Dense Neighbor of p, denote as DN(p). On the contrary, if the 
density of q is smaller than p and q ∈ KNN(𝑝), then q is called 
as the Sparse Neighbor, denote as SN(p).  

Definition4 (Exemplar) If the density of q is the maximum in 
the neighbors of p and p≠q, then call the object q is the Exemplar 
of p.  

From the Definition of Exemplar, we can know that each 
point of dataset possess at most one Exemplar. If the density of 
p is greater than the density of all k nearest neighbors or reverse 
k nearest neighbors of p, then p is the Exemplar of itself. And 
we call p is the Quasi-Cluster Center(QCC). 

Definition5 (Quasi-Cluster Center) If object p satisfied one of 
the follows two conditions, then we call p as QCC. 

 (1) ∀q ∈ KNN(p), Den(p) ≥ Den(q) or 

 (2) ∀q ∈ RKNN(p), Den(p) ≥ Den(q)  

Figure 2 is the Exemplar Graph(EG) which can be comprised 
by connecting each point p to its Exemplar. As shown in Figure 
2, the parameter k=30, points 𝑐1, 𝑐2, … , 𝑐7  etc. is QCC that 
marked in red. Other red points will be treated as outliers that 
will be explained in Algorithm1. And through many 
experiments and analysis, we find that the number of Quasi-
Cluster Center appears to get smaller as the parameter k 
becomes bigger. 

 

 

 

 

 

 

 

 

 

 

 

 

Definition6 (Similarity between clusters): Similarity between 

clusters 𝐶𝑖  and 𝐶𝑗 , denote as Sim(𝐶𝑖, 𝐶𝑗), is defined as the 

ratios of the number of objects q that q ∈ 𝐶𝑖  ∩ 𝑞 ∈ 𝐶𝑗 and K. 

The formulation of similarity between clusters as follows: 

Sim(𝐶𝑖 , 𝐶𝑗) = Num({q|q ∈ 𝐶𝑖  ∩ 𝑞 ∈ 𝐶𝑗}) /K     (3) 

Figure 1. the density variations 

Figure2: Exemplar Graph and Quasi-Cluster Center 



As shown in Figure 3, We consider the ratios of the number 
of these points that between two adjacent marked in red and K 
as the similarity of two adjacent initial clusters. If these two 
adjacent initial clusters are divided by sparse area, then the 
similarity of these two cluster is small. In other words, these two 
clusters are two individual cluster. On the contrary, if these two 
adjacent initial clusters are connected by density area, the 
similarity of these two adjacent clusters will be great. And these 
two clusters will be merged to one cluster. In this way, even if 
one big cluster was divided to many small clusters because the 
value of k is small, like Figure1 shows, these small clusters C1, 
C2, …, C7 will be merged into one cluster finally. 

 

 

 

 

 

 

 

 

 

 

 

Based on the above definitions, we proposed a novel 
clustering algorithm, named QCC, with the capacity that outlier 
detecting. The procedure of QCC algorithm is minutely 
described in Algorithm1. 

Firstly, the proposed clustering algorithm QCC use the 
KNN-Searching to obtain the KNN and RKNN of each point of 
dataset D, so we need the parameter k that the number of the 
neighbors of every points. Then compute the density of each 
point. Secondly, step 5 in Algorithm1, QCC find the Exemplar 
of each point using Definition4, and obtain all of the Quasi-
Cluster Center using Definition5. After that, QCC obtain the 
initial clusters. 

 (1) QCC arbitrarily find a Quasi-Cluster Center, and 
classify it and it’s Sparse Neighbors to the same cluster 
𝐶𝑖.  

 (2) Then QCC arbitrarily find a point p in this cluster 
and classify the Sparse Neighbors of p to cluster 𝐶𝑖 , 
until all points of this cluster have been visited.  

 (3) Then QCC find an other Quasi-Cluster Center and 
repeat the above steps, until all Quasi-Cluster Center 
have been visited. 

In this way, the clusters extended from dense area to the 
sparse area. As shown in Figure(3), the points marked in red are 
classified to C1 and C2 at the same time. Then QCC merge all 
the clusters that similarity greater than alpha into one cluster. If 
the similarity of cluster C1 and C2 is smaller than alpha, then the 
red points will classified into the cluster that it’s Exemplar 
belongs to. alpha is a artificial parameter. Generally, the value 

of alpha is 0.2 to 0.5. The higher the alpha, more clusters can be 
obtained. 

Figure3: The similarity between C1 and C2 

Algorithm1: QCC(D,K,alpha)  //alpha is the 

similarity between clusters. 

Output: C={𝑐1, 𝑐2, … , 𝑐𝑀} 

(1) Initializing Variables: r=0, K_dis(i)=0, 

Den(i)=0, KNN(𝑖) = ∅,  𝑅𝐾𝑁𝑁(𝑖) = ∅, 

SN(i)= ∅, Exemplar(i)=i, Sim(𝑐𝑖, 𝑐𝑗) =

0, Q𝐶𝐶 = ∅; 

(2) [KNN(𝑖), RKNN(𝑖)]= KNN-

Searching(D,K) 
//use the KNN-Searching algorithm to 

obtain the KNN and RKNN of every 

point. 

(3) For ∀x ∈ D  // compute the K-distance 

and the Density of the objects in D. 

a. Find y that the K-th nearest neighbor 

of x 

b. 𝐾_𝑑𝑖𝑠(𝑥)=||𝑥 − 𝑦||2; 

c. Den(x)=1
𝐾_𝑑𝑖𝑠(𝑥)⁄ ; 

(4) For ∀x ∈ D find the SN(x). 

(5) For ∀x ∈ D  // find the Exemplar of x 

and obtain the Quasi-Cluster Center. 

a. y=max(Den(𝐾𝑁𝑁(𝑥))); 

b. if y ≠ x then 𝐸𝑥𝑒𝑚𝑝𝑙𝑎𝑟(𝑥) = y; 

c. if y==x then r=r+1 and Q𝐶𝐶(r)=x; 

d. z=max(Den(RKNN(x))); 

e. if x==z then r=r+1 and Q𝐶𝐶(r)=x; 

(6) For i=1 to r  //obtain the initial cluster. 

a. 𝑐𝑖 = {Q𝐶𝐶(i)}∪ 𝑆𝑁(Q𝐶𝐶(i)); 

b. For ∀x ∈ 𝑐𝑖 

c.    If visited(x)≠true then 

visited(x)=true and 𝑐𝑖 = 𝑐𝑖 ∪
𝑆𝑁(𝑥); 

(7) Compute the similarity matrix Sim(𝑐𝑖 , 𝑐𝑗) 

between the clusters. 

(8) While max (Sim(𝑐𝑖, 𝑐𝑗))>=alpha  

//merge the initial cluster 

a. (i,j)=max(Sim(𝑐𝑖 , 𝑐𝑗)); 

b. Merge cluster 𝑐𝑖 and 𝑐𝑗; 

c. Update the similarity matrix; 

(9) If ∃(0 < Sim(𝑐𝑖 , 𝑐𝑗) < alpha) 

a. If x ∈ 𝑐𝑖  & x ∈ 𝑐𝑗 then x is 

classified to the cluster that it’s 

exemplar belongs to. 

(10) For i=1:length(C) 

a. If number of 𝑐𝑖 < k; 

b. Then ∀x ∈ 𝑐𝑖 x is marked as outlier 

and delete 𝑐𝑖 from C; 

(11) Output the final clusters 

C={𝑐1, 𝑐2, … , 𝑐𝑀} 



After the above steps, QCC regard the clusters that the 
number of points smaller than k as outlier clusters. In other 
words, the points in these clusters is marked as outliers. So the 
red points in Figure2 will be regarded as outliers except C1, 
C2, …, C7. So QCC will obtain the accurate clustering results 
as long as the value of k is smaller than the number of points in 
smallest cluster of dataset. Finally, QCC output the ultimate 
clusters. So QCC not only cluster the dataset, but also has certain 
ability of outlier detection. 

IV. EXPERIMENTAL ANALYSIS 

A. Cluster on Artificial Data Set 

We chose four challenging artificial data sets. Data1, taken 
from [8], consist of two spherical data and two manifold data 
that one is simple, another is complex ,and a few outliers, a total 
of 582 points. Data2, taken from [20], composed of three 
spherical data, one complex manifold data and some noise points, 
a total of 1400 points. Data3, taken from [21], composed of six 
high density manifold data and some noise points, a total of 8000 
points. Data4, taken from [22], composed of one dense spherical 
cluster and one sparse manifold cluster, a total of 159 points. 

In all results, we don’t show the decision graph, decide the 
number of the clusters ,of DP. We decide the right number of 
clusters to Data1, Data3 and Data4. For Data2, we show the best 
cluster result in repeated test. For DAAP, we set the density 
factor is assigned as ρ=2, the maximum iteration maxits=1000, 
convergence of iteration coefficient convits=100. 

 

Figure 4 shows the DP, DAAP, DBSCAN and QCC 
algorithm’s clustering results on Data1. For DAAP, the value of 
the number(k) of neighbors that used for construct the adjacency 
matrix is set 6, the value damping coefficient(lam) is 0.9. From 
this figure, we can see that, as analyses in section1, DP algorithm 
can correctly cluster the spherical data and simple manifolds 
data, but can’t correctly cluster the complex manifolds data. 
Data1 is correctly clustered by DAAP, DBSCAN(eps=15, 
minpoints=5) and QCC(k=20, alpha=0.3). Moreover, DBSCAN 

and QCC algorithm detect out the noise points in Data1, but 
DAAP can’t. 

 

Figure 5 shows the four algorithm’s clustering results on 
Data2. For DAAP, the value of the number(k) of neighbors that 
used for construct the adjacency matrix is set 6, the value 
damping coefficient(lam) is 0.9. DP failed to cluster the complex 
manifolds data that grouped into 6 clusters. Owing to particular 
similarity that the sum of the weight of the edge in shortest path, 
DAAP has some capacity of cluster to complex manifold 
datasets. However, DAAP failed to cluster the manifolds cluster 
in Data2. Since the shortest path is too long, so the end 
region(marked by red square) of the manifold cluster is 
classified the wrong cluster. Data2 is correctly clustered by 
DBSCAN(eps=0.2, minpoints=40) and QCC(k=20, alpha=0.3) 
algorithm. And most of the noise points in Data2 is detected out 
by DBSCAN and QCC. 

Figure 6 shows the four algorithm’s clustering results on 
Data3. Although DP obtain the right number of clusters in Data3 
by artificially select the cluster centers in decision graph, three 
clusters are wrongly clustered among these clusters. DAAP 
obtain the right number of clusters, but some clusters are 
wrongly clustered too. Moreover, DAAP mistakenly regard a 
part of noise as a small normal cluster. The cluster result of 
DBSCAN is obviously superior to DP and DAAP, and 
DBSCAN detect out the noise points in Data3. However, some 
points in normal clusters are treated as noise points. Although 
QCC(k=80, alpha=6) failed to detect out the noise in Data3, 
QCC obtain the right number of cluster without the number of 
clusters that artificial set, and correctly cluster the normal points. 

Figure 7 shows the four algorithm’s clustering results on 
Data4. Same as the results on Data4, although DP and DAAP 
obtained the right number of clusters by artificially select or set. 
For the density variations of the two clusters in Data4 is great, 
DBSCAN(eps=2, minpoints=5) failed to correctly cluster Data4. 
DBSCAN don’t obtain the right number of clusters in Data4, and 
mistakenly treat some normal points as noise. The performance 

 

 

 

 



of QCC(k=5, alpha=0.2) is obviously superior to DP, DAAP and 
DBSCAN on Data4. 

 

 

From the above results and analysis, we can see that, DP 
algorithm has a certain capacity to cluster non-spherical 

data(correctly cluster Data2). But, as shown in the above results, 
DP algorithm can hardly correctly cluster the complex manifold 
datasets. DAAP has a certain capacity of cluster to complex 
manifold datasets. However, DAAP failed to cluster those 
datasets that include long manifolds data(Data2), lots of 
noise(Data3) or great density variations clusters(Data4). 
Although the performance of DBSCAN is superior to DP and 
DAAP, DBSCAN failed to correctly cluster on Data3 and Data4. 
So, from the results of artificial datasets, we can see that QCC 
that proposed in this paper can get the right number of final 
clusters without human intervention. And the scope of QCC’s 
application is wider than other cluster algorithms. No matter 
complex manifold datasets or density variations is great, QCC 
can get satisfactory clustering results. 

It should be noted that the value of k should smaller than the 
number of points of minimum cluster, and the value of alpha is 
between 0.2 and 0.5 for most data sets. When the bulk density is 
high, the value of alpha should be greater accordingly, such as 
Data4. In order to demonstrate the effectiveness of QCC, we also 
experiment on real datasets as the follows section. 

B. Cluster on Olivetti Face Database 

Like the paper[17], we also applied the QCC algorithm to the 
Olivetti Face Database[23], a widespread benchmark for 
machine learning algorithms, with the aim of identifying, 
without any previous training, the number of subjects in the 
database. For this experiment, we used 10 clusters of Olivetti 
face database. And each cluster is composed of 10 face picture. 
The size of each picture is <112x92 nint8>. The similarity 
between two images, denote as S(A,B), was computed by the 
follows equation. 

S(A, B) =
∑ ∑ (𝐴𝑚𝑛−�̅�)(𝐵𝑚𝑛−�̅�)𝑛𝑚

√(∑ ∑ (𝐴𝑚𝑛−�̅�)2
𝑛𝑚 )(∑ ∑ (𝐵𝑚𝑛−�̅�)2

𝑛𝑚 )
      (4) 

Here A and B are the subjects of Olivetti Face Database. 
𝐴𝑚𝑛 and 𝐵𝑚𝑛 represent the pixels of the two subjects picture. 
The value of S is scaled between 0 and 1. Bigger the value of S 
is, more similar the two picture is. So we define the distance of 
two picture, denote as d(A,B), as following equation. 

d(A, B) = 1 − S(A, B)                (5) 

The density is estimated as Definition1. 

The results is shown in Figure 8. In the results, faces with 
same color belong to the same cluster. 
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In order to intuitively descript the efficiency of QCC, we use 
two criteria(Purity, Recall) to evaluate the clustering 
performance. And the calculation formula is as follows: 

Purity =
∑ (max

𝑡𝑐∈𝑇𝐶
(
𝑡𝑐 ∩ 𝑐𝑖

𝑁𝐶𝑖
⁄ ))𝑘

𝑖=1

𝑘
⁄

      (6) 

Recall =
1

𝑁
∑ 𝑁𝐶𝑖

𝑘
𝑖                 (7) 

Here, Let D be a database and contains Tk clusters TC =
{𝑡𝑐1, 𝑡𝑐2, … , 𝑡𝑐𝑇𝑘} . The result of clustering algorithm is C =
{𝑐1, 𝑐2, … , 𝑐𝑘} . 𝑁𝐶𝑖

 is the number of points of 𝑐𝑖 . N is the 

number of points of whole dataset. The value of Purity and 
Recall is [0,1], the larger the value of ACC, means the better the 
clustering performance of the algorithm. 

TABLE I.  ACC AND EECALL OF THE FOUR ALGORITHM 

 DP DAAP DBSCAN QCC 

Purity 0.88 0.61 0.98 1 

Recall 1 1 0.64 0.94 

 

The QCC algorithm’s clustering results on Olivetti Face 
Database is shown in Figure8. The results show that Olivetti 
Face Database was grouped into 11 clusters, because one of the 
real 10 cluster that within the red border was divided into two 
clusters. And 6 images that marked with red spot was considered 
as outliers by QCC algorithm. However, among the 11 clusters, 
6 clusters is really correct, 2 clusters is identified 9 face images, 
one cluster is identified 6 faces in all 10 faces. Moreover, all of 
the 11 clusters remain pure, namely include only images of the 
same cluster. So the Purity of QCC is 1(the best one). The value 
of Purity of DP and DAAP is 0.88 and 0.61. Although the value 
of Purity of DBSCAN is 0.98 that closest to QCC, the value of 
Recall of DBSCAN is the lowest(0.64). Moreover, the Recall of 
QCC is 0.94 that close to 1. 

Through above analysis to results that cluster on artificial 
data and Olivetti Face Database, it is obvious that the results of 
QCC outperform the DP, DAAP and DBSCAN algorithm. And 
we can get the conclusion that QCC algorithm has a more broad 
application than AP and DP algorithm. QCC algorithm has a 
certain ability that outliers detecting and can cluster on complex 
manifold data sets. Furthermore, QCC is not likely to omit any 
cluster center as DP. So QCC cluster algorithm  superior to AP, 
DP and DBSCAN algorithm. 

V. CONCLUSION 

In this study, we propose a new cluster algorithm(QCC). The 
core idea of QCC is that clusters is divided by sparse region. 
Based on this idea, we define the Quasi-Cluster Centers. 
Remarkably, the real cluster centers must be included by Quasi-
Cluster Centers. So QCC is not likely to omit any clusters. Then 
QCC obtain the initial clusters by step5 of Algoritm1. After this, 
we define the Similarity between initial clusters. Therefore, 
QCC applies to complex manifold data sets. Through the 
experiments on the four artificial datasets, we confirmed that the 
proposed cluster algorithm(QCC) can correctly cluster on 
complex manifold data sets that DP, DAAP and DBSCAN can’t. 
The results from the Olivetti Face Database also demonstrated 

that QCC is more effective than DP, DAAP and DBSCAN. 
Furthermore the scope of application of QCC is more extensive. 
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