
An Efficient Algorithm to Identify Minimal
Failure-Causing Schemas from Exhaustive Test Suite

Yuanchao Qi1, Qi Wang1, Chiya Xu1, Tieke He2, and Ziyuan Wang1∗
1School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing, China

2State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China
∗Corresponding: wangziyuan@njupt.edu.cn

Abstract—Combinatorial testing is widely used to detect fail-
ures caused by interactions among parameters for its efficiency
and effectiveness. Fault localization plays an important role in
this testing technique. And minimal failure-causing schema is
the root cause of failure. In this paper, an efficient algorithm,
which identifies minimal failure-causing schemas from existing
failed test cases and passed test cases, is proposed to replace the
basic algorithm with worse time performance. Time complexity
of basic and improved algorithms is calculated and compared.
The result shows that the method that utilizes the differences
between failed test cases and passed test cases is better than the
method that only uses the sub-schemas of those test cases.

Keywords—Combinatorial testing, fault localization, minimal
failure-causing schema, algorithm.

I. INTRODUCTION

Softwares may be affected by the interactions among its
parameters. These interactions need to be tested to guarantee
the quality of software. But for the software with k parameters,
it is unacceptable to cover all the possible k-tuple combinations
of parametric values. Combinatorial testing provides a trade-
off between the testing cost and the degree of combinatorial
coverage. It has been widely used for its efficiency and
effectiveness, especially, in highly-configurable systems [1].
Test case generation and fault localization based on failure-
causing schemas are hot areas of research.

Many researches focus primarily on generating test cases
to filter suspicious failure-causing schemas. But there are few
materials to discuss how to filter them. The default option
is to construct all possible suspicious failure-causing schemas
from failed test cases and filter them by passed test cases.
In this paper, we propose an improved algorithm with better
time performance. The analysis of time complexity shows the
advantage of proposed algorithm. And the efficient algorithm
has been applied in our practice to compute minimal failure-
causing schemas for boolean-specification testing and Siemens
program suite.

II. BACKGROUND

The model of minimal failure-causing schema was pro-
posed by Nie et. al [2].

For a software system with k parameters, we suppose each
parameter fi has ai (1 ≤ i ≤ k) discrete valid values. Let
F = {f1, f2, ..., fk} denote the set of parameter, and Vi =

DOI reference number: 10.18293/SEKE2016-233

{0, 1, ..., ai−1} (i = 1, 2, ...k) the value set for fi without loss
of generality.

Definition 1. (Schema). A k-tuple s=(-, ...,- ,vi1 , -,..., -, vi2 ,
-, ..., -, viτ , -, ..., -) is a schema with strength τ , or a τ -way
schema (or τ -schema for short) (1 ≤ τ ≤ k). Where τ values
are fixed as vi1 ∈ Vi1 , vi2 ∈ Vi2 , ..., viτ ∈ Viτ , and other k−τ
values are not fixed and represented as ”-”.

Definition 2. (Sub-schema and parent-schema). Schemas s1 =
(v1, v2, ..., vk) and s2 = (v′1, v

′
2, ..., v

′
k) are τ1-schema and τ2-

schema respectively (τ1 ≤ τ2). If ∀1 ≤ i ≤ k, (vi=-) ∨ (vi =
v′i) is true, then s1 is a sub-schema of s2, and s2 is a parent-
schema of s1. It is denoted as s1 ≺ s2. Especially, if s1 ̸= s2,
then s1 is a real sub-schema of s2, and s2 is a real parent-
schema of s1.

Definition 3. (Failure-causing schema). A schema s is a
failure-causing schema (or FS for short), if ∀t ∈ Tall =
V1 × V2 × ...× Vk, s ≺ t ⇒ t is failed test case.

Definition 4. (Minimal failure-causing schema). A failure-
causing schema s is a minimal failure-causing schema (or
MFS for short), if any real sub-schema of s is not a failure-
causing schema.

III. ALGORITHMS

People pay more attention to the problem that how to
identify minimal failure-causing schemas accurately. However,
efficiency is also a fundamental issue. In this section, we will
introduce the most used basic algorithm and then propose an
improved one with better time complexity.

A. Basic algorithm

The basic algorithm, which identifies minimal failure-
causing schemas from failed test cases and passed test cases,
was mentioned in many materials. But its detailed process
was often omitted. Here we describe the basic algorithm and
analyze its time performance.

For each failed test case t, there are C1
k 1-way sub-schemas,

C2
k 2-way sub-schemas,..., and Ck

k k-way schemas.

When filtering suspicious schemas, from nf × C1
k 1-way

sub-schemas of failed test cases will be filtered by np × C1
k

1-way sub-schemas of passed test cases, to nf × Ck
k k-way

sub-schemas of failed test cases be filtered by np×Ck
k k-way

sub-schemas.

When comparing two i-way schemas (i = 1, 2, ..., k), the
values of i parameters should be compared. Therefore, the total



Algorithm 1: Identify MFS using failed and passed test cases
Input: FTCS: set of failed test cases
PTCS: set of passed test cases
Output: MFSs: set of minimal failure-causing schemas
1. FSs = ∅;
2. For Each failed test case t ∈ FTCS
3. FSs = FSs+ SubScheSet(t);
4. End For
5. For Each passed test case t ∈ PTCS
6. FSs = FSs− SubScheSet(t);
7. End For
8. MFSs = {s|s is minimal schemas in FSs};

time complexity of filtering suspicious schemas in Algorithm
1 should be:

O(np×C1
k ×nf ×C1

k × 1 +np×C2
k ×nf ×C2

k × 2 +...

+np×Ck
k ×nf ×Ck

k ×k) ∼ O(np×nf ×
∑k

i=1(i× (Ci
k)

2)).

Additionally, in the process of selecting minimal ones from
the set of failure-causing schemas, we can filter τ -way failure-
causing schemas by (τ − 1)-way’s (τ = 2, 3, ..., k), for each
failed test case. So there are totally Ck

k × Ck−1
k + Ck−1

k ×
Ck−2

k +...+Ck−2
k ×C1

k parametric values should be checked for
each failed test case. Here note that O(

∑k
i=2(C

i
k×Cki− 1)) ∼

O(
∑k

i=2(C
i
k)

2) ∼ O(
∑k

i=1(C
i
k)

2) ∼ O(Ck
2k).

Therefore, the time complexity of the whole Algorithm 1
should be: O(np× nf ×

∑k
i=1(i× (Ci

k)
2) + nf × Ck

2k).

B. Improved algorithm

Factually, the process of extracting and filtering suspicious
schemas in the basic algorithm could be optimized to enhance
its time performance. We will propose an improved algorithm
by utilizing the differences between failed test cases and passed
test cases.

Considering a failed test case t and a passed test case t′,
we could construct a set of parameteres Diff Param(t, t′)
that contains all parameters whose parametric values in t and
t′ are different. So, the process to identify MFS is described
in Algorithm 2.

Algorithm 2: Identify MFS using failed and passed test cases
Input: FTCS: set of failed test cases
PTCS: set of passed test cases
Output: MFSs: set of minimal failure-causing schemas
1. FSs = ∅;
2. For Each failed test case t ∈ FTCS
3. Diff(t) = ∅;
4. For Each passed test case t′ ∈ PTCS
5. Diff(t, t′) = {fi ∈ F |t[i] ̸= t′[i]};
6. Diff(t) = Diff(t) + {Diff(t, t′)};
7. End For
8. FSs(t) = {s ∈ SubScheSet(t)|
. for each Diff(t, t′) ∈ Diff(t), ∃fi ∈
. Diff(t, t′) that s[i] ̸= -};
9. FSs = FSs+ FSs(t);
10. End For
11. MFSs = {s|s is minimal schemas in FSs};

For a failed test case t, there are k parametric values which
should be checked when constructing a Diff Param(t, t′)
with the passed test case t′. If there are np passed test cases,
it is np×k. So there are totally np×nf×k parametric values
which should be checked when constructing these sets for all
failed test cases.

For a failed test case t, when selecting its failure-causing
sub-schemas, there are np different Diff Param(t, t′) to be
checked. So there are totally np ×

∑k
i=1(i × Ci

k) parametric
values which should be checked for one failed test case, and
totally np× nf ×

∑k
i=1(i×Ci

k) parametric values should be
checked for all failed test cases.

Therefore, the total time complexity of selecting all failure-
causing schemas in Algorithm 2 should be:

O(np× nf × k + np× nf ×
∑k

i=1(i× Ci
k))

∼ O(np× nf ×
∑k

i=1(i× Ci
k))

Since the time complexity of selecting minimal failure-
causing schemas is O(Ck

2k) for each failed test case, the time
complexity of the whole Algorithm 2 should be: O(np×nf×∑k

i=1(i× Ci
k) + nf × Ck

2k).

IV. DISCUSSION

A. Outputs of Two Algorithms

Algorithm 1 and Algorithm 2 obtain the same outputs for
the same inputs. It is clear in the description of two algorithms,
especially in the description of improved one.

B. Comparing Time Performance

According to the binomial theorem, Ck
2k =

∑k
i=1(C

i
k)

2.
Since there are:∑k

i=1(C
i
k)

2 <
∑k

i=1(i× (Ci
k)

2)∑k
i=1(i× Ci

k) <
∑k

i=1(i× (Ci
k)

2)

So it is obvious that O(np×nf×
∑k

i=1(i×Ci
k)+nf×Ck

2k) <

O(np×nf×
∑k

i=1(i×(Ci
k)

2)+nf×Ck
2k). It is means that the

time complexity of Algorithm 2 is less than that of Algorithm
1. Then we can make a conclusion that Algorithm 2 is better
than Algorithm 1.

V. CONCLUSION

In this paper, we carefully study two algorithms that could
identify MFSs by utilizing failed test cases and passed test
cases. The time complexity of two algorithms shows that the
approach which utilizes the difference between every failed
test case and passed test case is clearly better than the other
one. We believe that the research will improve the effectiveness
and efficiency of practical testing.

REFERENCES

[1] C. Nie, H. Leung. A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 2011, 43(2): 11.

[2] C. Nie, H. Leung. The Minimal Failure-causing Schema of Combinatorial
Testing. ACM Transactions on Software Engineering and Methodology
(TOSEM), 2011, 20(4): 15.


