
Quantifying and Assessing the Merge of Cloned
Web-Based System: An Exploratory Study

Jadson Santos
Department of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte, UFRN

Natal, Brazil
jadsonjs@gmail.com

Uirá Kulesza
Department of Informatics and Applied Mathematics
Federal University of Rio Grande do Norte, UFRN

Natal, Brazil
uira@dimap.ufrn.br

Abstract— This paper presents an exploratory study that
analyzes the complexity to integrate existing merge conflicts of a
cloned large-scale web system. The study is supported by an
existing tool that focuses on the identification of merge conflicts
that can arise during the integration of cloned systems. The
approach addresses the merge conflict analysis through the
extraction and comparison of the issues and code history of
cloned systems using mining software repository and static
analysis techniques. The main aims of our study are: (i) to
quantify the kind of conflicts defined by our approach that
happen when evolving cloned systems; (ii) to evaluate if they are
being correctly detected by our tool; and finally (iii) to analyze
the difficult to integrate them from one cloned system to another.
The study findings show: (i) a predominance of semantic conflicts
between issues of source and target cloned systems; and (ii) the
feasibility to use merge analysis approaches to integrate tasks
from one clone to another.

Clone-and-own approach, web-based information systems,
software merge, code merge conflicts

I. INTRODUCTION
Modern software development involves the parallel

working of software developers, who work separately on
creating and modifying their local copies of code assets, and
then need to submit them to version control repositories. In this
context, software merge techniques are used to promote the
integration of code assets modified in parallel by different
developers. When merging code to repositories, conflicts
naturally emerge due to code change operations on the same
code elements – such as classes or methods, and also because
of semantic dependencies between the modified classes [1] [2]
[3] [4].

Recent research work [3] [4] [5] has investigated and
proposed approaches for the detection and analysis of code
merge conflicts. Zimmermann et al [5] analyzed four open
source systems from CVS repositories and found a substantial
amount of textual merging conflicts – 23% to 43% – in those
projects. Brun et al [3] investigated nine active open source
projects and found that 16% of the analyzed merge operations
contain textual conflicts and a significant number presents
high-order conflicts – related to changes semantically

incompatible that causes compilation or test errors. Guimarães
& Silva [4] propose an automated approach that continuously
analyzes and detects merge conflicts from committed and
uncommitted changes with the main aim to anticipate and
present them to software developers. Their approach works
with a rich set of different merge conflicts.

In addition, Dubinsky et al [6] conducted an exploratory
study to investigate the cloning culture in six industrial product
lines. They observed that companies usually clone existing
products with the main aim of addressing new requirements
and customize those products to new contexts and scenarios. In
their study, they conclude that cloning is considered a favorable
reuse approach that facilitates independent customization of
new products based on existing ones. However, they also
noticed that the cloning practice brings difficulties when
performing maintenance and evolution activities, such as
propagating changes between those clones, and integration of
the cloned code assets. The authors suggest that clone
management techniques could be explored in future research
work.

While recent empirical studies have already given a
perspective of the different merge conflicts that happen in
existing open source systems, there is no empirical study
providing a quantitative and qualitative detailed view of how
those conflicts are happening and the complexity to integrate
them in the context of cloned commercial systems. In addition,
the understanding of the complexity of merging cloned systems
and the development of techniques to help this activity is also
of interest of the software product line community, which has
recently identified [6] that cloned techniques are used to
manage variabilities from a software product line (or software
family).

In this context, this paper presents an exploratory study that
quantifies and analyzes the complexity to integrate existing
merge conflicts of a cloned large-scale web system. The main
aim of our study is: (i) to quantify the three kind of conflicts –
structural, semantic and lexical – defined by our approach that
happen when evolving cloned systems; (ii) to evaluate if those
conflicts are begin correctly detected by our tool; and (iii) to
analyze the difficult to integrate them from one cloned system
to another. The study is supported by an existing tool [10] that
focuses on the identification of merge conflicts that can arise
during the integration of cloned systems. The approach

DOI reference number: 10.18293/SEKE2016-232

addresses the merge conflict analysis through the extraction
and comparison of the issues and code history of cloned
systems [7] using mining software repository and static
analysis techniques. The contributions of our study are as
follows: (i) it performs a systematic characterization and
analysis of the kind and complexity of merge conflicts for
large-scale web-based systems; and (ii) it shows the feasibility
to use merge analysis approaches to integrate tasks from one
clone to another.

The rest of this paper is organized as follows. Section II
describes the study settings. Section III presents the study
results. Section IV discusses threats and limitation of our study
results. Section V reports the related work. Finally, Section VI
presents concluding remarks and future work.

II. STUDY SETTINGS
The main aims of our study are: (i) to understand the kind

of conflicts that happen when evolving cloned web-based
systems; (ii) to evaluate the conflict detection by our tool; and
(iii) to analyze the complexity to integrate issues developed for
one cloned system – called the source system – to another one
– the target system.

A. Categorization of Code Merge Conflicts
In the first step, we considered a categorization of code

merge conflicts based on existing research work [2] [3] [4]. A
merge conflict is a pair of code changes developed for the
source and target cloned systems, which interfere each other
when merging code changes from the source to the target. In
our study we have focused on the following kinds of conflicts
that happen in the context of 3-way merging [1] – which uses
information from a common ancestor besides the one available
for the two classes being merged:

i. direct conflict (structural) – represents a pair of code
changes applied to the same code elements (e.g.,
attributes, methods) by both source and target
systems;

ii. indirect conflict (semantic) – happens when code
changes applied to the source system are in the call
graph of other code changes in the target system; and

iii. pseudo conflict (lexical) – the source and target
systems modify the same class or interface, but
different and independent code elements (attribute or
method).

We quantify pseudo conflicts only to understand the
additional effort of developers when merging cloned systems
using textual merge tools. Textual-based tools usually exhibit
these conflicts, but the usage of more advanced merge tools
(e.g., analysis of direct conflicts) can avoid this additional
effort.

B. Data Collection and Analysis Procedure
To support the analysis of conflicts in the merge process, we

performed the following data collection procedures, which
were automated by a tool we developed:

Step 1: Mine Evolution History. First, the MergeClear tool
mines the development issues (change requests) of the cloned

web systems from issue tracking systems (such as Bugzilla)
used by each institution. It produces as output the task
evolution history file, an XML file (one for the source and
another one for the target system) that contains all the
development issues (with information such as description,
version, kind of issue, related modules, etc), and respective
code revisions associated to them.

Step 2: Mine Code Evolution. After that, the tool recovers
and compares subsequent revisions associated to the Java code
assets mined from version control systems to extract fine-
grained code change operations applied to them. In particular,
in this study, we focused on the following code change
operations: addition, deletion and modification of classes,
attributes and methods. Our tool can currently also quantify
code change related to class inheritance, interface
implementation, and code annotations, but they were not
explored in our study. All this information is stored in the
change log history file, which is a refinement of the issue
evolution history.

Step 3: Analysis of Merge Conflicts. Next, the tool
processes and compares these change log files produced for the
source and target cloned web-based systems to automatically
calculate the direct, indirect, and pseudo conflicts between
them. The direct conflicts are quantified by identifying
attributes, methods and classes that were modified in both
source and target systems. The computation of indirect
conflicts also utilizes the system call graph to quantify which of
the code change operations in the source system are in the call
graph of other code change operations from the target system.
Pseudo conflicts are calculated by identifying code change
operations applied to the same classes and do not have indirect
conflicts. The tool can also be used to visualize the list of
development issues and associated code changes applied to the
source and target web-based systems. In addition, we also
present the list of code conflicts that will occur when merging
the development issues of the cloned web-based systems with
their respective conflicting code changes.

Step 4: Group and Order Issues. After the conflict
analysis step, the issues were ordered and grouped to represent
different integration scenarios. The main criteria were (i) the
kind of the issues (ii) the kind of conflicts detected in the issue;
(iii) the amount of source code artifacts changed in the issues;
and (iv) if the issues change different layers or modules of the
system or if they only modify restricted code.

Step 5: Issues Selection. After the issue classification, a
specific set of issues was selected to represent different
integration efforts. In our study, we have not analyzed issues
with pseudo conflicts because they do not represent real
conflicts when merging code from source to the target system
[12]. For all the selected issues, we used the merge
functionality of the subversion plugin to integrate code changes
from the source to the target system and compared with the
results indicated by our tool. Fig. 1 illustrates this analysis
workflow.

Figure 1: Automated Approach to Reconciliation of Cloned Systems

After the tool execution, we conducted a study guided by
the following research questions:

• RQ1. Which amount and kind of code merge conflicts
happen when evolving and merging cloned web-based
systems?

• RQ2. Do issues without merge conflicts can really be
automatically integrated?

• RQ3. Are direct conflicts correctly identified? How
complex they are to be integrated?

• RQ4. Are indirect conflicts correctly identified? Do
the indirect conflicts can cause behavior problems on
the target system as the approach suggest?

C. Target Web-based System
The Federal University of Rio Grande do Norte (UFRN,

Brazil) develops a set of web information systems designed to
automate business processes for universities focusing on
different and complementary aspects, such as academic,
administration, planning and management. These systems
began to be deployed in 2006. Our study focuses on one of
these systems. Table I shows an overview of the system in
terms of users and size.

TABLE I. SIZE AND USERS OF ANALYZED SYSTEM

System Total of
Users

Daily
Access KLOC Java

Classes
Java

Methods
SIGAA	 52000	 56000	 833	 5906	 81102	

The SIGAA system was chosen because it is a large-scale
web-based information system implemented in the Java
language. The system uses the clone-and-own strategy to
promote its customization to other partners. Also, we have
complete access to the version control and issue tracker
systems of the development teams, responsible for the source
and target systems. The scenario chosen for this study involved
a total of 1083 issues.

III. STUDY RESULTS
This section presents and discusses the obtained results for

our research questions.

A. RQ1: Which amount and kind of code conflicts happen
when evolving and merging cloned web-based information
systems?
We analyzed the amount and kinds of conflicts considering

the perspectives of development issues and code change
operations. Table II displays the distribution of conflicts
detected by our tool in the analyzed issues. 65,18% of issues
presents no conflict. 5,6% of issues had only direct conflicts.
18,83% of issues held no direct conflicts but present at least
one indirect conflict, and 10,34% of issues have only pseudo
conflicts.

Table III shows the amount of code conflicts that were
calculated for the merge of the investigated cloned web
systems. Most of the collected code conflicts (68,14%) are
indirect. It means that a great number of semantic conflicts that
happen when merging web information systems are not made
explicit when only using textual-based merging tools.
Developers should be aware of them to understand the change
impact of the merging, and to identify specific parts of the
system – the affected call graphs – to be re-tested after the
integration. Our study also found a significant number of
pseudo conflicts (22.20%). They represent additional useless
effort from the developers when merging classes with existing
textual-based tools, because those tools are not able to identify
independent code changes applied to the same classes. Finally,
Table III shows that a reduced number of direct conflicts
(9,65%) were found in our study compared to the other kinds.
Those direct conflicts require the developer intervention to be
merged from the source to the target web-based system,
because they represent direct changes applied to the same code
elements (attributes, methods).

TABLE II. AMOUNT OF ISSUES BY KIND OF CONFLICT

 Without
Conflicts

With
Direct

Conflict

With
Indirect
Conflict

With Pseudo
Conflict

Amount
of

Issues

706
(65,18%) 61 (5,6%) 204 (18,83%) 112 (10,34%)

TABLE III. KINDS OF CONFLICTS DETECTED

Kind of
Conflicts

Direct
Conflict

Indirect
Conflict

Pseudo
Conflict

SIGAA 120 (9.65%) 847 (68.14%) 276 (22.20%)

B. RQ2: Do issues without merge conflicts can really be
automatically integrated?
This research question focuses on evaluating if issues that

were classified as having no conflicts by our approach can be
automatically integrated using the traditional merge
mechanisms from existing control version systems.

In order to answer this research question, we have selected
a total of 15 issues between those ones identified as having no
merge conflicts by our approach (Table II). After that, we
identified the different commits and respective code changes
associated with each issue, and they were manually applied
from source to the target cloned web system using the merge

functionality of the subversion plugin. Finally, we verified for
each issue if there was no compilation error after the code
merge of the different commits associated to the issue.

Table IV shows the results of our analysis. We have found
that 11 issues of the source cloned web system from the 15
analyzed (73%) could be integrated without causing any
compilation errors in the target web system.

TABLE IV. ANALYSIS RESULT OF THE RQ2

Analyzed
Issues

Possible to
Integrate

Dependence
Error

Mining
Error

No Manual
Merge

Possible
15	 11 (73.33%)	 1 (6.6%)	 1 (6.6%)	 2 (13.33%)	

During our analysis we have observed that one issue

exhibited a dependence error, which indicated that this issue
could only be integrated if another one is integrated
previously. It means that only the criterion of conflicts
between code artifacts was not enough to ensure that the
integration occurred without adding compilation errors in the
target system. Because of that, it was also necessary to analyze
the dependencies between issues. Thus, an issue from the
source system could be integrated without compilation errors
in the target system only if it has no conflicts and all the issues
that it depends on were integrated before it.

The dependency computation algorithm used in our study
is based on the data of the issue creation. This criterion was
not enough to determine whether an issue has been
implemented before another one or not. In some cases it is not
trivial to determine whether an issue was accomplished before
another one, because they occur in parallel, having interleaved
commits. This has generated a mining error during the
integration of one issue (Table IV) and it needs to be improved
in the conflict analysis module.

Finally, there are two issues from the source system, which
are not possible to merge in the target web system (Table IV).
In one issue, some classes have been changed, but part of this
evolution was registered in another issue. Thus, it brought
difficulties to manually separate the source code belonged to
the specific issue before proceed with the automatic merge.
The second issue received the first commit in 2010, but the
issue was not totally finished. Only in 2012, the issue was
completed. Meanwhile, several commits were registered
which originated many code changes for other issues, thus
making very complex to perform a manual analysis of the
issue, and separating just its specific changes. The discovering
of such cases revealed the need to correctly register the
association between issues and respective commits in the issue
tracker or control version systems.

C. RQ3: Are direct conflicts correctly identified? How
complex they are to be integrated?

In this research question, we have analyzed the direct
conflicts identified by MergeClear tool in order to determine
whether they were correctly identified and how complex they
are to be integrated from the source to the target system. In
short, we have analyzed and compared the code evolution of
the source and target systems to confirm the existence of the

identified direct conflicts and verify if those code changes can
still coexist in the target system.

To answer this research question, we have selected and
manually analyzed 10 different issues. All the direct conflicts
identified by MergeClear tool represent real conflicts, so we
did not find any false positive. In addition to that, we also
analyzed the complexity to integrate the issues with such
direct conflicts. Table V shows the results for this analysis. As
we can see, 60% (6 from 10) of the issues that exhibited direct
conflicts could be integrated. It means that although there were
code changes applied to the same artifact (method or field) in
the source and target systems, they have been applied to
separate parts of the code, and they are not directly related or
incompatible. However, due to the difficult to automatically
analyze the different semantic of such code changes, it is
always necessary a manual analysis to verify the possibility of
integration. Fig. 2 shows an example of a change that was
considered possible to be integrated. In a same method the
changes of the source and target systems were accomplished
in separated “cases” of a Java switch statement. These changes
are not strongly related, and they can coexist.

On the other hand, our analysis also revealed that 40% of
the investigated issues (4 of 10) exhibit complex direct
conflicts, which are difficult to be integrated even when
applying a manual merge. Fig. 3 illustrates a change that was
accomplished in the same functionality of a specific method of
a class for both the source and target systems. Because these
changes involve overlapping updates to the implementation of
the same functionality, they are difficult to merge.

TABLE V. ANALYSIS RESULT OF THE RQ3

Analyzed
Issues

Direct Conflict Possible
to be Integrated

Direct Conflict Improbable
to be Integrated

10	 6 (60%)	 4 (40%)	

Figure 2: Direct Conflict without Integration Problem

Figure 3: Direct Conflict with Integration Problem

D RQ4: Are indirect conflicts correctly identified? Do the
indirect conflicts can cause behavior problems on the
target system as the approach suggest?

The aim of this research question was to analyze whether
the indirect conflicts collected by the MergeClear tool were
correctly identified and if they could affect the behavior of the
merged functionality of the changes developed for the source
and target systems. In other words, we have investigated if the
integration of the source and target changes that are related to
indirect conflicts can cause any abnormal behavior in the
system or not.

The process of manual analysis for this research question is
similar to the direct conflict analysis, differing that the
comparison of the evolution in the source code was made
between artifacts (methods or fields) in a certain level of the
call graph, and verifying if the application of this change add
some error to the target system.

Table VI shows the amount of indirect conflicts identified
for the evolution of the clones of the web system analyzed in
this study. They were organized by the level in the call graph
where they were detected. For this study we have focused on
the analysis of the depth level maximum of 3. As you can see,
most of indirect conflicts detected by our tool are at level 1
and 2, which justifies the analysis of indirect conflicts until the
level 3.

TABLE VI. INDIRECT CONFLICTS BY LEVEL

Level Number of Indirect Conflicts Percentage

1 338	 38.72%	

2 327	 38.61%	

3 192	 22.67%	

To answer RQ4, we have manually analyzed a total of 12
different issues that contains indirect conflicts. All the 12
issues analyzed represent indirect conflict defined in our
approach. After that, we analyzed if those indirect conflicts
could be integrated without presenting any error. We have
found that 7 issues (58%) actually could add behavior
problems after the integration. The analysis of the 5 remaining
issues (42%) showed us that they could be integrated without
causing behavior problems to the target system. This result
reinforces the need to re-test issues that involves the existence
of indirect merge conflicts. Table VII summarizes such results.

TABLE VII. ANALYSIS RESULT OF RQ4

Analyzed
Issues

Indirect Conflict can not add
behavior problem to target

system

Indirect Conflict can
add behavior

problem to target
system

12 (100%) 5 (41.66%)	 7 (58.33%)	

Fig, 4 shows an example of changes from one analyzed
issue that generated indirect conflict in the call graph but it did
not cause any behavior problem after the merge process. This
example represents an extract method refactoring, which was

only applied to improve the maintainability of the code. Those
kinds of change in the source web system although have
exhibited indirect conflicts with other code changes in the
target system, they could be automatically merged without
presenting any behavior problem to the target system.

Figure 4: Indirect Conflict not affect target system behavior

Fig. 5 represents a change in the target system responsible
to perform a specific validation for a certain kind of student.
However, the original generic validation in the source system
was changed during the parallel evolution of the cloned
systems. Because the change in the source system did not
consider the specific validation codified in target system, the
merge of this code can add behavior problem to the target
system.

Figure 5: Indirect Conflict affect the target system behavior

IV. THREATS TO VALIDITY
Our study has focused only on the analysis of a restricted

set of merge conflicts and code change operations. Other kinds
of merge conflicts – such as language, semantic and test
conflicts [4] – are planned to be included in our mining tool
for future studies. Regarding the code change operations, our
tool is currently been extended to also analyze changes on
class inheritance, interface implementation, and code
annotations. The results of our study are restricted to the
context of the investigated web-based system, and cannot be
generalized. The selection of just one clone of source and
target system evolutions also represents a threat, although the
selected clone contained thousands of issues. In order to
expand our results, we need to replicate it for other existing
systems and domains. In this direction, we plan to conduct
replications of our study in the context of other existing clones
from the same web-based systems presented in this paper, and
to existing open-source systems from GitHub repository.

V. RELATED WORK
Recent research work [3] [4] has investigated and proposed

approaches for the analysis of code merge conflicts.
Guimarães & Silva [4] propose an approach for the early and
continuous detection of merging conflicts from uncommitted
and committed changes in order to anticipate problems and to
avoid overloading developers. They conduct an empirical
study that brings evidence that the approach contributes to
improve the early detection of conflicts and to avoid
overloading developers in comparison with existing
approaches. Brun et al [3] also conducted an empirical study
considering two kinds of conflicts: (i) textual conflicts – that
represent conflicts from code changes in the same artifacts;
and (ii) high-order conflicts – that represent code changes that
do not generate textual conflicts, but on the other hand, they
cause semantic problems – compilation or test failures. Their
study found for nine open-source systems that 16% of all
merges present textual conflicts, and 33% of merges with no
textual conflicts contain high-order conflicts. They present a
quantitative and preliminary approach evaluation. In contrast,
our work conducted an exploratory study of clones of a large
industrial web system that quantified existing merge code
conflicts and conducted a detailed analysis on the accuracy
and complexity of integrating those merge conflicts using
automated support.

Apel et al [12] have argued that a significant number of
conflicts are ordering conflicts and show that the usage of
semi-structured merge can reduce conflicts when compared to
unstructured merges. Our work is consistent with their results,
given the percentage of indirect and pseudo conflicts
observed. However, ours is an exploratory study to better
characterize and understand the kind and complexity of merge
conflicts that happens in a large-scale web-based system.

Dubinsky et al [6] conducted an exploratory study of
cloning in six industrial software product lines (SPLs). They
found that cloning SPLs is considered a reuse approach that
facilitates the independent customization of new products
based on existing ones, although on the other hand, it can
bring difficulties to perform maintenance and evolution
activities. The merge conflict analysis approach developed
presented in this paper can be used to automatically identify
and possibly promote the integration of issues from one SPL
clone to another. In addition to that, our work has presented
concrete data related to the integration of existing cloned
large-scale web systems. .

Rubin et al [7] [8] propose a framework for organizing
knowledge related to the development, maintenance and
merge-refactoring of product lines realized via cloning. They
organize such framework in terms of a set of clone
management operators. They also performed a detailed
analysis of development issues of industrial SPL companies in
terms of these operators. Indeed, the web-based system
investigated in our work can be seen as a cloned product lines
that is evolving independently to accommodate new
variabilities. In this paper, we have proposed a merge conflict
analysis approach to understand and promote the integration of

development issues that can also be used in the context of
cloned SPLs. While Rubin et al [7] [8] propose a general and
language independence approach, we restrict our approach to
system implemented in the Java language, which allowed
achieve more concrete results in our analysis.

VI. CONCLUSION
This paper presented an exploratory study of

characterization of merge conflicts in the context of cloned
web-based information systems. In our study, we have found:
(i) a considerable number of indirect merge conflicts
compared to direct and pseudo conflicts when merging cloned
web-based-systems; and (ii) the feasibility to use merge
analysis approaches to integrate tasks from one cloned system
to another one considering the kinds of merge conflicts
analyzed in our study – direct, indirect and pseudo. Finally, we
also found that the integration of issues from source to target
systems also requires the computation and resolution of
dependent issues that were previously developed in the source
system. As a future work, we plan to replicate our study to
other cloned web-based information systems from our
institution and from other companies in order to have a better
understanding of the cloning impact for this domain of
applications. In these new studies, we are also including other
categories of conflicts and code change operations. It is also
necessary to improve the dependency detection algorithm to
address the integration of dependent issues.

REFERENCES
[1] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE

Transactions on Software Engineering (TSE 2002), Vol. 28, 5.
[2] J. Wokla, B. Ryder, F. Tip, X. Ren. Safe-Commit Analysis to Facilitate

Team Software Development. Proceedings of ICSE 2009.
[3] Y. Brun, et al. Early Detection of Collaboration Conflicts and Risks,

IEEE Trans. on Software Engineering, vol. 39, no. 10, pp. 1358-1375.
[4] Guimarães, M. L. & Silva, A. R, 2012. Improving early detection of

software merge conflicts. InProceedings of the 2012 International
Conference on Software Engineering (ICSE 2012). IEEE Press,
Piscataway, NJ, USA, 342-35

[5] T. Zimmermann, “Mining Workspace Updates in CVS,” Proc. Fourth
Int’l Workshop Mining Software Repositories, May 2007.

[6] Y. Dubinsky, et al. An Exploratory Study of Cloning in Industrial
Software Product Lines. Proceedings of CSMR 2013.

[7] J.Rubin,et al. 2012. Managing Forked Product Variants. Proceedings of
the Software Product Line Conference (SPLC 2012). Salvador. Brazil

[8] J. Rubin, K. Czarnecki, M. Chechik. Managing cloned variants: a
framework and experience. Proceedings of SPLC 2013: 101-110.

[9] G. Lima, et al. A Delta Oriented Approach to the Evolution and
Reconciliation of Enterprise Software Products Lines. ICEIS (1) 2013:
255-263

[10] MergeClear. A tool for merge cloned systems
http://github.com/jadsonjs/MergeClear (last visited on August 27, 2015)

[11] Product Line Hall of Fame. http://splc.net/fame.html (last visited on
August 27, 2015)

[12] S. Apel, J. Liebig, B. Brandl, C. Lengauer, C. Kästner: Semistructured
merge: rethinking merge in revision control systems. Proceedings of
FSE 2011

[13] MergeClear Wiki. Welcome to the MergeClear wiki.
http://github.com/jadsonjs/MergeClear/wiki (last visited on August 27,
2015)

