
 Automaticly Generating Web Page From A Mockup

Ruozi Huang
School of Data and Computer

Science, Sun Yat-san University
Guangzhou China

huangrz@mail2.sysu.edu.cn

Yonghao Long
School of Data and Computer
Science, National Engineering

Research Center of Digital Life,
 Sun Yat-san University

Guangzhou China
longyh3@mail2.sysu.edu.cn

Xiangping Chen*
Institute of Advanced

Technology, Sun Yat-san
University, Guangzhou China

Research Institute of Sun Yat-sen
University in Shenzhen, China

chenxp8@mail.sysu.edu.cn

Abstract—UI is an important part of software product.
Considering the complexity of web UI, generating the web page
from a mockup proposes requirements for rich experience of
developer. Extracting visible elements and their relationship,
selecting proper tags, generating source code are time-consuming
and error-prone task. In this paper, we propose a method to
automate the transforming of the mockup to the web page. Our
approach starts from the mockup designed by the art designers,
and extracts the elements based on the color features of the edges.
Then a bottom-up tag generating method based on the Random
Forest is proposed to select the tags for elements. Finally the web
page is generated by the definition of the elements. The
generating tags can achieve an average accuracy of more than
84%, which can meet the basic requirements of the developers.

Keywords—web generating, machine learning, web design

I. INTRODUCTION
As an important part of the software products, the user

interface (UI) builds a bridge between the end-user and the
functionality. Well-designed UI have good usability and
aesthetics, which will attract the users. However, getting a
satisfying UI is not easy. The coding includes understanding
complex widgets, trying different prototypes to achieve good
user experience, and a number of layout strategies. These
requirements limit the speed of UI development.

Generally, the UI of web page is relatively complex. Firstly,
the number of element is larger. The number of DOM nodes in
most web pages is between 50 and 200 [1], while the number
of elements in UI of most app is between 10 and 30 based on
the statistics of 61,089 UI pages[18]. Secondly, there are
numerous tags to be used to define UI elements. For some tags
with similar usage context, choosing tag becomes difficult for
non-expert developers.

Number of nodes in the web page # Number of nodes in the app’s GUI

Figure 1. Number of nodes in a web page and UI page.

Many works [8-13] had been proposed to simplify or
automatic the UI development process. Modern development
environments provide some tools to support the UI
development. However, choosing the proper widgets is
confusing or non-expert developers. Example based approaches
[8, 9] are proposed considering large amount of UI examples in
the internet. Examples can tell the developers how to arrange
the layout and use the proper widgets. These approaches show
that knowledge in the examples is useful to be reused in
generating color scheme, device-adaptive UI, and the layouts.
However, no approach is proposed for guiding tag selection in
web page implementation.

Typical process of developing a draft web page includes the
following steps: 1) a wireframe is designed to show the basic
functions and structures of the page; and 2) the art designers
design a mockup based on the wireframe, the mockup can be
regarded as a screenshot of the web page with well designed
layout and color theme; 3) the developers extract the elements
from the mockup and select tags for the elements; finally 4)
developers generate the hierarchical structure of the elements
and write HTML and CSS codes to generate a prototype of the
web page.

We notice that the process of transforming the mockup to
the prototype of web page has the potential to be automated.
The edges of rectangles recognized from mockup can be used
to extract elements and their relationship. In addition, uniform
and standard usage of most tags, which can be learnt from the
existing webs. It will save time for developers if they can get a
prototype quickly and focus more on the page refinement.

In this paper, we propose a method to generate a draft web
page from the mockup. An algorithm is proposed to extract the
elements from the mockup based on the wireframe of the
mockup. According to the nested relations of the elements, we
can get a hierarchical tree of the elements' structures. Since
most tags have uniform using in existing web pages, we
propose a bottom-up tag generating algorithm to choose tags
for each element. This algorithm is based on the Random
Forest method. Finally, a prototype of web page is generated by
the definition of these elements.

We choose 50 web pages from different websites to verify
our method. In the experiment, our algorithm selects the tags

DOI reference number: 10.18293/SEKE2016-231

for 9627 elements with the accuracy of 84.4%. The generated
web page can meet basic requirements and provide as a
prototype.

The remainder of the paper is organized as follows: Section
2 discusses previous work which is related to our work; Section
3 introduces how to generate the web’s source code from a
mockup; Section 4 presents the experiments for evaluating the
accuracy of the generating tag to the actual tag designed by
developers. Finally, Section 5 concludes our work.

II. RELATED WORK
Generating a satisfying Graphical User Interface is very

important but difficult in the software development. Most
interfaces are still hand-coded, even though there have been a
great number of tools to simplify or even automatic the
process of GUI generation. Brad et.al [2] had summarized the
state of GUI design tools in 2000.

A. User Interface Generation
A number of modern development environments have

proposed tools to support the GUI development such as the
Dreamweaver, Eclipse, and Visual Studio etc. Developers can
drag and drop widgets into containers and set the various
properties of the widgets, the basic interface code will
generated once the UI is designed. These tools are very
convenient for generating a prototype of the UI but are not
ideal in that a) the code that is generated may not be in a style
or form the programmer desires; b) once the code is modified it
becomes difficult to use the support to update or change the
user interface; c) the generated code often use absolute
positions and it is complex to generate easily resizable
interfaces and d) it’s hard to choose a proper widget for the
beginners especially when they are dealing with numerous
kinds of widgets.

Another way of getting UI software is searching the
existing software from the internet. Developers can get the UI
by inputting some keywords in some websites such as Github
(www.github.com), Krugle(www.krugle.org), and Open
Hub(www.openhub.net) etc. These websites provide rich UI
sources but getting a corresponding UI which is close to the
developer’s requirement is not easy. A suitable searching result
needs a set of accurate keywords and a long time searching
from the resulting candidates. Some works focused on the
improvement of searching engine [3, 4] and simplifying the
process of searching [5, 6], which let the UI searching more
convenient and convincible. Developers can use the existing UI
for inspiration or studying, they can also reuse the UI but
generating an original UI is still a tough work.

B. GUI Redesign
The user interface design often involves the rapid iterative

design, exploration and comparison of different interface
implementations [7]. Lots of change will occur during the
development of UI like the change of color theme, widget sizes
and positions. It takes a lot of energy in changing the user
interfaces that some works try to automate the refactoring or
redesigning process. Kumar et.al [8, 9] proposed an example-
based webpage retargeting method, which enables developers
choose an existing web as the example and change the source

page to be the example-liked one. Some works focused on the
automatic color redesigning of the web for different
requirements like the energy saving [10, 11], adaptive to color-
deficiency users [12], and color theme modification [13].

With the development of different display devices, some
usability problems occur when the traditional web is displaying
on these devices. A number of works were proposed to make
the traditional web adaptive to the devices’ sizes. The key
problem includes segmenting the existing UI into some
semantic parts [14], resize and rearrange the widgets [15], and
refactoring the existing source code [16]. A good summary of
the adaptive model-driven UI development is provided by [17].

III. GENERATING THE SOURCE CODE FROM MOCKUP
In this section, we describe the method of extracting the

elements from a mockup based on the color feature and the
shape of the elements. A bottom-up tag generating algorithm is
proposed to generate tags for the elements extracted from the
mockup. Based on the information on the elements and their
tags, we generate the prototype of the web page.

A. Extracting the elements from mockup
The mockup can be regarded as the screenshot of the web

page. Noticing that the elements are always rectangle,
developers can get the position and size of the element by
detecting the edge of the element and extract the sizes and
positions. The extracting of the elements in the mockup is
finding the separator line in the mockup and extracting the
divided blocks. A line is the separator line if it meets the
following conditions: 1) the line contains only one kind of
color and 2) more than one neighbor line contains different
colors. The neighbor line is defined by the following formula:

∈±=
∈=

]},[,1{:)(
]},[,{:

1000

1000

xxxyylneighbor
xxxyyl

We then proposed the separator generation algorithm

which finds the separator line in the mockup: for the current
image, we find all the horizontal and vertical separator line by
the above definition. These lines separate the image into a set
of sub-images. Then we do the same procedure for each sub-
image. The algorithm ends when no separator line can be
found in the image.

Algorithm: Segmenting(Gi ,lines)

Input: An image G0 of visual design.

Output: An image G0’with separation lines.

The boolean function isPure(lm) returns true if the line lm

contains only one kind of color.

Start

if(i=0)

 then add the boards of Gi in lines

else{

 for(m=0 to Gi.width)

 get vertical line lm (x=m, y∈[0,Gi.width])

 if(isPure(lm) and (!isPure(lm-1)||!isPure(lm+1)))

 then v_l.add(lm);

 sp_Line.add(v_l);

 for(n=0 to Gi.height)

 get horizontal line ln (y=n, x∈[0,Gi.height])

 if(isPure(ln) and (!isPure(ln-1)||!isPure(ln+1)))

 then h_l.add(ln);

 sp_Line.add(h_l);

 G0’= drawLine(G0,sp_Line);

 subG = getSubGraph(Gi, v_l, h_l);

 if(subG.size<=1){

 return;

 }

 else{

 for(Gi+k∈subG)

 segmenting(Gi+k);

 }

End

B. Generating tags for the elements
Choosing appropriate tags for elements is very important

in front-end development. Well-designed web pages obey the
rules of W3C, which will be friendly with the search engine
and easy to be understood by the developers. After observing
great amounts of web pages we found that elements with
different semantics have differences in the performance of
vision and structure, thus the appropriate tags can be gotten by
considering the elements’ visual and structural properties.

Most tags are used in particular situations; we use the
Random Forest method to learn the using of tags. An
element’s tag is defined both by the predicting result and some
heuristic rules proposed by us. The following of this section
describes the features we get from the elements for training
and a bottom-up tag generating method with some heuristic
rules.

1) Extracting the elements’ features.
The using of the tag is concerned with the content of the

element and its function. Which means an element’s tag can be
speculated by analyzing the element’s visual and structure
properties. Thus we extract the elements’ visual and structure
features, and use the Random Forest method to learn the
features of tags’ using to predict the elements’ tags.

The features we extracted from an element include two
kinds. One is the visual properties like the element’s sizes,
positions, main colors and so on. The other is the structural

properties like the element’s level number in the hierarchical
tree, its siblings’ and children’s number, and its neighbors and
so on. Detailed description is proposed in Table 1.

2) Generating the appropriate tags for elements
The web contains numerous kinds of tags, some tags like

the <DIV> and don’t have the exact semantic
meaning. Their using is not regular that their visual properties
are not particular. But they often appear in the inner nodes
and can be inferred by their children. This phenomenon let us
do the tag’s generating from the leaf nodes first.

In order to know the frequency tags used in the web, we
firstly extract 50 web pages tags and count the tags in them,
the results are showed in Fig.1. The statistics of the frequency
tags shows that the leaf nodes contains many simpler tags than
the inner nodes such as <a>, . These tags are often used
in a uniform way and they have more outstanding features
such as the often contains complex colors, the <a> and
 often have a big aspect ratio cause they are always a
single line of texts, and so on.

As for the tags of inner elements, the using of tags is
tending to represent the structure of web, such as the widely
used of <div>. Some of these tags can hardly find some clearly
visual features: their position and size are diverse. But some
structure features are obvious: e.g. a always contains
some tags, a <p> will contain some <a> or . But
the structure features can be extracted only if the tags of
children are determined. Thus we give tags for the leaf nodes
at first. This is based on two concerns: 1) leaf nodes have
simpler tags and their features are more significant than the
inner nodes as Fig. 2(a) shows below, and 2) the determination
of the leaf nodes’ tags can give a hint to the chosen of their
parents’ tags, thus the whole elements’ tags can be determined
recursively.

Figure 2. The Top 10th frequency tags used in (a) leaf nodes (A 51%, SPAN
13%, IMG 11%, H 6% , etc) and (b) inner nodes (DIV 36%, UL 32%, A 6%,

P 6%, etc).

We use the random forest method to generate tags for the
leaf nodes. Since the using of tags of inner nodes is more
complex than the leaf nodes, the same method performs badly
in this situation. But the leaf nodes’ tags can give a hint for
finding appropriate tags for the inner nodes. A bottom-up tag
generating method is proposed for finding tags for the inner
nodes: a node’s tags can be determined by its own properties
and its children’s properties.

(a)

(b)

TABLE I. DIMENSIONS FOR THE ELEMENTS’ TAG GENERATING

ID Name Description
1 h The element’s height
2 w The element’s width
3 x The element’s left-top corner’s x-value
4 y The element’s left-top corner’s y-value
5 r_w The result of element’s width relative to its

parent
6 r_h The result of element’s height relative to

its parent
7 r_x The result of element’s x-value relative to

its parent
8 r_y The result of element’s y-value relative to

its parent
9 aspectRatio width/height

10 Area width*height
11 Level Tree level number in the hierarchical tree
12 siblingNum Number of siblings
13 siblingNum_x Number of siblings with same x-value
14 siblingNum_y Number of siblings with same y-value
15 siblingNum_w Number of siblings with same w-value
16 siblingNum_h Number of siblings with same h-value
17 colorNum Number of element’s main colors
18 childrenNum Number of children
19 childrenNum_x Number of children with same x
20 childrenNum_y Number of children with same y
21 childrenNum_w Number of children with same w
22 childrenNum_h Number of children with same h
23 subtree_height Height of the element’s subtree
24 coverage Coverage ratio of the element
25 children_type A string of element’s children’s types
26 DIV number Number of children with tag <DIV>
27 P number Number of children with tag <P>
28 LI number Number of children with tag
29 UL number Number of children with tag
30 H number Number of children with tag <H>
31 FORM number Number of children with tag <FORM>
32 IMG number Number of children with tag
33 INPUT number Number of children with tag <INPUT>

3) Proofreading
The generating tag from the previous section may contain

some mistakes; we propose some heuristic methods to
proofread the result.

Our proofreading includes finding the missing elements
which belong to a list or table; generating the headers and
footers according to the elements’ positions; and changing the
element’s tag according to its children.

The elements which can form a list or table have some
obvious features. They are arranged in a line and their widths
or heights are close, the neighbors are close. The table can be
regarded as a set of adjacent lists with same number of
elements. Based on the above features, we propose a heuristic
algorithm to find the missing elements which belong to list or
table.

Algorithm: findList(e)

Input: An element e of the web page.

Output: A tag of the element e.

Start

Ex = {ei∈e.sibling | ei.x=e.x};

Ey = {ej∈e.sibling | ej.y=e.y};

Table = ∅ ;

if(Ex.length

// This means they may be in a table

>0 and Ey.length>0){

for all ei∈Ex

 for all ej∈Ey

 if there exists an element eij s.t.:

 eij.y=ei.y; eij.w=ei.w;eij.x=ej.x;eij.h=ej.h;

 then

 Table.add(eij);

 Table.add(ei) if it doesn’t contain it;

 Table.add(ej) if it doesn’t contain it;

for all et∈Table{

 et.tag=<TD>

 et.parent.tag=<TABLE>

 }

 e.tag = <TD>;

}

else{

if(Ex.length>0){

 e.tag = ;

 ei.tag= (ei∈Ex)

 if(e.sibling-Ex=∅) then e.parent = ;

 else generate a new parent element of e and Ex;

}else if(Ey.length>0){

 e.tag = ;

 ej.tag=(ej∈Ey)

 if(e.sibling-Ey=∅) then e.parent = ;

 else generate a new parent element of e and Ey;

}else{

 e.tag= <DIV>;

}

}

End

C. Layout generation
From the generating elements above, we can write the

HTML source code using a stack to achieve the goal. And a

CSS selector is generated to define the element’s visual
properties. Fig 3. shows the HTML and CSS code of element e.

Figure 3. The HTML and CSS code of element e.

IV. EXPERIMENT

A. Implementation of the experiment
The key problem in the web generating from the mockup is

guarantee the accuracy of elements’ tags. We select 50 web
pages from different websites to verify our result. We choose
50 universities’ web pages which are following the standards of
W3C to do the experiment. Since the elements extracted by the
DOM tree are different from those we extracted from the
mockup, we do some preprocessing to remove the elements
which are fully covered by their children or are not appeared on
the web page.

 For each time, we use 40 web pages as the training set to
predict the left 10 pages. For the generating result, the
prediction of tag T is the total number of those tags whose tags
are predicted to be T. The ground truth is the total number of
elements whose tags are T. Then we define the overlap as the
intersection of prediction and ground truth. And the precision,
recall, and F1 value is defined by the following formulas.

+
=

=

=

recallprecision
recallprecisionF

hgroundTrut
overlaprecall

prediction
overlapprecision

**21

In each time, we record the precision, recall, and F1 value
of the generated tags. Then we manually check the result since
some tags can be replaced by other tags, the corrected is
marked as the accuracy. We will repeat this process until 50
web pages are checked.

B. The analysing of the accuracy of the generating tags

Table 2. records the average accuracy of the generating
tags from 50 pages. Since the tag in the leaf nodes

are often mixed with the tag <A>, we devide the two tags into
different kinds when they are inner nodes and mix them into
one kind if they are leaves. The tag set ‘H’ means the tag of
<H1> to <H6>.

From the result we can see the accuracy of the tag
in inner nodes is very low. This is because the number of this
tag in 50 pages is very small, the use of this tag can be
replaced by the tag <A> in most cases.

TABLE II. THE ACCURACY OF THE GENERTAING TAGS

Tag Set Precision Recall F1 Value Accuracy
DIV 0.609 0.822 0.7 0.651
IMG 0.836 0.782 0.808 0.844

INPUT 0.738 0.674 0.705 0.762
P 0.683 0.499 0.577 0.807

SPAN (inner nodes) 0.5 0.074 0.128 0.964
H 0.619 0.609 0.614 0.723

LI/TH/TD 0.861 0.659 0.747 0.958
UL/OL/TABLE 0.662 0.634 0.647 0.946

FORM 0.419 0.818 0.554 0.814
A 0.864 0.697 0.771 0.917

SPAN (leaves) 0.911 0.952 0.931 0.940
Weighted Average 0.782 0.782 0.775 0.844

C. Result discussion
We choose some pages as the examples to analyze the

generating tags. From table 2 we can see the tag <P> has a
very low accuracy before we do the manually correction. This
is because most of these elements are grouped to the class DIV,
and in this case, this classification is accepted as Fig. 3(a)
shows. The low accuracy of <FORM> has the same reason
that some parent tag of <INPUT> is <DIV> but we change
them to be the <FORM> which is also acceptable.

Some of our result has improved the structure as Fig. 3 (b)
shows, in this case, the original tag of the element is <A> but
it’s a title obviously, thus our method gives it a tag <H>. Same
case can be found in Fig. 3(c) that the original tag is but
it’s a single tag with a line of text, the predicting tag is <A>.

Also our results have some mistakes, as Fig. 3 (d) and (e)
shows. In Fig. 3(d), the element should be an image with tag
, but our method gives it a tag of <P>. It’s because our
method count the number of main color by counting the
clusters of colors in the image, which returns two colors and
the method thought it’s a paragraph of texts. Adding the
analysis of fonts with the help of OCR may reduce these
mistakes. The lacking of the analysis of fonts causes the
similar errors in predicting the titles. Our method doesn’t take
the properties of font into consideration that it wrongly gives
the elements a tag <A> instead of <H>.

(a) the predicting tag is <DIV> and the original tag is <P>

(b) The predicting tag is <H> and the original tag is <A>

(c) The predicting tag is <A> but

the original tag is

(d) The predicting tag is <P> but

the original tag is

(e) The predicting tag is <A> but the original tag is <H>

Figure 4. Some inconsistencies between the generared tags and the element’s
actual tags (a) both of the tags are accpetable, (b),(c), our results are

accpetable but the actual tags are wrong; (d),(e) our results are wrong.

The high accuracy of leaves with tag <A> and
has two reasons; the first is out method can find a line of text
is effectively, and the second is most leaves are texts in our
selecting web pages.

The results show that in most cases, our method can
generate convincible tags for elements. But the analysis of
fonts could be added to reduce mistakes in the generating of
some tags of texts and logos. And the analyzing of color
features should be refined.

CONCLUSION AND FUTURE WORK
In this paper, we propose a method which can generate a

web page from the mockup. The bottom-up tag generating
method is proved to be corrective by the experiment. Future
work could extend to make the generating layout to be the
responsive layout to meets the requirements of numerous kinds
of devices. The current generating web page is static and some
basic interactive features could be added in it. Furthermore,
some strategies will be used to improve the accuracy of the
generating tags.

ACKNOWLEDGMENT
This research is supported by the NSFC Guangdong Joint

Fund (No. U1201252), the Science and Technology Planning
Project of Guangdong Province (No. 2014B010110003), and
the Research Project of Educational Commission of
Guangdong Province (No. 2013CXZDB001).

REFERENCES
[1] Kumar Ranjitha, Arvind Satyanarayan, Cesar Torres, Maxine Lim,

Salman Ahmad, Scott R. Klemmer, and Jerry O. Talton. "Webzeitgeist:
Design mining the web." In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 3083-3092. ACM, 2013.

[2] Myers B, Hudson S E, Pausch R. Past, present, and future of user
interface software tools[J]. ACM Transactions on Computer-Human
Interaction (TOCHI), 2000, 7(1): 3-28.

[3] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor,
Pierre Baldi, and Cristina Lopes, “Sourcerer: a search engine for open
source code supporting structurebased search.” Proceedings ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications 2006, pp. 682-682.

[4] Wing-Kwan Chan, Hong Cheng, and David Lo, “Searching connected
API subgraph via text phrases.” pp. 1-11 in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, (2012).

[5] Reiss, Steven P. "Seeking the user interface." Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering.
ACM, 2014, pp. 103-114.

[6] Steven P. Reiss, “Semantics-based code search,” International
Conference on Software Engineering 2009, pp. 243-253 (May 2009).

[7] Bjorn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer,
“Authoring sensor based interactions through direct manipulation and
pattern matching,” Proceedings of CHI 2007: ACM Conference on
Human Factors in Computing Systems, pp. 145-154 (2007).

[8] Lee, B., Srivastava, S., Kumar, R., Brafman, R., Klemmer, S. R.
Designing with interactive example galleries. Proc. CHI (2010), ACM.

[9] Kumar, R., Talton, J. O., Ahmad, S., & Klemmer, S. R. (2011, May).
Bricolage: example-based retargeting for web design. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (pp.
2197-2206). ACM.

[10] Dong, Mian, and Lin Zhong. "Chameleon: a color-adaptive web browser
for mobile OLED displays." Mobile Computing, IEEE Transactions on
11.5 (2012): 724-738.

[11] Li, Ding, Angelica Huyen Tran, and William GJ Halfond. "Making web
applications more energy efficient for OLED smartphones." Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014.

[12] Flatla, D. R., Reinecke, K., Gutwin, C., & Gajos, K. Z. (2013, April).
SPRWeb: Preserving subjective responses to website colour schemes
through automatic recolouring. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 2069-2078).
ACM.

[13] Chen, X., Long, Y., & Luo, X. (2015). Automatic Color Modification
for Web Page Based on Partitional Color Transfer. In Software Reuse
for Dynamic Systems in the Cloud and Beyond (pp. 204-220). Springer
International Publishing.

[14] Cai, D., Yu, S., Wen, J. R., & Ma, W. Y. (2003). VIPS: a visionbased
page segmentation algorithm (p. 28). Microsoft technical report, MSR-
TR-2003-79.

[15] Rossi G, Urbieta M, Ginzburg J, et al. Refactoring to rich internet
applications. A model-driven approach[C]//Web Engineering, 2008.
ICWE'08. Eighth International Conference on. IEEE, 2008: 1-12.

[16] Sánchez Ramón, Ó., Sánchez Cuadrado, J., & García Molina, J. (2010,
September). Model-driven reverse engineering of legacy graphical user
interfaces. In Proceedings of the IEEE/ACM international conference on
Automated software engineering (pp. 147-150). ACM.

[17] Akiki, Pierre A., Arosha K. Bandara, and Yijun Yu. "Adaptive model-
driven user interface development systems." ACM Computing Surveys
47.1 (2015).

[18] http://research.defool.me/appprofiler/

	Introduction
	Related Work
	User Interface Generation
	GUI Redesign

	Generating The Source Code From Mockup
	Extracting the elements from mockup
	Generating tags for the elements
	Extracting the elements’ features.
	Generating the appropriate tags for elements
	Proofreading

	Layout generation

	Experiment
	Implementation of the experiment
	For each time, we use 40 web pages as the training set to predict the left 10 pages. For the generating result, the prediction of tag T is the total number of those tags whose tags are predicted to be T. The ground truth is the total number of elemen...

	The analysing of the accuracy of the generating tags
	Table 2. records the average accuracy of the generating tags from 50 pages. Since the tag in the leaf nodes are often mixed with the tag <A>, we devide the two tags into different kinds when they are inner nodes and mix them into one kind if th...
	From the result we can see the accuracy of the tag in inner nodes is very low. This is because the number of this tag in 50 pages is very small, the use of this tag can be replaced by the tag <A> in most cases.

	Result discussion
	Conclusion And Future Work
	Acknowledgment
	References

