
RARep: a Reference Architecture Repository
Tales Prates Correia∗, Milena Guessi∗†, Lucas Bueno Ruas Oliveira∗‡ and Elisa Yumi Nakagawa∗

∗University of São Paulo - USP, São Carlos, Brazil
†University of South Brittany - UBS, Vannes, France

‡Federal Institute of São Paulo - IFSP, São Carlos, Brazil
Email: tales.correia@usp.br, {milena,oliveira,elisa}@icmc.usp.br

Abstract—Reference architectures are a special type of soft-
ware architectures that have been proposed for supporting
standardization, development, and evolution of software systems
of a given domain. As these architectures could contribute for
knowledge reuse and increased productivity, several companies
have been creating specific reference architectures for their field
of expertise. Nonetheless, there is no mechanism that enable
recovering, publishing, and sharing existing reference architec-
tures for the public. The main contribution of this paper is to
present RARep (Reference Architecture Repository), a web-based
reference architecture repository supporting the dissemination of
materials related to reference architectures. As a result, this tool
can facilitate the access to information on reference architectures
and, hence, promote the sharing of architectural knowledge
contained in such architectures.

Keywords—Software architecture, reference architecture, web-
based tool.

I. INTRODUCTION

Software architectures have played a central role in the
development of successful software systems over the past 20
years [15, 25]. Garlan and Perry [10] state that software archi-
tectures can have a positive impact in many aspects of software
development, such as understanding, reuse, evolution, analysis,
and management. Thereby, software architectures also play
an important factor for guaranteeing software systems quality
[6], such as maintainability, dependability, and interoperability
[26].

As a particular type of software architectures, reference
architectures have stood out as a structure that provides
a characterization for software systems functionalities of a
given domain [6, 17]. In other words, reference architectures
encompass knowledge about a given domain, which can offer
important information on how to build, develop, and maintain
systems for that specific domain. In this scenario, the availabil-
ity of reference architectures becomes an important concern
since it impacts the dissemination and reuse of knowledge
contained in these architectures as well as the productivity
of software development processes. Considering its relevance,
a variety of reference architectures for different domains can
be found, such as the ones presented at [2, 5, 8, 11, 24].
Reference architectures has also been explored for the domain
of embedded systems, such as automotive [4], ambient assisted
living [1, 20, 23], and robotics [13].

In this perspective, the main motivation for developing
an open repository is the fact that a mechanism to catalog,
promote, and share reference architectures is still missing.

Moreover, even though many reference architectures are pub-
lished in articles, technical reports, or thesis, they are not easily
available to the interested public. Thereby, we have designed a
tool that supports the software architecture community to have
easier access to information related to reference architectures,
creating an open knowledge repository for software systems
developers. Thereby, this repository can be used as an index
for several types of material related to reference architectures
aiming to facilitate the recovery and selection of reference
architectures for the software design.

This paper is organized as follows. Section II introduces
references architectures and details relevant works motivating
the development of our repository. Section III discusses the
requirements of this tool as well as its conceptual design.
Section IV details how this repository is implemented and
its main features besides an illustrative example of its use.
Section V discusses some perspectives for extending this
repository in future research. Finally, Section VI presents our
final remarks.

II. BACKGROUND

Decisions made at the architectural level can directly enable,
facilitate, or interfere in the achievement of business goals,
as well as functional and quality requirements [17]. Several
terms are used to designate software architectures in different
abstraction levels. In particular, the term reference model is
frequently misused as a synonym for reference architecture.
A reference model designates a structure that promotes the
understanding on a given domain by sharing a common
vocabulary and the parts and its interrelationships without
considering implementation details [6]. The OASIS Reference
Model for Service Oriented Architectures1 is an example of
reference model. On the other hand, reference architectures are
less abstract than reference models as they provide concrete
guidelines for the design of software architectures, such as
architectural styles, best practices for software development,
and software elements supporting the development of systems
[18].

In this scenario, a reference architecture can combine ref-
erence models and architecture patterns and, hence, support
the creation of several concrete software architectures that
pertain to a given domain (Figure 1). Aiming to systematize

1OASIS, https://www.oasis-open.org/committees/download.php/19679/
soa-rm-cs.pdf



the creation of reference architectures, several approaches have
been proposed. For example, Muller (2008) [16] provides
guidelines for establishing reference architectures. Angelov et
al. (2012) [3] propose a classification framework for reference
architectures that aims at promoting the analysis and design
of reference architectures by assessing their adherence to this
framework. Nakagawa et al. (2014) [19] present a process
to establish, represent, and evaluate reference architectures
that is focused on improving separation of concerns in such
architectures.

Furthermore, we observe the proposition of a reference
model for reference architectures, called RAModel [17], which
aims at promoting a better understanding about the content of
reference architectures in terms of their main elements and
relationships with each other as well as the main tasks for
establishing, using, and evolving such architectures. According
to the RAModel, a reference architecture contains information
about the domain, application, and infrastructure, as well as
crosscutting information that is related to several of these
dimensions.

The description of reference architectures is fundamental
for their adoption and effective use during the software de-
velopment process. In particular, the standard ISO/IEC/IEEE
42010:2011 specifies the main elements of an architectural
description, the relationship with each other, and their or-
ganization [14]. The most important elements are: model
type, architectural view, viewpoint and correspondence. Since
reference architectures are more generic than concrete soft-
ware architectures, current practices for describing software
architectures must be tailored for references architectures [12].
These reference architectures are often described at a higher
abstraction level, have no clear stakeholders, involve more
architectural qualities, and have a larger scope.

Aiming at disseminating reference architectures to the in-
terested public, an open knowledge repository is needed.
This repository can help to publish, share, and find reference
architetures that have been created for a given domain of
expertise or that follow the same design principles. The design
and implementation of such a repository can be inspired in
currently available tools, such as one for robotics services
semantic search tool, called RoboSeT2, and another for soft-
ware patterns, called Portland Pattern Repository3, for devising
a set of relevant features for a novel reference architectures
repository.

III. REPOSITORY FOR REFERENCE ARCHITECTURES

Considering the relevance of reference architectures for
promoting best practices in software systems development,
we propose a software tool supporting the dissemination of
reference architectures, hereinafter referred to as RaRep. This
tool contains particular features allowing the interaction among
users of the repository. For instance, users of this tool can post
comments and up-vote reference architectures, which enables

2RoboSeT, http://www.labes.icmc.usp.br:8595/RegistroServicoWeb/
3Portland Pattern Repository, http://www.patternrepository.com

to establish a bidirectional communication channel between
creators of a reference architecture and its public. Furthermore,
the repository can be used as an index of reference archi-
tectures that is directly managed by the creators of reference
architectures. As a consequence, we are able to provide an up-
to-date catalog of reference architectures for several domains
that make available their architectures.

Taking into account the RAModel and the standard
ISO/IEC/IEEE 42010:2011, we specify which reference ar-
chitectures concepts can be used in RaRep for documenting
reference architectures. This specification is important since
the repository’s main goal is to act like a broker of reference
architectures, i.e., enabling creators to share their own refer-
ence architectures or look for one or more that they could
use in their project. In particular, we designed UML [22]
models about the main concepts and functionality of this tool.
Figure 2 shows the conceptual model for this repository, which
identifies the main elements related to the creation and use of
reference architectures. This representation simplifies the way
users can post, select, and navigate reference architectures in
our repository. Figure 3 shows the UML use case diagram for
RARep, in which the main actors and actions are defined.
In particular, we devise three types of actors in our tool
(i.e., common users, registered users, and admin users) with
different levels of permissions. For instance, only registered
users can publish, comment, and post news about registered
reference architectures.

This representation, however, does not preview more spe-
cific reference architecture elements such as business rules,
constraints, risks, goals and needs. These elements are more
related to the knowledge itself encompassed in a reference
architecture description. Other elements that can be catego-
rized as the core of architectural knowledge management is
the architecture rationale, which represents the decisions made
over the project and the alternatives of that decisions [17].
In another context, the main goal of architectural knowledge
management is to prevent knowledge vaporization in software
architectures. To do so, architecture rationale for significant ar-
chitectural decisions made in the software architecture should
also be included in the architecture description. Significant
architectural decisions could be for example the selection of
a particular concern or viewpoint, the definition of the most
adequate abstraction level for a particular viewpoint, or the
reason for adopting a particular design pattern. Furthermore,
several aspects of an architectural decision can be relevant,
such as their implications to the software architecture design,
constraints and rules imposed by them, and also the reasoning
that lead to them [7]. Therefore, architectural decisions play an
important role for education, reuse, and evolution of software
architectures as they are used for sharing expertise and best
practices. In the context of reference architectures, significant
architectural decisions encompass guidelines for deriving the
reference architecture into concrete software architectures be-
sides documenting the architectural knowledge of concrete
software architectures of a given domain. Hence, reference
architectures certainly need to address architectural decisions



Fig. 1. Relationship among reference model, architectural pattern, reference architecture, and concrete architecture [6]

Fig. 2. Conceptual model of the reference architecture repository

Fig. 3. Use case diagram of the reference architecture repository

in their architectural description.

IV. DEVELOPMENT

This section details how this repository is developed. In
particular, RARep4 is implemented using current well known

4RaRep, http://www.labes.icmc.usp.br:9083/RARep/index.jsp

frameworks and technologies to the development of web
systems, such as Java, MySQL5, Hibernate6, and Bootstrap7.

A. Architectural Project
Using the conceptual model and use case diagram previ-

ously presented as baseline, we developed a software tool

5MySQL, https://www.mysql.com/
6Hibernate, http://hibernate.org/
7Bootstrap, http://getbootstrap.com/



supporting reference architectures dissemination. These con-
cepts were important for the development of a tool prototype
that was used in the identification of additional features and
refinement of these models. In particular, this tool standardizes
the creation, presentation, and organization of reference archi-
tectures. Moreover, some of the features supported in RaRep
are inspired in discussion forums and similar repositories,
such as an up-vote feature and different search mechanisms.
The registered user inherits the common user features and the
administrator inherits the registered user features. The features
related to the common users are: (i) view news, where the user
can visualize news present in the repository; and (ii) consult
reference architecture, where the user can see all details of a
reference architecture available in the repository, such as the
ones related to a reference architecture.

The features related to the registered users are: (i) login,
which the user can authenticate in the repository; (ii) manage
account: where the user can update his personal information;
(iii) manage favorites reference architectures, which the user
can add, remove or list his favorites reference architectures;
(iv) up-vote a reference architecture, which the use can up-vote
a reference architecture present in the system; (v) comment a
reference architecture, which the user can post a comment
in a reference architecture in the repository; and (vi) manage
reference architectures, which the user can add, remove, and
update its reference architectures in the repository. Adminis-
trators can also manage users, adding, removing, and updating
every information in the repository.

B. Implementation

As mentioned before, software prototyping was used to miti-
gate uncertainties in the requirements. During the development
process, the first part implemented was the front-end of the
website. At this stage, all pages were developed as well as the
transitions between them. The next step was the development
of the back-end of the repository. At this step, we implemented
all Hibernate XML for data persistence in the database. The
conceptual model was used for mapping the classes of the
repository. Then, we developed the update, insert, select and
remove methods of these classes. After the development of the
front-end and back-end, the next step was to integrate these
two parts. The latest repository deployment has a total of 14
classes, around 5 kloc, and 22 hibernate XML files.

Similar software engineering tools helped us to come up
with the features currently available in the reference archi-
tecture repository. The main activities of this repository are
post and search for reference architectures. Aside from that,
there are several features supporting the interaction among
users of this repository, such as: (i) posting comments about
a particular reference architecture; (ii) listing a particular
reference architecture in its favorite list; (iii) evaluating a
reference architecture by means of an up-vote system; and (iv)
posting news about their own reference architectures. These
features are available in a navigation bar at the top of the
page. Apart from the search feature, the other features are
only available to registered users of the system. We made

Fig. 4. Navigation flowchart for the repository

this decision because the main goal of this repository is
to disseminate reference architectures to whoever access the
repository. Figure 4 shows a navigation flowchart describing
the different actions that an user can perform in this repository.

C. Illustrative Example

In this subsection we present and illustrative example using
our repository to register an reference architecture. RefSORS
(Reference Architecture for Service-Oriented Robotic Sys-
tems)[21] is a reference architecture for developing indoor,
grounded mobile Service-Oriented Robotic Systems (SORS),
i.e., robotic systems designed according to Service-Oriented
Architecture (SOA). In order to post RefSORS, the first step
is to login into the repository. In case the user is not registered
into the repository, then the user has to fill a form with his
account info such as full name, login, email, institutions he
is affiliated and password. The next step is select the post a
reference architecture feature at the navigation bar. At this
point, the form presented in the Fig. 5 will be available to the
user to complete the information of his reference architecture.
For the RefSORS, the form can be filled in as:

Title: Reference Architecture for Service-Oriented Robotic
Systems - RefSORS;

Authors: Lucas Bueno R. Oliveira, Elisa Yumi Nakagawa,
and Flavio Oquendo;

Institutions: ICMC/USP (Brazil), UBS (France);
Date: Oct 10, 2014;
Domains: Robotic Systems, Embedded Systems;



Architectural styles: SOA;
Reference Models: OASIS Reference Model
Architectural Patterns: Layered Architecture;
Related Documents: SOA-RA technical standard, OASIS

reference architecture, ArchSORS process and SoaML;

After posting a reference architecture in the repository,
all registered users can discuss the architecture by posting
comments. In addition, users can also upvote, favorite, and
search for this architecture.

V. FUTURE ACTIVITIES

This work was motivated by the need of a supporting tool
that promotes dissemination of reference architectures. This
task is not simple given the diversity and amount of knowledge
encompassed in reference architectures. As future activities,
we plan to:

• Improve reference architectures documentation: in-
creasing the amount of details and artifacts present in the
representation of reference architectures without jeopar-
dizing its clearance and easiness to identify its element.
These new elements, for example, could be related to
architecture decisions. As a consequence, instantiating
the reference architecture into concrete software archi-
tectures could be resumed to the selection of architecture
decisions.

• Develop additional features: Currently, our repository
supports managing several artifacts related to reference
architectures documentation and search for particular
information regarding their design. However, we intend
to develop additional features that could enhance users’
experience with our tool. For instance, we intend to
support the communication among different tools with
RARep such as Research Gate8, so users will be able
to link account to RARep. We expect to identify other
relevant features in a case study regarding the usability
of this tool.

• Treat variability of reference architectures: The vari-
ability in reference architectures concerns the ability of
a software artifact built from such architectures to be
adapted for a specific context in a preplanned manner
[9]. In this sense, documenting variability to architecture
decisions and the reference architecture itself would help
to create an even larger knowledge repository as all al-
ternatives, dependencies, and options would be registered
in the reference architecture.

VI. CONCLUSION

Reference architectures are key to knowledge reuse in
software systems as they promote best practices. Despite their
relevance, a mechanism supporting their open distribution to
the public was still missing. The main contribution of this
paper is to present the design and implementation of a web-
based tool that supports the creation of a catalog of reference

8Research Gate, https://www.researchgate.net/

architectures. This web-based tool takes into account a refer-
ence model for reference architectures as well as best practices
for software architecture description, including architectural
viewpoints, styles, and concerns that have been considered in
their design.

As future work, we intend to extend this web-based tools
with additional features. As a consequence, we expect that this
tool can contribute for further disseminating and facilitating
the access of information related to reference architectures and,
hence, promoting knowledge reuse.

ACKNOWLEDGMENT

This work is supported by the Brazilian funding
agency FAPESP, grants 2014/02244-7, 2014/25341-8, and
2012/24290-5.

REFERENCES

[1] C. H. Alliance. Continua Health Alliance. On-line. Available at:
http://www.continuaalliance.org/ (02/2016). 2013.

[2] S. Angelov, P. Grefen, and D. Greefhorst. “A Classification of Software
Refererence Architectures: Analyzing Their Success and Effective-
ness”. In: IEEE/IFIP Conference on Software Architecture (WICSA’09)
(2009), pp. 141–150.

[3] S. Angelov, P. Grefen, and D. Greefhorst. “A Framework for Analysis
and Design of Software Reference Architectures”. In: Information and
Software Technology vol. 54 (2012), pp. 417–431.

[4] AUTOSAR. AUTOSAR (AUTomotive Open System ARchitecture). On-
line. Available at: http://www.autosar.org/ (Accessed 02/2016). 2013.

[5] P. Avgeriou, S. Retails, and M. Skordalakis. “An Architecture for
Open Learning Management Systems.” In: Panhellenic Conference on
Informatics (PCI’2003) (2003), pp. 183–200.

[6] L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practise. Addison-Wesley, 2012.

[7] J. Bosch. “Software Architecture: the Next Step”. In: First European
Workshop: Software Architecture (EWSA’04) (2004), pp. 194–199.

[8] N. S. Eickelmann and D. J. Richardson. “An Evaluation of Software
Test Enviroment Architectures”. In: International Conference on Soft-
ware Engineering (ICSE’96) (1996), pp. 353–364.

[9] M. Galster et al. “Variability in Software Architecture: Current Practice
and Challenges”. In: SIGSOFT Software Engineering Notes vol. 36
(2011), pp. 30–32.

[10] D. Garlan and D. Perry. “Introduction to the Special Issue on Software
Architecture”. In: IEEE Transactions on Software Engineering (1995),
pp. 269–274.

[11] A. Grosskurth and M. W. Godfrey. “A Reference Architecture for Web
Browsers”. In: IEEE International Conference on Software Mainte-
nance (ICSM’05) (2005), pp. 661–664.

[12] M. Guessi, L. B. R. Oliveira, and E. Y. Nakagawa. “Representation
of Reference Architectures and Reference Models: A Systematic
Review”. In: 28th Int. Conference on Software Engineering and
Knowledge Engineering (SEKE’11) (2011), pp. 1–4.

[13] M. Hagele. Project RoSta - Robot Standarts and reference architec-
tures. On-line. Available at: http://www.robot-standarts.org/ (Accessed
02/2016). 2013.

[14] ISO/IEC/IEEE. ISO/IEC/IEEE 42010:2010 International Standard for
Systems and Software Engineering – Architectural description. 2011.

[15] P. Kruchten, H. Obbink, and J. Stafford. “The past, present, and future
of software architecture”. In: IEEE Software vol. 23. no 2 (2006),
pp. 22–30.

[16] G. Muller. A Reference Architecture Primer. On-line. Available
at: http://www.gaudisite.nl/ReferenceArchitecturePrimerPaper.pdf (Ac-
cessed 02/2016). 2008.

[17] E. Y. Nakagawa, F. Oquendo, and M. Becker. “RAModel: A Ref-
erence Model of Reference Architectures”. In: IEEE/IFIP Conf.
on Software Architecture & Eur. Conf. on Software Architecture
(WICSA/ECSA’2012) (2012), pp. 297–301.



Fig. 5. Reference architecture post form

[18] E. Y. Nakagawa, F. Oquendo, and J. C. Maldonado. “Software Archi-
tecture: Principles, Techniques, and Tools”. In: ed. by M. Oussalah.
John Wiley & Sons, 2015. Chap. Reference Architectures, pp. 101–
122.

[19] E. Y. Nakagawa et al. “Consolidating a Process for the Design, Rep-
resentation, and Evaluation of Reference Architectures”. In: Working
IEEE/IFIP Conference on Software Architecture (WICSA’14) (2014),
pp. 1–10.

[20] OASIS. Reference Architecture Foundation for Service Oriented
Architecture Version 1.0. On-line. Available at: http://docs.oasis-
open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html (Accessed
02/2016). 2013.

[21] L. B. R. Oliveira et al. “Towards a Process to Design Architectures
of Service-Oriented Robotic Systems”. In: European Conference on
Software Architecture (ECSA’14) v. 8627 (2014), pp. 218–225.

[22] OMG. Unified Modeling Language v. 2.4.1. [On-line]. Available at:
http://www.omg.org/spec/UML/2.4.1/ (Accessed 02/2016). 2011.

[23] U. Project. The UniversAAL Reference Architecture. On-line. Available
at: http://www.universaal.org/ (Accessed 02/2016). 2013.

[24] K. Sandkuhl and B. Messer. “Towards Reference Architectures for
Distributed Groupware Applications”. In: Euromicro Workshop on
Parallel and Distributed Processing (2000), pp. 135–141.

[25] M. Shaw and P. Clements. “The Golden Age of Software Architecture”.
In: IEEE Software 23.no 2 (2006), pp. 31–39.

[26] A. I. Wasserman. “Towards a Discipline of Software Engineering”. In:
IEEE Software vol. 13.no. 6 (1996), pp. 22–31.


