
Problem-Aware Traceability in

Goal-Oriented Requirements Engineering

Grace Park, Lawrence Chung

University of Texas at Dallas

{exp130530, chung}@utdallas.edu

Jang-Eui Hong

Chungbuk National University

jehong@chungbuk.ac.kr

 José Luis Garrido, Manuel Noguera

University of Granada

 {jgarrido, mnoguera}@ugr.es

Abstract— Requirements traceability helps to ensure that a re-

quirements specification is aligned with the intended stakehold-

ers’ needs. Such alignment should involve the consideration of

why such needs arise, in terms of what problems the stakeholders

are faced with, and what kinds of software system may help alle-

viate or eliminate the problems. However, little work can be

found on requirements traceability that explicitly considers the
problems. In this paper, we propose an problem-aware frame-

work for establishing requirements traceability, in the context of

goal-oriented requirements engineering, which explicitly models

problems and their root causes, together with other important

ontological concepts, stakeholders’ goals, and both functional and

non-functional requirements as a solution, and issues. In this

framework, ontological concepts are partitioned into layers, re-

flecting which traceability links are classified into intra- and in-

ter-traceabilities leading to several kinds of links. Additionally,

undesirable consequences of inappropriate traceabilities are also

categorized. A case study shows some key benefits of the frame-

work.

Index Terms—Requirements Traceability, Ontology, Problem-

Aware, Goal-oriented Requirements Engineering

I. INTRODUCTION

Requirements traceability [1] refers to the ability to relate

various concepts about requirements, such as problems, goals

and requirements, to each other, and helps ensure that the re-

quirements specification is aligned with the intended stake-

holders’ needs. It aids impact analysis, process visibility, veri-

fication and validation, and change evaluation, hence being a

critical success factor not only for an initial software develop-

ment phase but also for its subsequent maintenance phase [2].

Alignment between a requirements specification and the in-

tended stakeholders’ needs should be considered in terms of

why such needs arise – this in turn in terms of what problems

the stakeholders are faced with, and what kinds of software

system may help alleviate or eliminate the problems.

However, little work can be found on requirements tracea-

bility that explicitly considers the problems, even though the

key role of a software system is supposedly to help alleviate or

eliminate the problems that the stakeholders are suffering from.

 In this paper, we propose a problem-aware framework for

establishing requirements traceability, in the context of goal-

oriented requirements engineering (GORE). In this framework,

problems and their root causes are explicitly modeled as key

ontological concepts (or vocabulary), together with other im-

portant ontological concepts, i.e, stakeholders’ goals, and both

functional requirements (FRs) and non-functional requirements

(NFRs) as a solution to the problems and at the same time a

means for the goals, and issues (e.g., ambiguity and incon-

sistency) with any such individual concept or any relationship

between two individual concepts. In this framework, ontologi-

cal concepts are partitioned into five layers – problem, goal,

requirements, prototype and issue layers. Traceability links

then are classified into intra- and inter-traceabilities (layer

link). An intra-traceability refers to a relationship between con-

cepts in the same layer, while an inter-traceability refers to a

relationship between concepts in two different layers. The layer

link can be combined with refinement link (satisficing and de-

composition-links), which results in requirements product links

for requirements themselves. Additionally, issue link can com-

bine together with refinement link, which leads to requirements

process links for rationale of the requirements process. This

framework also identifies several classes of undesirable conse-

quences of improper traceability links.

We have carried out a case study, involving about 60

teamwork-oriented course projects in several senior- and grad-

uate-level requirements engineering (RE) classes with about

500 students in total. Through this case study, we have ob-

served how the presence of proper traceabilities, or lack there-

of, affects the quality of the resulting requirements and proto-

type. More specifically, our observation shows how frequently

omissions or commissions of traceability links are made by

students, and of what kinds – leading to incomplete or incorrect

requirements. To provide a sense of how this case study has

been carried out, a comparison of two groups’ work will be

shown. A statistical analysis result shows that our framework

can indeed help improve the quality of the requirements and

corresponding prototypes, by making them more complete,

correct and clear, while capturing important rationales.

There has been some work on requirements traceability

(e.g., see [1]). Our work is similar to [3], which provides a rich

set of issues and ontological concepts such as stakeholder, ob-

ject, and source as a reference model for requirements tracea-

bility, and to [4], which takes a goal-oriented approach to re-

quirements traceability; in our framework, problems and their

root causes are treated as a central and fine-grained ontological

concept, along with goals, layers and different types of tracea-

bility links. The notions of goals and problems are also men-

tioned in [5], but without ontological layers, layer links (inter-

/intra- links), refinement links (satisficing-/decomposition-

links), root causes and issues. Model-driven traceability has

DOI reference number: 10.18293/SEKE2016-210

been addressed in general [6] and more specifically for re-

quirements in the context of MDA [7], but with different onto-

logical concepts and traceabilities for the life after requirements

established; this framework more focus on the life before them.

Section 2 introduces goal-oriented models that have been

adopted for the ontology of the framework. Section 3 presents

our problem-aware framework for goal-oriented requirements

traceability. Sections 4 and 5 respectively describe a case study

and a discussion. At the end, a summary of the paper is de-

scribed, along with some future work.

II. ADOPTED GOAL-ORIENTED MODELS

For our problem-aware traceability framework in the con-

text of goal-oriented requirements engineering (GORE), we

adopt work, on the one hand, on representing functional and

non-functional requirements, and on representing problems, on

the other.

A. Representing Functional and Non-Functional Requirements

Concerning the representation for both FRs and NFRs,

there are several goal-oriented frameworks, including KAOS

[8], i* [9], and the NFR Framework [10], each with its own

emphasis and characteristics. We adopt the NFR Framework,

since it is also common to many other goal-oriented models.

An NFR, such as accuracy, security and performance, typi-

cally has no clear-cut definition or criteria whether it is abso-

lutely satisfied or not. Accordingly, in the NFR Framework, an

NFR is treated as a softgoal, and the notion of “satisficing” is

used. Each softgoal has an associated NFR type and one or

more topics (See Fig. 4 for examples).

There are three types of softgoals (See Fig. 1): NFR, Opera-

tionalizing and Claim softgoals. An NFR softgoal is an NFR to

be satisficed; an operationalizing softgoal is a concrete means

(e.g., an operation to be carried out by people – expectation, or

a FR to be implemented in the projected software system),

which can achieve an NFR softgoal; and a claim softgoal is an

argument/justification. Each softgoal can be either AND or OR

decomposed into sub-softgoals or make a contribution towards

satisficing another softgoal, fully or partially positively

(MAKE or HELP), or fully or partially negatively (BREAK or

HURT). A bottom-up label propagation mechanism evaluates

the effect of a decision on upper softgoals, with a label - Satis-

ficed, Denied, Conflict, or Undetermined. Softgoals and rela-

tionships between softgoals are represented in a softgoal inter-

dependency graph (SIG).

B. Representing Problems

There are several different kinds of models for problem rep-

resentation and root cause analysis, including notably FTA

(Fault Tree Analysis) [11], Fish Bone Diagram [12], and PIG

(Problem Interdependency Graph) [13]. While FTA is suitable

when information is available about AND/OR logical relation-

ships among root causes, Fish Bone Diagram is adequate when

uncertainties exist about relationships among root causes. We

adopt PIG, since it accommodates both conventions, and addi-

tionally it closely resembles SIG, offering NFR softproblem

and Operationalizing softproblem, together with the same kinds

of satisficing relationships.

III. A PROBLEM-AWARE TRACEABILITY FRAMEWORK IN

GOAL-ORIENTED REQUIREMENTS ENGINEERING

Our problem-aware traceability framework in GORE offers

an ontology, with problems as among the essential concepts or

vocabulary, by extending the two adopted ontological concepts

of goals and problems. The framework then introduces five

layers of ontological concepts, which in turn lead to several

kinds of traceability links. Additionally, the framework offers

several different categories of undesirable consequences of

omissions or commissions of traceability links.

A. Overall Ontology

Fig.1 shows a somewhat simplified ontology on our adopt-

ed goal-oriented models described in the previous section, with

detailed refinements of some concepts omitted. It shows key

concepts such as problems, goals (including softgoal), require-

ments, prototypes for requirements visibility and issues for

requirements process. As stakeholder is the owner of problems

or goals, it representst whose problems and goals. As for trace-

Fig. 1. Ontology for Problem-Aware Traceability in Goal-Oriented Requirements Engineering (GORE)

bility links, there are refinement links such as satisficing- and

decomposition- link, and layer link such as inter- and intra-

links. Essentially, a traceability link can exist wherever there

can be a relationship between the source and target traceability

objects. Traceability links are mostly bi-directional, i.e., for-

ward and backward.

B. Layers of Traceability Objects

The ontological concepts are partitioned into five layers, as

shown in Fig.1 and Fig. 2, and the example is in Fig. 3.

Fig. 2. Layers of Traceability Objects

Fig. 3. Examples of Inter Links of Campus Navigation Appli-

cation for the disabled

 Problem Layer: to represent phenomena that are

against stakeholders’ goals. This layer is for represent-

ing problems and their root causes, which can also

help discover critical goals. For example, in Fig. 3,

P1.Not feasible for real-time indoor GPS [Campus Naviga-

tion] is a root cause which handicapped people have in

campus navigation. The procedure to extract the root

causes is shown in the upper portion of Fig. 4.

 Goal Layer: to represent stakeholders’ intentions,

which helps to explore alternatives in requirements

and select among them. For example, in Fig. 3,
G1.Adequate and Accurate indoor navigation [Campus Navi-

gation System] is a refined goal, which is against P1.

 Requirements Layer: to represent functional & non-

functional requirements. For example, the system shall

provide navigational guidance with voice according

to the automatically detected indoor source and the

user defined destination (FR1) is a functional re-

quirement, for achieving the goal, G1.

 Prototype Layer: to represent a user interface as a pro-

totype which implements FRs and NFRs.

 Issue Layer: to represent issues that happen with any

statement such as ambiguous, inconsistent or conflict-

ing statements, options to resolve them, and trade-off

analyses with rationales. More details are discussed in

Section C.3.

Relationships between the problem layer and goal layer are

generally negative satisficing (e.g., BREAK or HURT). Addi-

tionally the requirements layer has positive satisficing relation-

ships (e.g., MAKE or HELP) for the goal layer, as a means,

and negative satisficing relationships for the problem layer, as a

solution. That’s why the problem layer and the goal layer are

located in the same layer and requirements layer is under the

layers.

C. Classification of Traceability Links

In our framework, there are two kinds of traceability links:

Requirements Product- and Requirements Process- Traceability

links. While Requirements Product Traceability are links be-

tween problems and requirements themselves, Requirements

Process Traceability are links for rationales on how the re-

quirements were created.

1) Requirements Product Traceability can be defined as a

cross product between Layer Link and Refinement Link:

Requirements Product Traceability Link =

 Layer Link X Refinement Link

1.1) Layer Link: This concerns the boundaries of traceability

links, and there are two kinds:

a) Intra Link: refers to any relationship among

traceability objects within the same layer. For example,

links among NFR, Operationalizing, and claim softgoals

are intra links because they belong to the same Goal Layer.

b) Inter Link: any link among traceability objects across

different layers (except for the issue layer), including:

 Problem-Goal (PG) Link: helps ensure all the problems

are linked to goals as their context.

 Goal–Requirements (GR) Link: helps ensure goals are

at least partly achieved (satisficed) by requirements.

 Operationalizing goal-Requirements (OR) Link: helps

ensure some operationalizing (soft)goals are linked to

functional requirements. All goals should be refined

into sub-goals small enough an agent can be assigned.

If the leaf goal is assigned to a software system, that

will be a requirements. This link shows the relation-

ships between the assigned leaf goal and its require-

ments.

 Requirements-Prototype (RP) Link: helps validate the

correctness of the requirements, using a prototype.

Fig. 4 shows some intra and inter traceability links within,

as well as across, PIG (the upper portion) and SIG (lower por-

tion). Using PIG, abstract problems are further refined, and

they can help to find refined critical goals (i.e., leaf goals) by

breaking or hurting the leaf problems.

1.2) Refinement Link: This concerns refinement using

parent and child relationships:

a) Satisficing Link: refers to any link showing how a

traceability object contributes to its parents, through Make,

Fig. 4. Examples of Intra and Inter Links

Help, Hurt or Break.

b) Decomposition Link: any link showing how a

traceability object is composed through AND or OR

relationships.

2) Requirements Process Traceability can be defined into a

cross product between Issue Link and Refinement Link:

Requirements Process Traceability Link =

 Issue Link X Refinement Link

 Issue Link

This concerns any link, involving issues (ambiguity, incon-

sistency or conflict) on anything in any layer, i.e, any problem,

goal, FRs/NFRs or prototype features. An issue is associated

with options for resolving it, together with rationale for choos-

ing one or more of the options, through tradeoff analysis. Table

1 is an example of issue traceability for a preliminary function-

al requirement (PFR1), concerning the scope of a campus,

which is ambiguous. To alleviate the ambiguity, there are two

options and option 2 is selected with a rational, concerning the

project time and resource constraint.

TABLE 1. An Example of Issue Traceability

ID Description

FRI

1

PFR1 The application shall provide navigational

instructions between two specified points on

the ABC campus.

Ambiguous. Does the campus include outdoor parking lots?

Option 1 Define the campus as indoor such as classroom

and service buildings.

Option 2 Include all the campus, from classroom and

service buildings to parking lots.

Choice Option 1

Rationale Given the time and resource constraint of the

project, Option 1 is better.

D. Undesirable Consequences of Improper Traceability Links

If traceability links are not properly established or omitted,

the following undesirable consequences (i.e. defects) can arise.

 Incompleteness: all leaf elements in an upper/same

layer are not properly dealt with in a lower/same layer

due to the inappropriate forward inter traceability. For

example, given a goal “offer a voice job search capa-

bility for those with disabilities” in goal (upper) layer,

if there are no corresponding requirements to deal

with the goal in requirements (lower) layer, then it

will cause incompleteness defects.

 Incorrectness: an element in a lower/same layer is not

correctly described according to a corresponding ele-

ment in its upper/same layer due to both improper

backward inter and intra traceability links. For exam-

ple, let us suppose that for the above goal, “the system

shall provide a function to learn job skills” is a re-

quirement. The requirement is incorrect because the

requirement does not adequately achieve the goal,

since learning job skills is not much related to job

search.

 Risk of Gold Plating: the addition of expensive and

unnecessary features to a system due to lack of back-

ward inter and intra traceability.

 Ambiguity: there are more than one interpretations

and no rationale for a decision because of improper is-

sue links.

IV. CASE STUDY

We have conducted experiments to validate our problem-

aware traceability framework, through the group projects of

several undergraduate-, graduate-level and industry- require-

ments engineering courses, which one of the co-authors has

been teaching for more than 10 years. Most of undergraduate

student were consist of senior student whose majors were com-

puter science, but there were some students who had been

working more 10 years in Information Technology (IT) indus-

try. This were similar to the graduate level course. The students

of the industry course had IT industry experience more than

3years. We selected projects which were conducted in those

courses from year 2011 to year 2015. Most projects were simi-

lar domain about building smartphone apps for people with

mental or physical difficulties, but not the same apps. There

have been about 60 projects which the average number of

members were about 8 (12 from senior-level courses, 38 from

graduate-level courses, 10 from executive courses for industry

people), with about 500 students in total. Students learned sev-

eral kinds of goal-oriented requirements models, such as PIG or

SIG, and applied their knowledge to their projects, using the

provided our guidelines and a traceability template which is

available [14]. Each project selected the combination of tracea-

bility link types on its own decision.

This study has shown the presence of traceability links, or

lack thereof, affects the quality of requirements and prototypes.

To show the correlation, Teaching Assistant (TA) who is one

of coauthors have carried out an overall defect analysis, and

analyzed the kinds of defects which students frequently made.

To provide a sense of the analysis, we show a comparison be-

tween an exemplary project which applied most of the pro-

posed traceability links and another one which did not, which

resulted in the functionality differences of their prototypes.

Various student documents, which have been used for this case

study, are publicly available (including [14]).

A. Overall Defects Analysis

Fig. 5 shows how different kinds of inappropriate traceability

links affect the different kinds of defects in terms of the num-

ber of defect projects. The most common kind of defects was

requirements incompleteness (as in [15]), and our observation

shows that this is caused by omission of traceability links from

an upper layer to a lower layer (i.e., forward traceability links).

The next frequently-occurring is incorrectness, due to the lack

of semantic correspondence between concepts in a lower layer

and those in an upper layer that are backward traceable from

them.

Fig. 5. Overall Defects Analysis

B. Common Defects & Effectiveness of Our Proposal to

Reduce Defects

1) Incompleteness

Incompleteness defect, as described in the previous section,

arises when all leaf elements of an upper layer are not properly

dealt with in a lower layer due to the inappropriate forward

inter traceability. This kind of defects mostly result from dif-

ferent inter satisficing links such as Problem-Goal (PG), Goal-

Requirements (GR), Operationalizing goal-Requirements (OR)

or Requirement-Prototype (RP) and the defects can lead to in-

completeness of requirements. To measure the incompleteness

defect rate, we divided the target projects into two groups: the

projects which applied our suggested link vs. those of not ap-

plied each link. Then, for each group, we used the following

formula.

IncomDR =
TOT

IncomDO

, where IncomDR is Incompleteness Defect Rate, IncomDO

is the number of projects which Incompleteness Defect Oc-

curred and TOT is the TOTal project number, in a specific

group.

As Fig. 6 shows, applying inter satisficing links positively

affects to reduce the incompleteness defects in all inter link

types.

2) Incompleteness

Incompleteness defect arise when elements in a low layer does

not semantically correspond to elements in an upper layer due

to both improper backward inter and intra traceability links.

Similar to the Incompleteness defect measurement, per group,

we calculate incorrectness defect rates using the following for-

mula.

IncorDR =
TOT

IncorDO

Fig. 6. Incompleteness Rates: When links present vs. absent.

 , where IncorDR is Incorrectness Defect Rate, IncorDO is

the number of projects which Incorrectness Defect Occurred

and TOT is the TOTal projects number, in a specific group.

Fig.7 shows that the comparison of incorrectness defects

between when the intra and inter links are applied and when

they are not applied. This also showed positive effects on re-

ducing incorrectness defects.

Fig. 7. Incorrectness Rates: When links present vs. absent.

C. Projects Comparison

In order to provide a sense of our case study, a comparison

is given of two projects on the same subject - here, medication

alert to help remind those elder people who often forget to take

their medications. As Table 2 shows, while Team A applied

most of the proposed links, including inter, intra and issue,

Team B applied only Issue Link. Consequently, as Fig. 8

shows, while team A has more detailed information, such as

Caregiver Notification and Refill Reminder which can help

elder people in diverse ways, team B only has time setting.

TABLE 2. Traceability Links Applied by Two Teams

Link Type Team A Team B

Inter Problem-Goal O X

Goal-Requirements(Req) O X

Operationalizing-Req O X

Req-Prototype O X

Intra Problem O X

Goal O X

Issue Link O O

V. DISCUSSION

A. Overall Observation: Although many students knew each

concept, such as problem, goal, requirements and prototype,

they did not well recognize relationships between problems and

goals, goals and requirements, or operationalizing softgoals and

Fig. 8. Prototypes of Team A (left black background) vs. Team B (right white background)

functional requirements. Overall, the various kinds of traceabil-

ity links we provided helped the students (better) understand

such relationships. Through our case study, we also have ob-

served that such links help reduce requirements defects, hence

improving the quality of the requirements.

B. Threats to Validity: The quality of requirements depends on

the manpower and capabilities – both individual and teamwork

skills - of project team members. In our experiment, each team

had different members and also the team size varied from one

team to another. Moreover, the project scopes were diverse,

although all of them had to do with a smartphone app for peo-

ple with mental or physical disabilities, hence our experiment

was not entirely homogeneous. Also, the sample size for this

case study was small for a significant statistical analysis, con-

cerning scalability, although the total number of students who

participated was about 500. Additionally, the analyzer may not

fully understand the each project.

VI. CONCLUSION

In this paper, we have proposed a problem-aware approach

to requirements traceability in goal-oriented requirements engi-

neering, in order to help ensure that the requirements specifica-

tion and its corresponding prototype are well aligned with their

intended stakeholders’ needs. More specifically, this paper has

presented 1) an ontology, which incorporates such key con-

cepts as problems, goals, requirements, prototypes and issues;

2) five layers, which partition the ontological concepts, accord-

ing to their levels of abstractions; 3) several classes of tracea-

bility links, which group relationships, according to the seman-

tic closeness of the ontological concepts; and 4) several classes

of undesirable consequences of improper traceability links. A

case study, we feel, shows that our approach helps develop

better requirements specifications and prototypes, and im-

portantly in a traceable manner. This study, we feel, also has

shown that our approach facilitates the detection of several

different kinds of undesirable consequences of inappropriate

traceabilities, such as incompleteness, inconsistencies and am-

biguities in the requirements specifications and the prototypes –

these defects will likely result in an implemented software sys-

tem with the same kinds of defects.

There are several lines of future work. One is regarding

(semi-)automatic mapping between layers and detection of

omission or commission of traceabilities by using MDA (Mod-

el Driven Architecture). Another line of future research con-

cerns provision of better templates for the various kinds of

traceabilities. More case studies are also needed in various

types of application domains.

REFERENCES

[1] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the

Requirements Traceability Problem, ” Proc., 1st Int. Conf. on

Reqs. Eng., 1994. pp. 94-101.

[2] B. Ramesh, "Factors Influencing Requirements Traceability

Practice," Communications of the ACM, 1998. pp. 37-44.

[3] B. Ramesh and M. Jarke, "Toward Reference Models for

Requirements Traceability," IEEE Trans. Soft. Eng., 2001. pp.58-93.

[4] J. Cleland-Huang, R. Settimi and O. Benkhadra, "Goal-Centric

Traceability for Managing Non-Functional Requirements,"

Proc. 27th Int. Conf. on Software Engineering, 2005.pp.362-371.

[5] M. Yamin, V. Zuna and M. A. l. Bugami, "Requirements Analysis

and Traceability at CIM Level," Jour. of Soft. Eng. and App., 2010.

pp. 845-851.

[6] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin and Y. Shaham-

Gafni, “Model Traceability,” IBM Sys. Jour., 2006. pp. 515-526.

[7] A. João Paulo A, M.E. Iacob and P. van Eck. "Requirements

Traceability in Model-Driven Development: Applying Model

and Transformation Conformance," Inf.Sys.Fron., 2007. pp.

327-342.

[8] A. van Lamsweerde, "Requirements Engineering in the Year 00:

A Research Perspective," Proc., 22nd Int. Conf. on Soft. Eng.,

2000. pp. 1-15.

[9] E. Yu, P. Giorgini, N. Maiden and J. Mylopoulos, Social

Modeling for Reqs. Eng., The MIT Press. 2011.

[10] J. Mylopoulos, L. Chung and B. Nixon, “Representing and

Using Nonfunctional Requirements: a Process-Oriented

Approach,” IEEE Trans. on Soft. Eng., 1992. pp. 483-497.

[11] L. Xing and S. V. Amari, "Fault Tree Analysis," Handbook of

Performability Engineering, Springer London, 2008.pp.595-620.

[12] K. Ishikawa, Guide to Quality Control. No. TS156. I3713, 1982.

[13] S. Supakkul and L. Chung. "Extending Problem Frames to Deal

with Stakeholder Problems: An Agent- and Goal-Oriented

Approach," Proc., ACM Sym. on App. Com., 2009. pp. 389-394.

[14] http://www.utdallas.edu/~chung/RE/syllabus.htm

[15] T. Clancy, “The Standish Group Report,” Chaos Report, 2014.

http://www.utdallas.edu/~chung/RE/syllabus.htm

