
A Model for Predicting Bug Fixes in Open Source
Operating Systems: an Empirical Study

Paolo Ciancarini
Università di Bologna and CINI

Italy
paolo.ciancarini@unibo.it

Alberto Sillitti
Innopolis University and CINI

Russian Federation
a.sillitti@innopolis.ru

Abstract—This paper proposes an adaptation to the open source
environment (Linux Kernel and OpenSolaris) of a model for
predicting which bugs get fixed in the Microsoft Windows
operating system. We have analyzed the entire bug repositories
containing 16,136 bug reports reported in about 8 years of
activity of the project (from 2002 to 2010) for the Linux Kernel
and 16,301 bug reports reported in about 3 years of activity of the
project (from 2007 to 2010) for OpenSolaris. According to the
data analyzed and the descriptive models produced, we have
found that (a) bugs reported by people with better reputation and
bugs in which more people are involved are more likely to get
fixed, (b) reassigning or re-opening bugs are not affecting the fix
likelihood, and (c) managing bugs in the same location increases
the fix likelihood. The predictive model defined has a precision of
61% and a recall of 39% for the Linux Kernel and a precision of
76% and a recall of 73% for OpenSolaris. These results are
comparable with the ones for Microsoft Windows. document.

Keywords-bugs; predictive models; open source

I. INTRODUCTION

Bugs are one of the major problems in software
development since the very early era of computers (Brooks,
1995). In any kind of software products, not all bugs are fixed.
This is because different bugs have a different impact on the
user and bug fixes requires a significant amount of time and
effort (Ciancarini et al., 2015; Ciancarini et al., 2016; Di Bella
et al., 2013b; Pedrycz et al., 2015; Remencius et al., 2016).
Moreover, in popular products, the number of bug reported is
usually very high and there are not enough resources to fix
them all. As discussed in Guo et al. (2010), a significant amount
of effort is devoted to bugs that remain unfixed: all this effort is
wasted. For these reasons, it is essential to identify as fast as
possible the bugs that are fixed and the one that remain not
fixed. To support this identification many different approaches
are possible based on the analysis of the development process
(Abrahamsson et al., 2007; Di Bella et al., 2013; Petrinja et al.,
2010; Sillitti et al., 2012) and the analysis of the code
(Jermakovics et al., 2008; Jermakovics et al., 2011; Pedrycz et
al., 2002).

This paper adapts the work of Guo et al. (2010) developed
on the Microsoft Windows operating system to open source
alternatives, namely the Linux Kernel and OpenSolaris. To
adapt better the model, we have considered the development of
the two systems till 2010 since the original study was of that

year. In this study, we have investigated the Linux Kernel that
was about 12 MLOC and OpenSolaris, about 20 MLOC.

To this end, the major outcomes of the work of Guo et al.
(2010) and ours are summarized in Table I.

TABLE I. MAJOR FINDINGS OF THE PAPER OF GUO ET AL. (2010)
COMPARED TO OUR STUDY

Guo et al. (2010) Our study
“People more successful in getting their bug fixed in the
past are more likely to get their bugs fixed in the future.”

Confirms

“The more people are involved in the bug life cycle, the
more likely it is fixed.”

Confirms

“Reassignments of bugs are not always detrimental to the
likelihood of bug fix.”

Confirms

“Re-openings of bugs are not always detrimental to the
likelihood of bug fix.”

Confirms

“Bugs assigned across teams or locations are less likely
to get fixed.”

Confirms

Definition of a model for predicting the probability of fix
of a given bug at the time of opening.

Similar
model

This paper is structured as follows: Section II presents the
state of the art of the area; Section III describes the research
methodology and the data; Section IV and V provide a
descriptive and a predictive statistical models; finally, Section
VI draws the conclusions and provides directions of future
work.

II. RELATED WORK

There are several studies related to bug reports. In particular,
the are several papers related to bug analysis and prediction.
However, in our knowledge, the only study related to the
likelihood of fix of a bug is the one by Guo et al. (2010) related
to the bug reports of the Microsoft Windows operating system.
Moreover, no studies are available in the open source area.

Readers interested in an overview of the state of the art and
of the related literature can refer to the paper of Guo et al.
(2010).

III. RESEARCH METHODOLOGY

A. Environment

We have performed a quantitative analysis extending the
approach followed by Guo et al. (2010) to the analysis of open
source projects. In particular, we have considered the bug

DOI reference number: 10.18293/SEKE2016-199

repositories of the Linux Kernel and OpenSolaris till 2010. We
have selected such software because they are both open source
operating systems and the availability of a large amount of
information. In particular, all the bug reports are publicly
available. Moreover, the timeframe is limited to 2010 since we
compare with the study of that year.

The main differences with the study of Guo et al. (2010) are
related to the open nature of the considered projects, in
particular: a) we had no possibility to propose a questionnaire to
the developers; b) we had no information about the actual
geographical location of the developers; c) we had no
information about the organizational structure of the
contributors, except from the information we can get from their
email addresses that is basically the organization they belong to.
In particular, we were not aware if people in the same
organization share the same boss and/or belong to the same
working team.

Even with the listed differences, it was possible to compare
the core part of the studies and propose an approach to make a
similar analysis possible in any public bug repository.

B. Data

We have considered all the bugs stored in the bug tracking
systems of the Linux Kernel and the OpenSolaris operating
systems till 2010.

For each bug report, we extracted the history of the bug and
the following set of information:

 Editor: who has modified the bug report

 State: if the bug is still open or not

 Component: the name of the affected component

 Severity: potential impact of the bug on the system:
blocking, major, minor, trivial, etc.

 Opener: who has opened the bug

 Assignee: who is assigned to manage the bug

 Resolution: if the bug has been resolved. The study
considers only bugs that are marked as resolved as
fixed or not. Such other status includes bugs that are
identified as duplicates, bugs that will not be fixed,
etc.

Compared to the study of Guo et al. (2010), we were unable
to collect the following information:

 Bug source: the source of the bug report such as
internal testing, a customer, code review, etc.

 Bug type: bug in code, specification, test, etc.

In the projects considered, the typical life cycle of a bug is
the following: when a bug is opened, all the described fields are
filled in by the opener, than the bug is edited one or more times
(including reassignments to other developers) until the bug is
resolved. However, it might happen that a resolved bug is
reopened because it was not solved properly.

Our goal is to characterize bugs that have been resolved
successfully and in the case of re-openings, we consider only
the final status in 2010.

Beside the bug reports, Guo et al. (2010) presented data
related to a questionnaire that was filled in by a large number of
developers and data related to the organization of the
development teams in Microsoft. In our study, these data were
not available since our data come from open source projects.
The data we miss are the following:

 Geographical data: information about the co-location
of people in the same office, building, or campus.

 Organizational data: information developers
belonging to the same team.

 Qualitative data: information collected through a
questionnaire asking the developers about the factors
that influence the likelihood for a bug of being fixed.

According to their results, geographical and organizational
data have some impact on the likelihood for a bug of being
fixed. However, these factors have a limited impact in open
source projects since most of them are extremely distributed
and do not have a hierarchical organization.

IV. DESCRIPTIVE STATISTICAL MODELS

A. Building the models

We have built two models to predict the probability that a
bug will be fixed in the two operating systems considered. To
build the models, we have used the same approach described in
G u o et al. (2010). The identified factors and the related
coefficients are listed in Table II. We also found that all the
significant factors are statistically significant at p < 0.001,
according to an Analysis of Deviance chi-square test (Hosmer
and Lemeshow, 2000). We have checked for interactions
between factors and we have verified that there are no
statistically significant interactions.

TABLE II. DESCRIPTIVE LOGISTIC REGRESSION MODEL FOR BUG FIX
PROBABILITY. “N.A.” VALUES REFER TO FACTORS THAT ARE NOT AVAILABLE IN

THE SPECIFIC MODEL; “N.S.” VALUES REFER TO FACTORS THAT ARE NOT
STATISTICALLY SIGNIFICANT IN THE SPECIFIC MODEL.

Factor
Coefficient

Windows Vista Linux Kernel OpenSolaris

Reputation of bug
opener

2.19 2.03 1.83

Reputation of 1st

assignee
2.46 0.26 2.39

O p e n e d b y a
temporary
employee

-0.12 n.a. n.a.

Initial severity
level

0.03 n.s. 0.06

Opener/any
a s s ignee s ame
manager

0.68 n.a. n.a.

Opener/any
a s s ignee s ame
building

0.27 n.a. n.a.

Severity upgrade 0.26 n.s. 0.28

DOI reference number: 10.18293/SEKE2016-199

Factor
Coefficient

Windows Vista Linux Kernel OpenSolaris

 Editors 0.24 n.s. 0.11
Assignee
buildings

-0.26 n.a. n.a.

Re-openings -0.13 n.s. n.s.
Component
changes

-0.23 -0.20 -0.20

Opener and 1st

assignee in the
same organization

n.a. 0.47 n.s.

Opener/any
a s s ignee s ame
organization

n.a. n.s. 0.47

Opener and 1st

assignee are the
same person

n.a. n.s. 1.04

Assignees n.a. 0.18 n.s.
Comments n.a. 0.01 n.s.
Severity changes n.a. n.s. -0.31

The purpose of this model is to describe the factors affecting
the bug fixes but it cannot be used to make predictions since it
includes factors that are not available at the time of creation of
the bug report. A predictive model is described in Section V.

B. Meaning of the regression coefficients
As it happens in Guo et al. (2010), the meaning of the

parameters of the logistic regression model is intuitive. The list
of factors presented includes all the factors coming from a
quantitative experimentation (in the case of Windows Vista, the
study of Guo et al. (2010) included some factors collected
through questionnaires, therefore these have been omitted).

Moreover, some of the factors considered in Guo et al.
(2010) are not considered in our models:

 Opened by a temporary employee: this factor does
not have any meaning in open source projects since a
significant amount of contributions is provided by
volunteers (the percentage of paid developers and
volunteers varies a lot in different open source
projects)

 Opener/any assignee same manager: this factor is
not considered in our models for the same reason as
the previous factor.

 Opener/any assignee same building: this factor is not
considered in our models since we are not aware of the
physical location of the developers. In many open
source projects most of the developers are
geographically distributed.

The last 6 factors are not included in Guo et al. (2010) for
different reasons:

 Opener and 1st/any assignee in the same
organization: these were obviously not considered
since all the development was inside Microsoft.

 Opener and 1st assignee are the same person: this
factor is analyzed in the paper (even if no values are

reported for confidentiality) but it is not present in the
proposed model.

 Assignees: the authors in Guo et al., 2010 preferred to
use the number of assignee buildings. However, in our
models we are unable to do it since we do not know
the location of each developer.

 Comments: this factor is not considered in the
original paper. In our models it has a very small effect
and it is statistically significant only for the Linux
Kernel.

 Severity changes: this factor is not considered in the
original paper that considers only the fact that the
severity has been upgraded, downgraded, or not
modified. This factor has a relevant effect in the
OpenSolaris model while it is not significant in the
Linux Kernel one.

C. Interpretation of the models
According to the two developed models, the following

factors are correlated with the bug fix probability:

 Reputation of bug opener and of the 1st assignee:
as discussed in Section IV.C, these factors are strongly
positively correlated with the likelihood of fix in both
the analyzed projects (actually the correlation is
weaker for the 1st assignee in the Linux Kernel but it is
still relevant). This could mean that bug openers with a
relevant track record in having fixes are going to
receive more fixes in the future. This could be because
the of effectiveness of their reports. The same is true
for the 1st assignee since he could be effective in fixing
he bug (effective management of the assignation of
bugs to the correct person) or he can redirect the bug
to the best person able to fix it. In any case, it is liked
with an effective management of the assignation of
the bugs.

 Initial severity level: this factor has a positive
correlation with the likelihood of fix of a bug.
However, this is statistically significant only in the
OpenSolaris model. This could be related to the fact
that the number of severity changes and severity
upgrades are not significant in the Linux Kernel
model. Therefore, the significance of this factor could
also be related to the same motivation: a more
structured management of the severity levels that
might occur in OpenSolaris compared to the Linux
Kernel. This is also supported by the fact that Guo et
al. (2010) in Microsoft reports a similar value.

 Severity upgrade and Severity changes: changes in
severity affects the likelihood of bug fix. However, in
our two data sets, they affect only OpenSolaris, while
they are not significant in the Linux Kernel. This
behavior could be linked with a more structured
management of the severity levels that might occur in
OpenSolaris compared to the Linux Kernel since a

DOI reference number: 10.18293/SEKE2016-199

consistent part of its development was done inside Sun
Microsystems (now Oracle) (therefore, the corporate
organization could be more similar to the Microsoft
one reported in Guo et al. (2010)).

 Editors: the number of editors are positively
correlated with the likelihood of fix, however this
factor is significant only for the OpenSolaris model.
This could also be related to the more structured
contributions from Sun Microsystems, as editors and
edits could be linked more strictly with the knowledge
of the system and a deeper investigation of the bug
(and maybe more information in the bug reports).

 Component changes: this factor is negatively
correlated with the likelihood of bug fix. This happens
in both models and could be related to a vague bug
report that is not able to identify precisely the source
of the error.

 Opener and 1st assignee in the same organization
and Opener/any assignee same organization: these
factors are positively correlated with the likelihood of
bug fix, however only one of them is statistically
significant in each of the two models. In any case, they
identify a link between the opener and the management
of the bug inside the same organization. This could
relate the interest/usage of a specific set of
functionalities of a product and the involvement in its
development.

 Opener and 1st assignee are the same person: this
factor is positively correlated with the likelihood of bug
fix. However, it is statistically significant only in the
OpenSolaris model. This could be related to the size of
the community since Linux is more adopted than
OpenSolaris, therefore the factor is not affecting
significantly the likelihood of bug fix. On the contrary,
in OpenSolaris the community of reporters maybe
overlap more with the community of developers.

 Assignees: this factor is positively correlated with the
likelihood of fix, however this factor is significant only
for the Linux Kernel model. In any case, this factor is
linked to the number of people involved in the fix of a
bug. This could be related to the community approach
to software development in open source projects (even
if OpenSolaris is open source, its history as an open
product is quite recent and a large part of its
community was linked to Sun Microsystems).

 Comments: this factor has a positive correlation with
the likelihood of fix of a bug. However, this is
statistically significant only in the Linux Kernel model.
This could be related to the community approach to
software development in open source projects as
described in the previous factor.

D. Comparison with other studies
In our knowledge, the only comparable study is the one of

Guo et al. (2010). The main similarities are the following:

 The reputation of bug opener and of the 1st assignee
are very important to determine if a bug will be fixed.
For the bug opener our two models present
coefficients close to the value of the study of Guo et
al. (2010), for the 1st assignee the strongest similarity
is between the original study and the OpenSolaris
model. This could happen because even if OpenSolaris
is open source, its roots are in the Solaris operating
system developed at Sun Microsystems that provides
a large amount of contributions to the project.

 Re-opening or reassigning a bug does not affect the
bug fix likelihood.

 Bugs assigned across teams (organizations in our data
sets) are less likely to get fixed.

 Changing the component to which the bug is associated
decreases the bug fix likelihood. It is an indication that
it is not clear where the problem is and/or the bug
report is not adequate to identify the problem.

And the main differences are:

 We are unable to evaluate the role of the hierarchy of
the organization in the bug fix likelihood. This is
because in our projects the interactions among
developers are more complex than in the study of Guo
et al. (2010). In open source projects there is a mixture
of contributions including different companies,
associations, and volunteers. However, if the opener
and assignees belongs to the same organization (or
even it is the same person) the bug fix likelihood
increases.

 The number of comments in a bug report increases the
bug fix likelihood in the Linux Kernel model. This
could be because of the collaborative approach of the
development in open source projects (OpenSolaris
does not have a long tradition of community-based
development).

 Severity upgrades and changes affect positively and
negatively only the fix likelihood of OpenSolaris, this
could be related to a more structured management of
such information as it happens in Microsoft.

Moreover, the two studies differ also about some collected
data due to the different environments considered.

Some of the factors considered in the study of Guo et al.
(2010) are not included in our model:

 Opened by a temporary employee: this factor does
not have any meaning in open source projects since a
significant amount of contributions is provided by
volunteers (the percentage of paid developers and

DOI reference number: 10.18293/SEKE2016-199

volunteers varies a lot in different open source
projects)

 Opener/any assignee same manager: this factor is
not considered in our model for the same reason as the
previous factor.

 Opener/any assignee same building: this factor is not
considered in our model since we are not aware of the
physical location of the developers. In many open
source projects most of the developers are
geographically distributed.

However, we have extended the model proposed by Guo et
al. (2010) with 6 factors that are relevant for open source
projects:

 Opener and 1st/any assignee in the same
organization: these are obviously important in open
source development since the development is
performed in a distributed way with contributions of
several organizations.

 Opener and 1st assignee are the same person: this
factor has the same motivation as the one before.

 Assignees: our models use such information while the
paper of Guo et al. (2010) preferred to use the number
of assignee buildings. Considering open source
development, it is usually difficult to know the
location of each developer.

 Comments: comments are very useful in open source
development since the communication among
developers is usually mediated by tools. However, in
our models, it has a very small effect and it is
statistically significant only for the Linux Kernel.

 Severity changes: this factor could be an indicator of
the policies for managing bugs in the project. It has a
relevant effect in the OpenSolaris model, while it is
not significant in the Linux Kernel one.

The model we have proposed is easily replicable in any
open source project since it is based on information that nearly
all open source projects provide.

V. PREDICTIVE STATISTICAL MODELS

A. Building the models

Using the experience in the development of the descriptive
model described in the Section IV, we have built two models to
predict the probability that a bug will be fixed in the two
operating systems considered. To do that, we have replicated
the approach of Guo et al. (2010). The identified factors and
the related coefficients are listed in Table III. Also in this case,
we found that all the factors are statistically significant (mostly
at p < 0.001) according to an Analysis of Deviance chi-square
te s t (Hosmer and Lemeshow, 2000). We have checked for
interactions between factors and we have verified that there are
no statistically significant interactions.

In particular, the predictive models include only factors that
are known at the time of the bug submission, therefore only a
subset of the factors of the descriptive models are included in
the new one. Obviously, the related coefficients are slightly
different.

TABLE III. PREDICTIVE LOGISTIC REGRESSION MODEL FOR BUG FIX
PROBABILITY. “N.A.” VALUES REFER TO FACTORS THAT ARE NOT AVAILABLE IN

THE SPECIFIC MODEL; “N.S.” VALUES REFER TO FACTORS THAT ARE NOT
STATISTICALLY SIGNIFICANT IN THE SPECIFIC MODEL; “*” IS SIGNIFICANT AT P

< 0.05; “**” IS SIGNIFICANT AT P < 0.01.

Factor
Coefficient

Windows Vista Linux Kernel OpenSolaris

Reputation of bug
opener

2.19 1.75 1.74

Reputation of 1st

assignee
2.39 0.18* 2.63

O p e n e d b y a
temporary
employee

-0.04 n.a. n.a.

Initial severity
level

0.06 n.s. 0.04**

Opener/any
a s s ignee s ame
manager

0.27 n.a. n.a.

Opener/any
a s s ignee s ame
building

0.03 n.a. n.a.

Opener and 1st

assignee in the
same organization

n.a. 0.48 0.53

Opener and 1st

assignee are the
same person

n.a. n.s. 0.80

B. Performances of the models
We have investigated the precision and the recall of the

developed models and even if our models are based on less
information than the ones of Guo et al. (2010), we have obtained
comparable performances. In particular, we have obtained a
precision of 0.61 and a recall of 0.41 for the Linux Kernel
model and a precision of 0.76 and a recall of 0.73 for the
OpenSolaris one.

Such results have been obtained applying the same
approach described in Section IV.

C. Comparison with other studies
Since in our knowledge, the only similar study is the one of

Guo et al. (2010), we have compared our model with theirs
(Table IV). In particular, the Linux Kernel model performs
worse than the original model, while the OpenSolaris one
performs better. This could be related to the fact that even if
OpenSolaris is an open source product, it comes from a closed
source system and still mostly developed by Sun
Microsystems.

TABLE IV. COMPARISON OF THE PRECISION AND RECALL OF THE MODELS

DOI reference number: 10.18293/SEKE2016-199

Guo et al., 2010 Our study
Windows

Vista
Windows 7

Linux
Kernel

OpenSolaris

Precision 0.67 0.68 0.61 0.76
Recall 0.68 0.64 0.41 0.73

VI. CONCLUSIONS AND FUTURE WORK

This study aimed at extending in an open source
environment an empirical investigation performed inside
Microsoft. Our results has confirmed the claims of the study of
Guo et al. (2010) and was able to build two predictive models
with comparable performances using less information.

We think that our study provides a contribution to the
generalizability of the findings of empirical studies in software
engineering and we aim at replicating the study in several more
open source projects.

ACKNOWLEDGMENT

This paper has been partially supported by Consorzio
Interuniversitario Nazionale per l’Informatica (CINI) through
the ECSEL project MANTIS (662189).

REFERENCES

[1] Abrahamsson P., Moser R., Pedrycz W., Sillitti A., Succi G., “Effort
Prediction in Iterative Software Development Processes – Incremental
Versus Global Prediction Models”, 1st International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007),
Madrid, Spain, 20 - 21 September 2007.

[2] Brooks F. P. , The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, 2nd edition, 1995.

[3] Ciancarini P., Poggi F., Rossi D., Sillitti A., “Improving bug predictions
in multi-core cyber-physical systems”, 4th International Conference on
Software Engineering for Defense Applications (SEDA 2015), Rome,
Italy, 26 - 27 May 2015.

[4] Ciancarini P., Poggi F., Rossi D., Sillitti A., “Mining Concurrency
Bugs”, Embedded Multi-Core Systems for Mixed Criticality Summit
2016 at CPS Week 2016, Vienna, Austria, 11 April 2016.

[5] Di Bella E., Sillitti A., Succi G., “A multivariate classification of open
source developers”, Information Sciences, Elsevier, Vol. 221, pp. 72 - 83,
February 2013.

[6] Di Bella E., Fronza I., Phaphoom N., Sillitti A., Succi G., Vlasenko J.,
“Pair Programming and Software Defects – a large, industrial case
study”, Transaction on Software Engineering, IEEE, Vol. 39, No. 7, pp.
930 - 953, July 2013.

[7] Guo P. J., Zimmermann T., Nagappan N., Murphy B., “Characterizing
and Predicting Which Bugs Get Fixed: An Empirical Study of Microsoft
Windows”, 32nd International Conference on Software Engineering
(ICSE 2010), Cape Town, South Africa, 2 - 8 May, 2010.

[8] Hooimeijer P., Weimer W., “Modeling bug report quality”, 22nd

IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), Atlanta, GA, USA, 5 - 9 November, 2007.

[9] Hosmer D. W., Lemeshow S., Applied Logistic Regression, John Wiley
& Sons, 2nd edition, 2000.

[10] Jermakovics A., Moser R., Sillitti A., Succi G., “Visualizing Software
Evolution with Lagrein”, 22nd Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA 2008), Nashville, TN, USA, 19 -
23 October 2008.

[11] Jermakovics A., Sillitti A., Succi G., “Mining and Visualizing Developer
Networks from Version Control Systems”, 4th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE
2011) at ICSE 2011, Honolulu, HI, USA, 21 May 2011.

[12] Pedrycz W., Succi G., Chun M. G., “Association Analysis of Software
Mesures”, International Journal of Software Engineering and Knowledge
Engineering, Vol. 12, No. 3, pp. 291 - 316, 2002.

[13] Pedrycz W., Succi G., Sillitti A., Iljazi J., “Data description: A general
framework of information granules”, Knowledge-Based Systems,
Elsevier, Vol. 80, pp. 98 - 108, May 2015.

[14] Petrinja E., Sillitti A., Succi G., “Comparing OpenBRR, QSOS, and
OMM Assessment Models”, 6th International Conference on Open
Source Systems (OSS 2010), Notre Dame, IN, USA, 30 May - 2 June
2010.

[15] Remencius T., Sillitti A., Succi G., “Assessment of software developed
by a third-party: A case study and comparison”, Information Sciences,
Elsevier, Vol. 328, pp. 237 - 249, January 2016.

[16] Sillitti A., Succi G., Vlasenko J., “Understanding the Impact of Pair
Programming on Developers Attention: A Case Study on a Large
Industrial Experimentation”, 34th International Conference on Software
Engineering (ICSE 2012), Zurich, Switzerland, 2 - 9 June 2012.

DOI reference number: 10.18293/SEKE2016-199

	I. Introduction
	II. Related Work
	III. Research Methodology
	A. Environment
	B. Data

	IV. Descriptive Statistical Models
	A. Building the models
	B. Meaning of the regression coefficients
	C. Interpretation of the models
	D. Comparison with other studies

	V. Predictive Statistical Models
	A. Building the models
	B. Performances of the models
	C. Comparison with other studies

	VI. Conclusions and Future Work
	Acknowledgment
	References

