
DOI Reference number: 10.18293/SEKE2016-198

Automatically Finding Hidden Industrial Criteria used in Test Selection

Cláudio Magalhães
Centro de Informática

Recife, Brazil
cjasm@cin.ufpe.br

Alexandre Mota
Centro de Informática

Recife, Brazil
acm@cin.ufpe.br

Eliot Maia
Motorola Mobility
Jaguariúna, Brazil

eliotm@motorola.com

Abstract

In this paper we propose a way to find weights of a rank-
ing function semi-automatically. From the manual choices
made by (experienced) human test architects, our idea is to
propose an optimization model that tries to find the neces-
sary weights automatically. We present some experiments
by encoding our optimization model in the Z3 SMT solver
and using real Motorola Mobility1 data.

1 Introduction
Regression testing is vital for any product development.

It gives a measure of how the adjustments made preserved
accepted functionality. Re-run all available test cases is
the easiest alternative for a regression testing campaign. In
practice, however, this is usually unfeasible due to the effort
needed in terms of time and human (for manual testing par-
ticularly) resources. Existing regression testing methods,
such as test case selection, test case prioritization and test
suite reduction [5] attempt to make regression testing more
cost-effective. In this paper we focus on the (selection and)
prioritization method(s).

To prioritize the best test cases, one has to set specific
characteristics to create an ordering on the test cases. The
most direct characteristics usually are code or requirements
change coverage. However, in industry other criteria are
used as well. In the work reported in [6], the authors pro-
posed some criteria to prioritize potentially relevant test
cases. In that work, real test data and criteria was used to
illustrate the feasibility of that idea in an industrial context2.
The proposed criteria were:

1. Number of executions of a test case: how much execu-
tions a test was done in previous cycles. The criterion
is given by crit1 = executionsTC−1;

2. Test case failure status: This is the failure rate of the
total number of executions of a particular test case.

1Motorola Mobility is our industrial partner
2The work [6] was result of a previous (in the 2004-2008 period) re-

search partnership between Centro de Informática and Motorola Mobility.

This criterion (crit2 = failuresTC/executionsTC) val-
ues tests that were most effective in the past;

3. Number of unique failures found: A same test case
may have failed countless times and revealing the same
defect repeatedly. In this case, a single Change Re-
quest (CR) is opened and assigned to this test. This
criterion (crit3 = CRs) takes into account the defects
found per test not counting repetitions

4. Regression level: each test case is classified according
to a code called regression level, which can vary from
1 to 5. The last criterion

crit4 = regressionLevelPointsn

takes this into account, where regressionLevelPointsn

are the points previously assigned to a test whose re-
gression level is n.

When using a weighted ranking function, based on as-
sumed relevant test case criteria, the challenge is to find the
best criteria and weights to achieve the best ordering.

In [6] it is shown that by using certain weights on these
four criteria, one can create a regression testing campaign
automatically by taking the top test cases from the new or-
dering. Unfortunately, the work [6] left to the test architects
the task to find the weights. And because these weights are
not searched exhaustively, but proposed manually by guess,
the ranking is not the best one in general.

Therefore, our main contributions in this paper are.

• Propose two additional test prioritization criteria (in-
troduced in Section 4) to be considered in the ranking
function;

• An optimization model to find the best weights for a
ranking function;

• An embedding of the proposed optimization model in
the Z3 SMT solver [2]3;

• A semi-automatic calibration strategy based on subsets
of test architects choices and the optimization model.

3http://rise4fun.com/Z3/ (Opt library)

This paper is organized as follows. Section 2 presents
our proposed Mathematical Optimization Model. In Sec-
tion 3 we briefly describe the Z3 tool by showing how to
embed the model presented in Section 2 in its language.
Section 4 describes some experiments we performed in our
proposed model using real data from Motorola Mobility.
Section 5 considers our conclusions and future work.

2 Mathematical model

In the work reported in [6], the authors propose a rank-
ing function based on four criteria as presented in Sec-
tion 1. The ranking function of a test is calculated using
the weighted average of the standard points.

r~c~w =
(∑i=1

4 criti · weightCriti
)
/
(∑j=1

4 weightCritj
)

where criti is the normalized scores on the criteria i and an
element of the vector ~c. And weightCritj is the weight of
criteria j and and element of the vector ~w.

In this section we present a generalization of the work
reported in [6] using a Mathematical Optimization Model.
Without loss of generality, we do not consider the denom-
inator (

∑j=1
4 weightCritj). This is important in Section 3

because the ranking function then becomes decidable and
solvable by Z3.

Suppose that we have K criteria. Thus a L × K ma-
trix (the criteria matrix) named CL × K is a collection of nor-
malized numbers corresponding to each criterion (L corre-
sponds to the amount of records of some entity. In our case,
we have L test cases).

As for each criterion we have also an associated weight
then we have a K vector of weights. This vector ~w can be
set manually, as in [6], or semi-automatically as presented
here. Thus, for us, this vector (~wK = (w1,w2, . . . ,wK))
belongs to our set of unknowns.

The ranking function ~r~v~w = (r1, . . . , rK) we use in this
paper (a K vector r1, . . . , rK) is given by.

~r~v~w = CL × K × ~wK

In [6], the authors assumed that certain weights were
more important than others by adjusting the weights man-
ually. In our proposal we intend to find such weights by
solving a mathematical problem. To do so we use some test
case selections from our test architect experts as input to
define an objective function.

To show how we transform this problem into an opti-
mization problem, suppose that Suite is the set of all test
cases and Chosen is the set of test cases that a test archi-
tect has selected (Chosen ⊆ Suite). Our ranking function is
used in such a way that if a test case tci belongs to Chosen,
then its ranking function value ri must be greater than all
others rj (i 6= j), corresponding to not chosen test cases.

As the selected test cases (Chosen) cannot be explained
using all the criteria we consider, we employ an optimiza-
tion model that tries to use the majority of the elements of

Chosen to satisfy the maximum number of criteria (A cri-
terion is representative whether its weight is greater than
zero). Thus we try to maximize the set of test cases selected
by the test architects considering the set Chosen as our best
reference. Suppose that (˙tc1, . . . , ˙tck), where tci ∈ Chosen
(1 ≤ i ≤ k), is a boolean vector corresponding to the test
cases chosen by a test architect. These boolean elements are
interpreted such that if ˙tci is true then tci is elected to belong
to the final selection. Otherwise, it is discarded. Hence, our
optimization problem can be stated as.

Max (˙tc1, . . . , ˙tck), Subject to ri > rn, if ˙tci

where tcn ∈ (Suite \ Chosen) ∪ {tcr | 1 ≤ r ≤ k ∧ ¬ ˙tcr}

In the above optimization problem characterization, the
maximization of (˙tc1, . . . , ˙tck) means to get a fully k-vector
of truth values whenever possible, but accepting a partial
vector as well. The restrictive part states that if a chosen test
case tci is elected by this model, then its ranking (ri) has to
be greater than all other rankings of the not elected ({tcr |
1 ≤ r ≤ k ∧ ¬ ˙tcr}) as well as not chosen (Suite \ Chosen)
test cases.

It is worth noting that, as we will see in Section 4, ex-
treme cases can happen. If none or a single test case can be
elected by the above model, then the test architect’s choices
cannot be safely described by the criteria used in this paper.

Another interesting point is that if a weight is unneces-
sary, our optimization model simply sets its value to zero.

3 The Z3 SMT Solver
Z3 is an SMT solver from Microsoft Research [2]. It

is targeted at solving problems that arise in software veri-
fication and software analysis. Consequently, it integrates
support for a variety of theories.

Recall from Section 2 that we have weights. In our Z3
encoding, weights are described as constants (unknowns to
be instantiated by Z3). For instance, our four criteria be-
come.
(declare-const w1 Int) ...
(declare-const w4 Int)

The ranking function, corresponding to each element ri

of Section 2, can be stated in Z3 very easily as follows.
(define-fun f((c1 Real) (c2 Real)

(c3 Real) (c4 Real)) Real
(+ (* w1 c1) (* w2 c2)

(* w3 c3) (* w4 c4)))

The previous function is used to compute each ranking ri,
where c1, . . . , c4 correspond to the data from our industrial
partner as will be clarified as in what follows.

Test cases are described in Z3 via two declarations. First
we name each test case by declaring a named constant. For
example, a test case 1 becomes the following constant dec-
laration (its corresponding ranking value r1).

(declare-const r1 Real)

As each test case is associated with four instances of the
chosen selection criteria, we state an assertion for each of
them as is illustrated in what follows for the test case 1.

(assert (= r1 (f 0.06 0.0 0.02 0.5)))

As Z3 does not have a min/max operator over sets, we
capture this constraint by an indirect way of counting how
many chosen test cases can be elected. First we create a
{0, 1} counter (from the boolean vector but this allows us
to sum counters) for each chosen test case. For example,
suppose test case 17 was chosen.

(declare-const FlTC17 Int)
(assert (or (= FlTC17 0) (= FlTC17 1)))

As test case 17 can be elected or not, we use a Z3 con-
ditional construct (ite) as follows. In this Z3 encoding,
the part starting with and occurs if FlTC17 equals to 1.
Otherwise, there is no constraint over test case 17 (true).

(assert (ite (= FlTC17 1)
(and (> TC17 TC2) ...) true))

Finally we maximize the elected test cases (As the coun-
ters have at most the value 1, our full boolean vector of
Section 2 means this sum is the maximum possible one).

(maximize (+ ... FlTC17 ...))

4 Experiments on Automatic Prioritization

During the development of this work, we identified two
additional criteria of interest.

5. Creation date: From discussions with the test architect,
we noted that newer tests can find a greater number
of failures during testing. So, crit5 = creationTC−1

where creationTC is the number of days from the date
of test case creation to the present time.

6. Date of the last execution: Like the previous crite-
rion, the date of the last execution also increases the
scores. Thus, crit6 = LastExecutionTC−1 where
LastExecutionTC is the number of days from the date
of the last execution of the test case to the present time.

In the following experiments we used a Core i5 1,7 GHz
MacBook Air with 8 GB RAM, running El Captain 10.11.3
OS. Two test architects helped us to perform the experi-
ments on three test suites creation. The first two experi-
ments (see Tables 1 and 2) involving 80 test cases and the
last one (see Table 3) with 427 test cases. In these tables,
the test cases in bold face are common between the two test
architects choices. Each table has four columns:

• Chosen: Number of test cases chosen manually;

Chosen Elected Criteria Time Match
12 1, 19 1, 2, 5, 6 4m 21.5s 16.7%
25 None 1, 2, 3, 5, 6 11.8s 0%

Table 1. 1st experiment (80 test cases)

Chosen Elected Criteria Time Match
20 1, 2, 3, 65 1, 2, 5, 6 1m 31.1s 20%
22 1, 2, 3, 65 1, 2, 5, 6 2m 22.8s 18.2%

Table 2. 2nd experiment (80 test cases)

• Elected: Test cases chosen by our optimization model;
• Criteria: Criteria found by the optimization model;
• Time: This is the effort needed to solve the Z3 model;
• Match: Elected divided by chosen test cases.

In Table 1 the intersection of Chosen test cases between
the architects is of 27.6% (They both chose 29 test cases
in total where 8 have been chosen by both: 8/29 = 27.6%).
This low intersection in general occurs because the selec-
tion is manual and there is a short time to perform this (Just
from their opinion, we get the rate as reading and analyzing
400 test cases to elect 100 test cases in 1 hour. This means
electing a test case in about 2.25 seconds). This can be very
error-prone. And this was captured by Z3 where one exper-
iment elected 2 test cases and the other none at all.

Table 2 exhibited a better outcome between architects.
Common choices were around 45% of all test cases in-
volved. Four test cases were elected by Z3 and they were
the same for both architects choices.

In Table 3 we have the most expensive experiment for
using Z3. A total of 427 test cases with 128 selected test
cases for one test architect and 195 for the other (And an
intersection of 54 choices or 20%). In view of its size, the
columns Chosen and Elected were only filled with the total
amount of test cases.

The best percentage match obtained by [6] was 7.27%
using four criteria. We get a 20% with six criteria. From [6],
even with the low percentage match, the ranked tests re-
veals similar bug reports when compared to manual selec-
tions. Thus, this seems to indicate that: (i) the ranking is
indeed relevant; (ii) further criteria can increase the per-
centage match; and (iii) Z3 can outperform human weight
search (20% versus 7.27%). Besides, we cannot fully match
architects choices because their selection is not systematic
and use information beyond the criteria used here.

Chosen Elected Criteria Time Match
195 12 1, 2, 5, 6 2322m 4s 6.1%
128 1 1, 2, 5, 6 1631m 4s 0.8%

Table 3. 3rd experiment (427 test cases)

Threats to validity Our technique depends on three main
resources (test selection criteria, test criteria data and test
architect choices). The most sensible input is the test archi-
tect choices. We saw in the previous section that when there
is a representative common choice between test architects,
the criteria is found more easily. However, as reported in
Table 1, for diverging choices, the six criteria used in this
paper sometimes are not enough to describe them.

Internal threats can be test selection criteria and test cri-
teria data. As test criteria data change over time, it is pos-
sible that test selection criteria cannot be always the same.
But as our Mathematical model is general enough we can
simply propose new test selection criteria that the Z3 solver
reports us with the right criteria that describe the data.

5 Conclusion

This work has shown that it is feasible, although costly,
to automatically balance a ranking function by formulating
the work reported in [6] as an optimization problem. As
such an automatic balancing is supposed to be used in a
well-spaced period of time, the effort taking by Z3 can be
affordable. Besides, after knowing the more adequate crite-
ria, their use in practice is almost inexpensive because it is
just an arithmetic calculation.

In our experiments, we have used the criteria proposed in
the work reported in [6] and added two other criteria. This
revealed an increase in the amount of test cases the rank-
ing function can match with the test cases chosen by the
test architects. We can also observe that even with the ad-
ditional two criteria we considered here, the ranking does
not fit the human selection with a high percentage match.
This suggests investigating additional criteria that can be
used in practice. For instance, information retrieval [7] also
uses ranking functions based on keyword indexing and fre-
quency. We intend to consider this new criterion as one of
our future work.

The work reported in [1] addresses the problem of deter-
mining the next set of releases in the course of software evo-
lution in an industrial setting using an optimization problem
formulation. It employs simulated annealing and a greedy
algorithm to solve the optimization problem and compare
both approaches. In [8], the authors use a similar approach
but solving the optimization problem using binary con-
strained particle swarm optimization (BC-PSO). The work
reported in [3] follows a non-orthodox approach to test suite
reduction. That work proposes FLOWER, which leverages
the Ford-Fulkerson method to compute maximum flows and
Constraint Programming techniques to search among opti-
mal flows. In our work we also have an optimization prob-
lem formulation, but we employ an SMT solver instead of
search-based specific algorithms and our goal is to find the
weights and not the ranking per se. Maybe the work that
is closest to ours in the sense of using off-the-shelf solvers

is [4]. But this work focuses on test suite minimization, re-
moving redundant test cases based on fault coverage, which
is a bit different of our goal. As in general all works imple-
ment their own search algorithms whereas we have reused
an off-the-shelf SMT solver, we intend to investigate the
advantages/disadvantages of doing this in future work.

As our experiments exhibited a considerable variation in
execution time from one test architect choice to the other,
we intend to investigate this as future work.

Another future work we intend to pursue based on the
feedback of our test architect is to automatically identify
when a test case is a prefix of another test case. One hidden
criteria used in practice is to employ just the greatest test
case. This task needs a natural language processing as well
as a notion of phrase dependency.

Acknowledgments We thank Alice Arashiro, Viviana
Toledo, and Lucas Heredia from Motorola Mobility, and
Juliano Iyoda for suggestions on the paper. This research
is supported by Motorola Mobility.

References

[1] P. Baker, M. Harman, K. Steinhofel, and A. Skaliotis. Search
based approaches to component selection and prioritization
for the next release problem. In ICSM, pages 176–185, Sept
2006.

[2] L. De Moura and N. Bjørner. Z3: An efficient smt solver.
In 14th TACAS, pages 337–340, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] A. Gotlieb and D. Marijan. Flower: Optimal test suite reduc-
tion as a network maximum flow. In ISSTA, pages 171–180.
ACM, 2014.

[4] H.-Y. Hsu and A. Orso. Mints: A general framework and tool
for supporting test-suite minimization. In Software Engineer-
ing, 2009. ICSE 2009. IEEE 31st International Conference on,
pages 419–429. IEEE, 2009.

[5] J.-H. Kwon, I.-Y. Ko, G. Rothermel, and M. Staats. Test case
prioritization based on information retrieval concepts. 1:19–
26, Dec 2014.

[6] J. Mafra, B. Miranda, J. Iyoda, and A. Sampaio. Test case se-
lector: Uma ferramenta para seleção de testes (in portuguese).
In SAST, pages 1–10, 2009.

[7] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An in-
formation retrieval approach for regression test prioritization
based on program changes. In 37th ICSE (vol. 1), pages 268–
279. IEEE Press, 2015.

[8] L. Souza, R. Prudêncio, F. Barros, and E. Aranha. Search
based constrained test case selection using execution effort.
Expert Systems with Applications, 40(12):4887 – 4896, 2013.

