
An Algorithm for Forward Reduction in Sequence-Based Software Specification

Lan Lin, Yufeng Xue
Ball State University

Department of Computer Science
Muncie, IN 47396, USA
{llin4, yxue2}@bsu.edu

Abstract

Sequence-based software specification is a rigorous
method for deriving a formal system model based on in-
formal requirements, through a systematic process called
sequence enumeration. Under this process, stimulus (input)
sequences are considered in a breadth-first manner, with the
expected system response to each sequence given. Not ev-
ery sequence needs to be further extended by the enumer-
ation rules. The completed specification encodes a Mealy
machine and forms a basis for other activities including
code development and testing. This paper presents a for-
ward reduction algorithm for sequence-based specification.
The need for such an algorithm has been identified by field
applications. We used the state machine as an intermediate
tool to comprehend and analyze all change impacts resulted
from a forward reduction, and used an axiom system for its
development. We illustrate the algorithm with a symbolic
example, and report a larger case study from published lit-
erature in which the algorithm is applied. The algorithm
will prove useful and effective in deriving a system-level
specification as well as in merging and combining partial
work products towards a formal system model in field ap-
plications.

1 Introduction

Modern software development processes for safety- and
mission-critical systems rely on rigorous methods for code
development and testing to support dependability claims
and assurance cases that provide the justified and needed
confidence [14]. Sequence-based software specification
[24, 26, 23] is such a rigorous method developed by the
University of Tennessee Software Quality Research Labo-
ratory (UTK SQRL) in the 90’s to derive a formal specifi-
cation and system model from the original descriptions of
functional requirements. The specification, developed at an
early stage in the life cycle, is important for later phases

including code development, testing, and functional formal
verification. Since its inception the method has been suc-
cessfully combined with a rigorous testing method (Markov
chain usage-based statistical testing) and applied to a variety
of industry and government projects ranging from medical
devices to automotive components to scientific instrumen-
tation, to name a few [6, 5, 13, 25, 7, 26].

Sequence-based specification systematically examines
the behavior of software in all possible scenarios of use (use
cases) through sequence enumeration [18, 24, 26, 23]. In
this process a human specifier, a developer, or a domain ex-
pert considers sequences of stimuli in a breadth-first man-
ner, where sequences of a given length are examined in lex-
icographic order. For each such sequence they give the last
output produced by software in response to the sequence of
inputs, based on the requirements. There are two situations
in which a sequence need not be further extended: either it
is illegal (it cannot be applied in practice) or it reaches a sys-
tem state equivalent to one reached by a shorter or lexico-
graphically earlier sequence. Sequence enumeration stops
when no sequence needs to be extended and results in a ta-
ble of sequences that defines a Mealy machine [18, 24]. A
significant benefit of the method is that it results in a for-
mal specification but without requiring the developer to use
a formal notation. This specification can form the basis for
other activities including automated model-based testing. It
can also be automatically analyzed to determine whether it
has certain expected, or desirable properties; this can result
in requirements errors being found.

However, the specification is usually not produced in
one single pass but instead in iterations. Enumerated se-
quences are periodically reviewed, compared with each
other, added, deleted, or modified against the requirements,
as one gains more and better knowledge and understand-
ing of the system under specification. It usually results in
a lot of rework when a sequence is identified to have taken
the system to the same state reached by a later sequence
in length-lexicographical order that has been extended. In
such cases all the specification work done in specifying the

DOI reference number: 10.18293/SEKE2016-192

state reached by the later sequence, as well as all its suc-
cessor states, will have to be erased while the same amount
of work needs to be performed on the earlier sequence due
to the enumeration rules. An algorithm that enables such a
“forward reduction” was needed both in theory and in prac-
tical applications to maximize automation support, preserve
specification effort, and eliminate the need for a lot of re-
work. Field applications had also identified the need for
such an algorithm as we merged or combined partial work
products that focus on different system boundaries to build
system models for larger and more complex applications.
This paper presents a forward reduction algorithm that we
have developed for this purpose. With the new theory and
accompanying tool support, more requirements and specifi-
cation changes can be accommodated, and the change im-
pacts automatically computed, analyzed, and applied across
the specification. The result is an enhanced specification
process.

This paper is structured as follows. In Section 2 we intro-
duce the sequence-based specification. Section 3 describes
our forward reduction algorithm with a running example.
In Section 4 we describe how the algorithm was applied in
a published case study and report our results. Finally, Sec-
tion 5 summarizes related work and Section 6 concludes the
paper.

2 Sequence-based software specification

Sequence-based software specification [24, 26, 23] is a
rigorous method that systematically converts ordinary func-
tional requirements of software to a precise specification.
The specification automatically translates to a formal sys-
tem model for both development and testing.

To apply the method, one first identifies a system bound-
ary that defines what is inside and outside the software-
intensive system. This usually consists of a list of interfaces
between the system and the environment of the software.
From the interfaces one further collects stimuli (inputs) and
responses (outputs). Stimuli refer to events (inputs, inter-
rupts, invocations) in the environment that can affect system
behavior. Responses refer to system behaviors observable
in the environment. Then one explicitly enumerates finite
stimulus sequences (representing scenarios of use), first in
increasing order of length, and within the same length lexi-
cographically. The sequence enumeration process is guided
by a few rules.

As an example let us consider a simple industrial
“cooker” [1]. Requirements for the cooker controller are
collected in Table 1, with each sentence numbered (tagged)
for easy reference. The last three requirements whose tags
begin with “D” correspond to derived requirements not
originally given but identified in the specification process.
We further identify all stimuli and responses in Table 2. No-

Table 1. Cooker controller requirements
Tag Requirement
0 Consider an industrial “cooker” that is subject to

various factors (external heat, internal chemical
reactions, etc.) that change the pressure in the
cooker. A control unit attempts to keep the pres-
sure near a specific set point by opening and clos-
ing a pressure release valve and turning a compres-
sor on and off, according to the following rules.

1 When started, the controller does not know the sta-
tus of the valve or compressor, and there is no hard-
ware capability to poll their status.

2 Only one output signal can be sent per input signal.
3 If both the valve and the compressor appear to need

changes at the same time, since only one signal can
be sent, function the valve first.

4 If the input signal says the pressure is Low, then
the valve should be closed and the compressor on.

5 If the input signal says the pressure is Good, then
the valve should be closed and the compressor off.

6 If the input signal says the pressure is High, then
the valve should be open and the compressor off.

7 When turned off, the controller does not have time
to generate any output signal.

D1 Sequences with stimuli prior to system initializa-
tion are illegal by system definition.

D2 When started, the controller does not produce any
externally observable response across the system
boundary.

D3 Once started, the system cannot be started again
without being turned off first.

tice the last two responses introduced by the theory: the null
response (denoted 0) representing no observable behavior
across the system boundary (the software may only have an
internal state update), and the illegal response (denoted ω)
representing a sequence of inputs not practically realizable
(an instance of this is the power-on event being placed after
other inputs in the sequence).

Table 3 shows a sequence enumeration of the cooker
controller up to Length 3. We start with the empty sequence
λ, and proceed from Length n to Length n+1 sequences (n
is a non-negative integer). Within the same length we enu-
merate sequences in lexicographical order. For each enu-
merated sequence the human specifier makes two decisions
based on the requirements:

1. They identify a unique response for the most current
stimulus given the complete stimulus history. For
instance, the sequence SG corresponds to: software
started, followed by a pressure good reading. By Re-
quirements 1, 2, 3, and 5, the valve should be func-

Table 2. Cooker controller stimuli and re-
sponses

Stimulus /
Response

Short Name Description Requirement
Trace

Stimulus S Started 1
Stimulus L Pressure low 4
Stimulus G Pressure good 5
Stimulus H Pressure high 6
Stimulus O Turned off 7
Response ov Open valve 0
Response cv Close valve 0
Response co Compressor on 0
Response cf Compressor off 0
Response 0 Null Method
Response ω Illegal Method

tioned first and closed, hence the response “cv”. A
sequence is illegal if its mapped response is ω; other-
wise, it is legal.

2. They consider if the sequence takes the system to the
same situation that has been encountered and explored
by a previously enumerated sequence. If so they note
the previous sequence in the “Equivalence” column,
and treat the later sequence as reduced to the earlier
sequence. For instance, the sequence SO corresponds
to: software started and then turned off. This takes the
system to the same situation as the empty sequence as
in both cases software is not started yet, hence SO is
reduced to λ. From this point on SO and λ will be-
have the same for any future non-empty sequence of
inputs. A sequence is unreduced if no prior sequence
is declared for its “Equivalence” column; otherwise, it
is reduced. In theory we also treat an unreduced se-
quence as reduced to itself.

The enumeration process is constrained by the following
rules:

1. If a sequence (say u) is illegal, there is no need to ex-
tend u by any stimulus, as all of the extensions must be
illegal (i.e., physically unrealizable). For instance, no
extensions of the sequence G are enumerated because
G is an illegal sequence.

2. If a sequence (say u) is reduced to a prior sequence
(say v), there is no need to extend u, as the behaviors
of the extensions are defined by the same extensions of
v. For instance, no extensions of the sequence SO are
enumerated because SO is reduced to λ.

3. When reducing a sequence (say u) to a sequence
(say v), we require v be both prior (in length-

Table 3. Cooker controller sequence enumer-
ation up to Length 3

Sequence Response Equivalence Trace
λ 0 Method
G ω D1
H ω D1
L ω D1
O ω D1
S 0 D2
SG cv 1, 2, 3, 5
SH ov 1, 2, 3, 6
SL cv SG 1, 2, 3, 4
SO 0 λ 7
SS ω D3
SGG cf 5
SGH ov SH 2, 3, 6
SGL co 4
SGO 0 λ 7
SGS ω D3
SHG cv SG 2, 3, 5
SHH cf 6
SHL cv SG 2, 3, 4
SHO 0 λ 7
SHS ω D3

lexicographical order) and unreduced (otherwise we
could follow the reduction chain of v and get to the
sequence that is unreduced). For instance, SGO is re-
duced to λ and not SO.

Therefore, only legal and unreduced sequences of Length n
get extended by every stimulus for consideration at Length
n+1. The process continues until all sequences of a certain
length are either illegal or reduced to prior sequences. The
enumeration becomes complete. This terminating length is
discovered in enumeration, and varies from application to
application. The cooker controller enumeration terminates
at Length 5.

Application of the method is facilitated with two tools
developed by UTK SQRL: Proto Seq [2] and REAL [3].
To produce a specification in either tool, one only needs to
give stimuli and responses short names to facilitate enumer-
ation; no other notation or syntax is required. The tools
enforce enumeration rules by the recommended workflow
and maintain internal files (XML format) current with ev-
ery action.

Table 4. An example complete and finite enu-
meration Eex

Sequence Response Equivalence
λ 0
a r1
b 0
c 0 a
aa 0 λ
ab r2
ac r3 λ
ba 0 ab
bb r3 b
bc 0 b
aba 0 ab
abb r1 ab
abc r2 ab

3 An algorithm for forward reduction

Suppose we have a complete and finite enumeration E :
complete because all the sequences that are both legal and
unreduced have already been extended by every single stim-
ulus, and finite because the total number of enumerated se-
quences in E is finite. In Table 4 we show an example of
such a complete and finite enumeration, called Eex, that
is purely symbolic. We ignore for now the semantics as-
sociated with application domains and functional require-
ments just to focus on how the algorithm is derived and
how it works on a concrete enumeration example. Notice
that Eex has a stimulus set S = {a, b, c} and a response set
R = {r1, r2, r3, 0, ω} (by theory the response set always
contains the two special responses 0 and ω).

Suppose we have two enumerated sequences in E that
are both legal and unreduced: u and v, and v is prior to u in
length-lexicographical order. Because it is a complete enu-
meration u and v must have been extended by every single
stimulus. The extensions, if they are also legal and unre-
duced, must have been further extended. Depending on
whether the prior sequence v is the empty sequence λ or
not, we handle two different cases.

In Case 1 v is not the empty sequence. An example
of this is u being Sequence b and v being Sequence a in
Eex. Now we want to “forward reduce” Sequence v to Se-
quence u based on two understandings: (1) u and v should
take the system to the same situation (state), and (2) u has
been extended to find this particular state and its successor
states and we hope to utilize this information we have ob-
tained. Of course our enumeration rules do not allow us
to reduce v to a sequence that comes afterwards in length-

!"#$#%&'(

)*+,#-#,&.#/%(

0+%12+"&.#/%3

45&%$+6(

)*+,#-#,&.#/%(

0+%12+"&.#/%3

!"#$#%&'(

7+&'8(2&,5#%+

45&%$+6(

7+&'8(2&,5#%+

9%.+%6+6(

-/":&"6(

"+61,.#/%

Figure 1. Our approach underlying the for-
ward reduction algorithm

lexicographical order (namely u). What we hope to achieve
is to simulate the effect of a forward reduction as if we had
extended v correctly (instead of u) to identify this state and
all its successor states. The question is: how could we de-
sign an algorithm that automatically computes and applies
all required changes to the existing specification (enumera-
tion) to make it happen?

As discussed in [17] a single atomic specification change
(e.g., changing the response or equivalence of an enumer-
ated sequence) could have a rippling effect on most enu-
meration entries and hence have a comprehensive change
impact on the existing specification. The crux we found
is to understand the changes utilizing state machines as an
intermediate and visualizing tool, as the rigorous specifi-
cations in enumeration form have a formally defined cor-
respondence with state machines [18], and the change im-
pacts are more intuitively analyzed in state machines than
in specifications. Figure 1 illustrates our approach.

We first give our algorithm for Case 1, and then explain
it with an example.

Algorithm CompMapForForwardRed1(E , u, v)

Input:
A complete and finite enumeration E , two enumerated legal and

unreduced sequences u and v such that v is prior to u and v 6= λ

Output:
A hash map κ mapping each unreduced sequence in E to an

unreduced sequence in E ′ that represents the same state (if the
state is preserved after the change), or nil (otherwise)

1. Initialize an empty hash map κ.
2. κ(λ)← λ

3. i← 0

4. repeat
5. for every enumerated sequence in E of the form:

prefix sequence p followed by stimulus s is reduced to
sequence w

6. do if ps 6= v and w 6= u and κ(w) = nil and
κ(p) 6= nil and BlackBox(E , κ(p)) 6= ω

7. then Let κ(p) concatenated with s be
a candidate for κ(w).

8. for every unreduced sequence w that has designated
candidates in steps 5-7

9. do κ(w)← its first candidate in (length-)lexicographic
order

10. i← i+ 1
11. if i = |v|
12. then κ(u) = v
13. until The last iteration has no new sequence defined for κ.
14. return κ

Algorithm ForwardReduction1(E , u, v)

Input:
A complete and finite enumeration E , two enumerated legal and

unreduced sequences u and v such that v is prior to u and v 6= λ

Output:
A complete and finite enumeration E ′

1. Initialize an empty hash map κ.
2. κ← CompMapForForwardRed1(E , u, v)
3. Initialize E ′ to contain λ only, with λ mapped to 0 and

unreduced.
4. Add sequence v in E ′. Map v to its response in E and reduce

it to v.
5. for every enumerated sequence in E of the form:

prefix sequence p followed by stimulus s mapped to
response r and reduced to sequence w

6. do if ps 6= v and κ(p) 6= nil and BlackBox(E , κ(p)) 6= ω
7. then Add the following sequence in E ′:

prefix sequence κ(p) followed by stimulus smapped
to response r and reduced to sequence κ(w)

8. for every enumerated illegal and unreduced sequence w in
E

9. do if κ(w) 6= nil and BlackBox(E , κ(w)) 6= ω
10. then for every stimulus s
11. do Add the following sequence in E ′:

prefix sequence κ(w) followed by stimulus s
mapped to ω and reduced to sequence κ(w)

12. return E ′

A crucial step in the solution is figuring out how the state
space has changed from the old automaton to the new au-
tomaton with the intended forward reduction, and what the
changes have implied for the corresponding specification.
As established in [18, 17] a complete and finite enumera-
tion encodes a finite state automaton with Mealy outputs
(a Mealy machine) that can be computed algorithmically.
Every state of the Mealy machine corresponds to a block
(equivalence class) of stimulus sequences; they all take the
system to this common state starting from the initial state.
Every state is represented by a unique unreduced sequence,
which is the first sequence in length-lexicographical order
in this block of sequences and the one you first encountered

in sequence enumeration. For instance with Eex the automa-
ton has four states represented by unreduced sequences λ,
a, b, and ab, respectively.

The main algorithm, ForwardReduction1, calls two
algorithms: CompMapForForwardRed1 and BlackBox
(CompMapForForwardRed1 also calls BlackBox), to com-
pute the new enumeration after the change. We have “1”
appended at the end of the names indicating Case 1 (“2”
will be used for versions solving Case 2). Notice that Black-
Box is an algorithm that computes the mapped response for
any possible stimulus sequence, no matter whether it is ex-
plicitly enumerated in the table [18, 17], once you have a
completed sequence enumeration.

CompMapForForwardRed1 computes a hash map κ that
maps unreduced sequences in the old enumeration E to
unreduced sequences in the new enumeration E ′ as follows:
Suppose w is an arbitrary unreduced sequence in E . No-
tice that with forward reduction no additional state will be
introduced.

- If κ(w) is nil, the state represented by w in E is elimi-
nated after the change.

- If κ(w) is w′, the state represented by w in E is pre-
served but represented by the unreduced sequence w′

(which may or may not be the same as w) in E ′.

We start with the empty sequence that represents the ini-
tial state, which remains in the modified automaton with the
same unreduced sequence λ (Line 2). Then we build more
pairs into this mapping in iterations (Lines 4-13). With each
iteration we expand the leaf nodes by one level identifying
more successor states as being preserved (Lines 5-7), es-
sentially building a spanning tree rooted in the initial state.
If a successor state has more than one direct predecessors,
all paths are computed and compared to select the first in
length-lexicographical order as its corresponding unreduced
sequence in the modified enumeration (Lines 8-9). The state
previously represented by u in E is represented by v in E ′,
and the pair added at a certain iteration (Lines 3, 10-12).

Using this κ mapping we are able to construct the new
enumeration E ′ from the old one E line by line. Algorithm
ForwardReduction1 first calls CompMapForForwardRed1
to compute κ (Lines 1-2). Then it explicitly defines two
special sequences in E ′: the empty sequence (Line 3) and
the sequence v (Line 4). Next it examines each enumerated
sequence in E to see if the transition depicted by this row
still exists in the modified automaton (for the same transi-
tion to be preserved the start state must be preserved and
the transition cannot be redirected). If so a corresponding
row in E ′ is computed using κ about what new unreduced
sequences now represent the two involving states (Lines 5-
7). Finally some enumeration entries may need to be added
manually (and not converted from old entries) due to a state

!"#"$

%"#"&'

λ !

!%

%

!"#"&'

%"#"$

("#"$

! #"$ % #"&)

("#"&*

!"#"$

% #"&*

("#"$

("#"&)

(a) Before the forward re-
duction

λ (

!!

!
!"#"&'

%"#"$

("#"$

! #"$ % #"&)

("#"&*

!"#"$

% #"&*

("#"$

!"#"$

%"#"&'

("#"&)

(b) After the forward reduction

Figure 2. The Mealy machine before and after
forward reducing a to b on Eex

being represented by a different unreduced sequence that
has a different legality status after the change (and therefore
has to be explicitly extended in E ′) (Lines 8-11).

For our example of “forward reducing” Sequence a to
Sequence b in Eex, applying Algorithm CompMapForFor-
wardRed1 gives the following mappings in κ:

Iteration 0 κ(λ) = λ
Iteration 1 κ(a) = c, κ(b) = a
Iteration 2 κ(ab) = aa

Figure 2 shows the automata before and after the change.
We label each state with the representing unreduced se-
quence in the corresponding enumeration. Notice that the
arc with the input/output (a/r1) from the initial state is redi-
rected to point to the same state reached by Sequence b (also
from the initial state). Although this is the only arc redi-
rected (all the states are preserved in the modified automa-
ton and all other arcs remain unchanged), every state except
the initial state corresponds to a newly computed unreduced
sequence as a result of the change.

Except for λ and a which are defined by Steps 3-4 of
Algorithm ForwardReduction1, all the rows in the modi-
fied enumeration E ′

ex are computed by Steps 5-7 from Eex
on a line-by-line basis. For instance the original row for
Sequence ba being mapped to 0 and reduced to Sequence
ab is converted to the following row in E ′

ex: κ(b)a being
mapped to 0 and reduced to κ(ab), i.e., aa being mapped to
0 and reduced to itself (essentially it is unreduced). Figure 3
shows how each row in E ′

ex is constructed from possibly a
corresponding row in Eex by applying our forward reduc-
tion algorithm. For this example no new rows need to be
added runnning Steps 8-11 of the algorithm.

Case 2 handles the situation when the prior sequence un-
der “forward reduction” is the empty sequence. This affects
how transitions are defined out of the initial state. Both al-
gorithms are modified slightly to accommodate this. Be-
cause of the page limit we are not including detailed discus-
sion of Case 2 here.

It is worth mentioning that our forward reduction algo-
rithms have polynomial time complexity. They take time

λ !

" #$

% !

& ! "

"" ! λ

"% #'

"& #(λ

%" ! "%

%% #(%

%& ! %

"%" ! "%

"%% #$ "%

"%& #' "%

λ !

" #$

% ! "

& !

"" !

"% #("

"& ! "

&" ! λ

&% #' ""

&& #(λ

""" ! ""

""% #$ ""

""& #' ""

!"#$%"&%'()*+,-./"(%)*+
01+2)+(3+4% !+$5"($+4%'2)/6-7+(3+8

!"#$%"&%'()*+,-./"(%)*+
,

01+2)+(3+4% !+$5"($+4%'2)/6-7+(3+8

9+&/(+:%;<%1.+5$%=>?%"&%

@7A",/.B*%-.#/"#01*02&34.5$

9+&/(+:%;<%1.+5$%C>D%"&%

@7A",/.B*%-.#/"#01*02&34.5$

Figure 3. Constructing E ′
ex from Eex applying

Algorithm ForwardReduction1

O(n2log(n)), where n is the size of the enumeration. We
hope to emphasize that our forward reduction algorithms
(for both cases) were first developed in functional form us-
ing an axiom system for sequence-based specification [18]
and proved for correctness before they were turned into pro-
cedural definitions that facilitate tool implementation. The
algorithms were then fully implemented in a newer version
of Proto Seq that is ready for release. Using a theory-based
approach ensures that our solution is backed up by sound
mathematics and built on a solid theoretical foundation.

4 A case study: The mine pump controller

We did the case study of a mine pump controller software
whose requirements are taken from [16]. First we developed
two enumerations focusing on different system boundaries.
The first enumeration includes all four human inputs from
either an ordinary human operator or a special human oper-
ator (i.e., the supervisor); both could switch the pump on or
off under different conditions. The second enumeration in-
cludes all six sensor inputs about the carbon monoxide and
the airflow levels, the methane level, detected pump fail-
ure, and the water level. Then we merged them into one
enumeration that handles all the ten system inputs using a
merging procedure we defined for combining specifications.
The merged enumeration contains new sequences as place-
holders, which were then considered one by one by a human
specifier to define the behavior involving the interaction of
stimuli from the different smaller specifications. Our for-
ward reduction algorithm was applied in defining these new
entries. Table 5 shows the data we collected from the com-
pleted three specifications.

The forward reduction algorithm was applied twice in
defining new sequences in the merged enumeration:

1. The new sequence wlh.hpon corresponds to the fol-
lowing sequence of events: sensor reporting water

Table 5. Data on the enumerations of the mine
pump controller software

First
Enumer-
ation

Second
Enumer-
ation

Merged
Enumer-
ation

of Stimuli 4 6 10
Termination
Enumeration
Length

2 5 5

Sequences
Extended

2 16 22

Sequences
Analyzed

9 129 265

level between low and high limits, then an ordinary
human operator switching the pump on. Based on the
requirements this gets the system to the same state as
a later sequence in length-lexicographical order that
has been explored in one of the smaller specifications:
wlh.wah.wlh. The later sequence corresponds to sen-
sor reporting the water level first between low and high
limits, then above the high limit, and then back to be-
tween low and high limits again. In this sequence when
water level first gets above high the pump controller
automatically switches the pump on (same effect as if
it were turned on by an ordinary human operator) and
it stays on even though water level returns to between
low and high, based on the requirements. Without the
forward reduction algorithm one would need to extend
wlh.hpon and its extensions the same way they have
treated wlh.wah.wlh and its further extensions to ex-
plore the state and all its successor states, and all the
work they have done on the later sequence would have
been erased. With the forward reduction algorithm all
the work they have done exploring these states is pre-
served, and the specification is automatically modified
to accommodate all change impacts.

2. As a result of the above forward reduction we have in
the merged enumeration wlh.hpon.l〈critical()=true〉
being extended. It represents the following sequence
of events: water sensor reporting water level be-
tween low and high limits, an ordinary human oper-
ator switching the pump on, and then sensor reporting
carbon monoxide and airflow levels critical. This gets
the system to the same state as an earlier sequence in-
troduced during the merge that has not been explored:
l〈critical()=true〉.wlh.hpon. The forward reduction
algorithm was applied again to automatically extend
this earlier sequence and make all the needed changes

to the specification, eliminating the need for any un-
necessary rework.

5 Related work

Sequence-based specification emerged from the func-
tional treatment of software as described by Mills [21, 19,
20]. The development was most directly influenced by the
trace-assertion method of Parnas [22, 4] and the algebraic
treatment of regular expressions by Brzozowski [8]. Foun-
dations of the sequence-based specification method were
established by Prowell and Poore in [24, 26, 23]. An ax-
iom system for sequence-based specification was developed
more recently [18] for a formal treatment. The axiom sys-
tem was used in developing a theory and a set of algo-
rithms that manage requirements changes and state machine
changes [17]. The algorithm presented in this paper can be
added to that set.

The primary distinction of sequence-based specifica-
tion from its nearest neighbors (the trace-assertion method
[11, 9, 10, 15, 22, 4] and software cost reduction [12]) is
that we evolve the discovery and invent the state machine
from requirements through systematic enumeration of input
sequences and recording sequence equivalences based on
future behavior. Likewise, the theory presented in this pa-
per, as well as that underlying other change algorithms dif-
fers from the conventional state change theory in that it is
designed for human interactive sequence enumeration and
revision, and targeted at an appropriate subset of Mealy ma-
chines that can be obtained through enumeration.

6 Conclusion and future work

Sequence-based specification is a rigorous method that
converts informal, imprecise descriptions of functional re-
quirements to a precise software specification. The process
is iterative in nature due to a human specifier’s evolving
learning and understanding of the system under specifica-
tion. Field applications had identified the need for a forward
reduction algorithm that could equate an earlier sequence to
a later sequence in length-lexicographical order when they
result in the same system state. This paper presents an al-
gorithm we have developed for this purpose, using the au-
tomaton theory and an axiom system for sequence-based
specification. We have fully implemented the algorithm in
a supporting tool, which will turn out to be useful and ef-
fective not only in deriving a system-level specification but
also in merging and combining partial work products to-
wards a formal system model. We illustrate the algorithm
with a symbolic example, and report a larger case study
from published literature. The enhanced theory, practice,
and tool support will facilitate and advance the application
of sequence-based specification in field use.

Future work is along the line of scaling sequence-based
software specification to very large and complex software-
intensive systems. Work is under way to combine, merge,
and compose smaller specifications that focus on different
system boundaries. We are also conducting a number of
other case studies to verify the correctness of the proposed
theory and evaluate its effectiveness.

Acknowledgements

The authors would like to thank Tom Swain (previous
manager of UTK SQRL) for helping set up an environment
for new development and testing, and Xin Guo for earlier
code contribution. This work was generously funded by
Rockwell Collins, Air Force Research Laboratory, and On-
tario Systems through the NSF Security and Software Engi-
neering Research Center (S2ERC).

References

[1] 2010. Jesse H. Poore. Private communication.
[2] 2016. Prototype Sequence Enumeration (Proto Seq). Soft-

ware Quality Research Laboratory, The University of Ten-
nessee. https://sourceforge.net/projects/protoseq/.

[3] 2016. Requirements Elicitation and Analysis with
Sequence-Based Specification (REALSBS). Software Qual-
ity Research Laboratory, The University of Tennessee.
http://realsbs.sourceforge.net.

[4] W. Bartussek and D. L. Parnas. Using assertions about traces
to write abstract specifications for software modules. In Pro-
ceedings of the 2nd Conference of the European Coopera-
tion on Informatics, pages 211–236, Venice, Italy, 1978.

[5] T. Bauer, T. Beletski, F. Boehr, R. Eschbach, D. Landmann,
and J. Poore. From requirements to statistical testing of em-
bedded systems. In Proceedings of the 4th International
Workshop on Software Engineering for Automotive Systems,
pages 3–9, Minneapolis, MN, 2007.

[6] L. Bouwmeester, G. H. Broadfoot, and P. J. Hopcroft. Com-
pliance test framework. In Proceedings of the 2nd Work-
shop on Model-Based Testing in Practice, pages 97–106,
Enscede, The Netherlands, 2009.

[7] G. H. Broadfoot and P. J. Broadfoot. Academia and industry
meet: Some experiences of formal methods in practice. In
Proceedings of the 10th Asia-Pacific Software Engineering
Conference, pages 49–59, Chiang Mai, Thailand, 2003.

[8] J. Brzozowski. Derivatives of regular expressions. Journal
of the ACM, 11(4):481–494, 1964.

[9] J. Brzozowski. Representation of a class of nondeterministic
semiautomata by canonical words. Theoretical Computer
Science, 356:46–57, 2006.

[10] J. Brzozowski and H. Jürgensen. Representation of semiau-
tomata by canonical words and equivalences. International
Journal of Foundations of Computer Science, 16(5):831–
850, 2005.

[11] J. Brzozowski and H. Jurgensen. Representation of semiau-
tomata by canonical words and equivalences, part II: Speci-
fication of software modules. International Journal of Foun-
dations of Computer Science, 18(5):1065–1087, 2007.

[12] C. L. Heitmeyer. Software cost reduction. In J. J.
Marciniak, editor, Encyclopedia of Software Engineering.
Wiley-Interscience, 2001.

[13] P. J. Hopcroft and G. H. Broadfoot. Combining the box
structure development method and CSP for software devel-
opment. Electronic Notes in Theoretical Computer Science,
128(6):127–144, 2005.

[14] D. Jackson, M. Thomas, and L. I. Millett, editors. Software
for Dependable Systems: Sufficient Evidence? National
Academies Press, 2007.

[15] R. Janicki and E. Sekerinski. Foundations of the trace asser-
tion method of module interface specification. IEEE Trans-
actions on Software Engineering, 27(7):577–598, 2001.

[16] M. Joseph, editor. Real-Time Systems: Specification, Veri-
fication and Analysis. Prentice Hall International, London,
United Kingdom, 1996.

[17] L. Lin, S. J. Prowell, and J. H. Poore. The impact of require-
ments changes on specifications and state machines. Soft-
ware: Practice and Experience, 39(6):573–610, 2009.

[18] L. Lin, S. J. Prowell, and J. H. Poore. An axiom system
for sequence-based specification. Theoretical Computer Sci-
ence, 411(2):360–376, 2010.

[19] R. C. Linger, H. D. Mills, and B. I. Witt. Structured Pro-
gramming: Theory and Practice. Addison-Wesley, 1979.

[20] H. D. Mills. The new math of computer programming. Com-
munications of the ACM, 18(1):43–48, 1975.

[21] H. D. Mills. Stepwise refinement and verification in box-
structured systems. IEEE Computer, 21(6):23–36, 1988.

[22] D. L. Parnas and Y. Wang. The trace assertion method of
module interface specification. Technical Report 89-261,
Queens University, 1989.

[23] S. J. Prowell and J. H. Poore. Sequence-based software spec-
ification of deterministic systems. Software: Practice and
Experience, 28(3):329–344, 1998.

[24] S. J. Prowell and J. H. Poore. Foundations of sequence-
based software specification. IEEE Transactions on Soft-
ware Engineering, 29(5):417–429, 2003.

[25] S. J. Prowell and W. T. Swain. Sequence-based specification
of critical software systems. In Proceedings of the 4th Amer-
ican Nuclear Society International Topical Meeting on Nu-
clear Plant Instrumentation, Controls and Human-Machine
Interface Technology, Columbus, OH, 2004.

[26] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore.
Cleanroom Software Engineering: Technology and Process.
Addison-Wesley, Reading, MA, 1999.

