
DmS-Modeler: A Tool for Modeling
Decision-making Systems for Self-adaptive

Software Domain
Frank José Affonso, Gustavo Leite

Dept. of Statistics, Applied Mathematics and Computation
Univ Estadual Paulista - UNESP

Rio Claro, SP, Brazil
frank@rc.unesp.br, gustavoleite.ti@gmail.com

Elisa Yumi Nakagawa
Dept. of Computer Systems

University of São Paulo - USP
São Carlos, SP, Brazil

elisa@icmc.usp.br

Abstract—The ability to modify its own structure and/or
behavior at runtime is a native feature in the development of
Self-adaptive Software (SaS). In previous work, a Reference
Architecture for SaS (RA4SaS), an automated process for adap-
tation, and a framework for decision-making were developed to
assist the development of SaS. Although such initiatives have
collaborated with evolution of SaS, the design of the Decision-
making Systems (DmS), element of first class for SaS, is manually
conducted. Therefore, this paper presents a tool called DmS-
Modeler, which aims to assist the development of DmS for SaS,
providing facilities for modeling, calibration of such system, and
automatic generation of infrastructure (i.e., source code and
databases). Aiming to present the applicability of our tool, a
case study was conducted and the results enable us to have good
perspectives of contribution to the SaS area and other domains
of software systems.

Keywords-Self-adaptive software; Reference Architecture;
Tool; Decision-making System.

I. INTRODUCTION

The complexity of software systems and their computational
environments has increased in the last years. In general, our
society is becoming increasingly dependent of such systems,
which must be able to work in 24/7 mode (i.e., 24 hours per
day, seven days per week). Moreover, most of them must
be prepared to operate in adverse conditions, maintaining
their integrity of execution. Therefore, features as robustness,
reliability, scalability, and flexibility have been increasingly
required by these systems in the presence of changes (e.g.,
new needs of their users and/or modifications in the execution
environment). These features and examples have been associ-
ated with the area of Self-adaptive Software (SaS), which are
systems capable of self-configuration, self-adaptation and self-
healing, self-monitoring and self-tuning, and so on. In short,
they enable the incorporation of new features or functionalities
at runtime without interruption in their execution [1], [2].

Software adaptation, when manually performed, becomes
an onerous (e.g., regarding time, effort, and money) and error-
prone activity (e.g., involuntary injection of uncertainties by
the developers) [3], [4]. To overcome these adversities, auto-
mated approaches have been adopted as a feasible alternative

to maximize the speed of SaS implementation and, at the same
time, minimize the developers’ involvement [4], [5].

In parallel, Reference Architectures (RA) refer to a spe-
cial class of software architecture that have become an im-
portant element to systematically reuse architectural knowl-
edge [6], [7]. Thus, in previous work [3], [8] we have proposed
a Reference Architecture for SaS (RA4SaS)[8] – an architec-
ture that provides a set of guidelines for the SaS development
and an automated process for self-adaptation of the software
entities at runtime without human intervention. From this point
onwards, SaS may be also referred to as software entities or
simply entities. Moreover, as part of this RA, a framework
for decision-making was developed [9], whose purpose is to
identify anomalies and propose one or more solutions to solve
them. The RA and this framework have improved the SaS de-
velopment; however, the design of Decision-making Systems
(DmS), i.e., instances of such framework, was still manually
conducted. According to Whitehead [5], Nakagawa et al. [6]
and Gray [10], software engineering tools, among several
purposes, can significantly reduce the time and development
cost in a software project. In this sense, the main contribution
of this paper is to present a tool called DmS-Modeler, which
aims to support the DmS development for SaS. As result, to
the best of our knowledge, there is no other complete solution
as RA4SaS that enables the SaS development in both design
and infrastructure.

The paper is organized as follows: Section II presents
the background and related work; Section III provides a
description of RA4SaS and the automated process for SaS
adaptation; Section IV shows the DmS-Modeler tool and its
approach of development; Section V presents a case study to
show the applicability of our tool; and Section VI summarizes
the contributions and presents perspectives for further research.

II. BACKGROUND AND RELATED WORK

This section presents the background (i.e., concepts and
definitions on self-? systems and RA) and related work on
our paper.

DOI reference number: 10.18293/SEKE2016-184

Self-? Systems. SaS has specific features in comparison to
traditional one because this type of software system constantly
deals with structural and/or behavioral changes at runtime.
Some of them deal with management of complexity, robust-
ness in handling unexpected conditions (e.g., failure), changing
priorities and policies governing the goals, and context condi-
tions (e.g., execution environment). The SaS development has
boosted self-? properties in general-purpose software systems,
such as self-managing, self-configuring, self-organizing, self-
protecting, self-healing, and so on. These properties allow
systems to automatically react against users’ needs or to
respond as soon as these systems meet execution environment
changes [1], [11]. According to Silva and De Lemos [12], there
is a set of goals to be achieved so that structural and behavioral
modifications are performed in the SaS without impacting its
execution states. For these authors, an adaptation plan is a
feasible solution to define which procedures will be adopted
so that such changes are implemented.

Reference Architecture. According to Nakagawa et al. [7],
RAs refer to a special type of software architecture that
have become an important element to systematically reuse
architectural knowledge. The main purpose of these architec-
tures is to facilitate and guide [7]: (i) the design of concrete
architectures for new systems; (ii) the extensions of systems of
neighbor domains of a RA; (iii) the evolution of systems that
were derived from the RA; and (iv) the improvement in the
standardization and interoperability of different systems. Con-
sidering their relevance for the software development, different
domains have proposed RAs. For instance, service-oriented
architectures such as IBM’s foundation architecture [13] and
architectures for software engineering environments [6] are
some of RAs found in the literature. Other areas/domains
have also proposed RAs, including the self-? software (e.g.,
RA4SaS [8]).

As related work, Schneider et al. [14] presented a survey
on frameworks for self-healing systems. According to this
study, these systems can combine machine learning techniques
and control loops to reduce human intervention, since such
systems can autonomously detect and recover themselves from
faulty states. The authors proposed a classification of self-
healing frameworks in three categories: (i) learning methodol-
ogy (supervised, semi-supervised, and unsupervised); (ii) man-
agement style (bottom-up and top-down); and (iii) comput-
ing environment (n-tier traditional, cloud, virtualized, and
grid/p2p). In Psaier and Dustdar [15], a survey on self-
healing systems was conducted. This study showed that the
number of approaches for the research on self-healing has been
very active. Moreover, a selection of current and past self-
healing approaches were addressed, as well as explanations
for the origins, principles, and theories of self-healing for such
approaches. These two studies provided the theoretical basis
for the design of our framework [9].

Qun et al. [16] reported that architecture-based self-healing
approaches were used in the architectural models as basis
for system adaptation. Such approaches were based on ar-
chitectural reflection so that their software architectures are

observable and controllable. Cheng et al. [17] proposed a
software architecture-based adaptation for grid computing.
Technically, the study designed a framework based on a
software architectural model, which allows the analysis of the
adaptation needs in an application, enabling repairs to be writ-
ten in the context of the architectural model and propagated
to the running system. Zadeh and Seyyedi [18] suggested an
architecture based on failure-prediction in architectures based
on web services. The main goal of this study is to repair
the execution process after detection of a failure. In a similar
context, Psaier et. al [19] developed a self-healing approach
that enables recovering mechanisms to avoid degraded or
stalled systems. As result a framework called VieCure was
designed to support self-healing principles in mixed service-
oriented systems. In this context, one can highlight that the
literature has revealed important initiatives for the context of
this paper.

III. REFERENCE ARCHITECTURE FOR SAS

According to Affonso and Nakagawa [8], the RA4SaS
(Figure 1) is composed of four external modules and a core
of adaptation. This RA works with a controlled adaptation
approach, i.e., the software engineer must insert annotations
in each software entity so that the automatic mechanisms in the
environment execution can identify the adaptation level of each
entity. These levels contain parameters that determine where
the new changes may be applied. Thus, when an entity is
developed, an automatic mechanism performs a scan process,
to inspect if such annotations were correctly inserted. After a
validation process, these entities are inserted in the execution
environment (i.e., entity repositories) so that they may be
invoked in future adaptations. Next, a brief description of this
architecture is presented.

Search Module State
Module

Annotation
Module

Source code
Module

Infrastructure Module

D
ev

el
o

p
m

en
t

M
o

d
u

le

Action Plan Module

A
d

ap
ta

ti
o

n
 R

u
le

s
M

o
d

u
le

Reflection Module

Adaptation Module

Metamodel (Dis)Assembly

rulesFactory

Fig. 1. General View of the RA4SaS [8]

The Development Module provides a set of guidelines for
requirement analysis, design, implementation, and adaptation
of the software entities at runtime. The Action Plan Module
aims at assisting in the adaptation of such entities, providing
controls for: (i) dynamic behavior, (ii) individual reasons, and
(iii) execution state in relation to the environment. Thereby, a

framework based on learning techniques [20] and the MAPE-
K loop [21], [22] was developed in previous work as part of
this module to support the decision-making [9]. Section IV
presents details on this framework as well as the design and
implementation of the DmS-Modeler tool. The Adaptation
Rules Module provides a set of rules (i.e., metrics) for adap-
tation of the software entities. The Infrastructure Module
provides support for the adaptation of software entities at
runtime, i.e., a set of mechanisms for the dynamic compiling
and dynamic loading of such entities. Finally, the Core of
Adaptation represents an automated process composed of a
logic sequence of nine well-defined steps so that the adap-
tation of the software entities is conducted with no human
intervention [8].

IV. DmS-Modeler TOOL

As presented in Section III, the RA4SaS has an automated
process to accommodate the structural or behavioral changes
in a software entity. According to authors of this RA [8],
the modification of a software entity is a complex activity,
since an action plan must established so that the software
entities are adapted. In short, this plan must be elaborated
based on new requirements (e.g., structural and/or behavioral)
and adaptation level of each software entity. Based on this
scenario, a framework for decision-making was developed by
Affonso et al. [9] to support the generation of such plan
identifying anomalies and proposing one or more solutions
to solve them. Concerning the design, MAPE-K loop [22],
learning techniques [23], [24], and an external approach [4]
of adaptation were the resources used in this framework.

The MAPE-K loop is a reference model (i.e., mature
solution) that has been adopted to provide an autonomous
behavior in SaS. In short, the Monitor process receives data
collected from sensors and convert such data in “symptoms”.
The Analyze process aims to correlate the collected data
and to model complex situations so that the autonomous
systems can learn from the environment and predict future
situations. The Plan process is responsible to create a plan
for adaptation, i.e., what will be adapted and how to apply
the changes in a software entity. The Execute process must
provide the mechanisms that can execute the action plan (i.e.,
proposed solutions). Sensors and Effectors are components to
generate a collection of data reflecting the system state to rely
on in vivo mechanisms or autonomous subsystems to apply
changes [4], [21], [22].

Concerning the learning technique, an incremental classifier
and association rules were used in the design of the classifica-
tion and recommendation modules. The incremental classifier
analyzes the training data and produces an inferred function,
which can be used for mapping new instances [23], [24].
The association rule [23] aims to detect more significant
statistically correlations, via support and confidence, among
the occurred changes in order to operate the recommendation
of solutions for such changes [24]. It is worth noting that there
is no interest in a specific attribute (i.e., specific solution),
since a set of changes may present a set of solutions.

Finally, the external adaptation approach enables the orga-
nization of a SaS in two layers: (i) adaptation engine, which
contains the logical for adaptation; and (ii) adaptable software,
which represents entities that can be adapted. Therefore, our
framework [9] acts as a non-intrusive supervision modality,
i.e., a supervisor system (engine) can be coupled to a software
entity (adaptable software) to monitor its internal state of
operation or the execution environment in which it is inserted.

Although our framework has been designed to assist the
process of decision-making and propitiate its reuse in dif-
ferent systems (e.g., SaS and other software domains), the
development of a DmS is manually conducted and, hence, it
can be considered onerous and error-prone activity. Therefore,
the design of a tool that meets the following requirements
is a feasible alternative: (i) modeling of the problem and
definition of the main points of monitoring for a software
system (SaS); (ii) automatic generation of the classification
and recommendation modules; (iii) insertion of initial knowl-
edge into such modules; and (iv) data calibration of the DmS.
According to these requirements, a tool called DmS-Modeler
was developed and a set of guidelines elaborated to support
the development of DmS for SaS, as illustrated in Figure 2.
In short, the development of this system type is composed
of three phases: design, execution, and instruction mapping.
The first is organized in two modeling steps: (a) classification
module, which main purpose is to present a classification for a
data set collected via sensors from execution environment; and
(b) recommendation module, which aims to present a solution
set ranked by statistical measures for a problem reported by
the classification module. The second represents the complete
instantiation of the DmS for the calibration process into
its execution environment. The third consists of mapping
knowledge (i.e., recommendation module) to instructions in
source code. Next, a description of each step is reported.

During the design of the classification module, the stake-
holders (i.e., software engineer and domain specialist) must
define the “main points” of monitoring for a software entity.
These points represent the attribute number of an instance and
values that can be assigned to them. In this sense, the DmS-
Modeler tool has a wizard (i.e., a visual front-end) that enables
the creation of attributes and their values, which may be
numerical or nominal. In order to make compatible the values
collected from the execution environment in relation to ones
required by the algorithms used in the implementation of both
modules, a discretization process of values was implemented
in our tool. After the definition of attributes and values,
the stakeholders must save the specification of the DmS in
a “.arff” file, which is represented by the “Specification
Repository” component. This file will be used by our tool
to generate the database (“Problems” component) of each
system. Based on this specification and a set of labeled initial
data, an incremental classifier is generated in the “Classifier”
component. Next, new data can be collected from execution
environment and sent to this classifier for identification of
anomalies. The data is stored in the database as collected and
classified after the validation by the test module [9].

Problems

Solutions

Specification
Repository
(.arff Files)

New Data Class
Data + Class

Update

Start
Engine

Load

Classification Module

Update

Start
Engine

Load

Recommendation Module

Classifier

Rules

Solutions

DS ES

Design Phase Execution Phase

Data + Class

 Legend: DS - Domain Specialist
 SE - Software Engineer

Instructions Factory
Rules

Update

Start
Engine

Load

Rule Engine

 DS ES

Solutions

M
a

p
p

in
g

Source
Code

Test
Module

Adaptation
Process

Solution Set
Instruction Mapping Phase

Source
Code

Fig. 2. Development phases of the DmS-Modeler tool

The design of the recommendation module must be con-
ducted in a similar way to previous one [9]. The stakeholders
must conduct the specification of the solutions and stored them
in the “Specification Repository” component as a “.arff”
file, which will be used by the DmS-Modeler tool to generate
the database (“Solutions” component). The insertion of labeled
initial data is different from the previous module, since the
stakeholders must provide one or more solution for each
instance of problem. From these databases (i.e., Problems and
Solutions) and specifications are generated a rule set (“Rules”
component), which intends to map the problems and solutions.
The design of the rule engine is conducted in parallel to this
module, since the main purpose of this engine is to provide
a solution in source code for each instance of problem. Thus,
each one must be labeled by a class to receive one or more
solution in source code (“Source Code” repository), generating
a rule in the “Rules” repository. Before it becomes an effective
solution, a recommendation must be tested (“Test Module”) in
order to ensure that no “collateral effects” will be propagated
to the software system. For space and scope reasons, the design
of this module will not be detailed in paper.

Regarding the internal components of each module, a brief
description is addressed [9]: (i) Start: aims to initialize each
module by means of the “Engine” component. As result, an in-
cremental classifier (“Classifier” component), rule set (“Rules”
component), and a rule engine are generated based on the
specifications and initial knowledge provided by the specialist;
(ii) Load: attempts to load data stored in each database, which
is organized in two types: (a) specification, i.e., initial knowl-
edge provided by the specialist; and (b) acquired knowledge,
i.e., data obtained during the execution cycle; (iii) Engine:
represents an abstraction for the algorithms of classification
and recommendation, which were developed by third parties;
and (iv) Update: updates the database after new data has
classified and validated. Such update is performed when a
notification from the test module is received. Finally, it is

noteworthy that our tool has a flexible engine, since it enables
that other algorithms can be coupled to it without additional
implementation in its modules.

V. CASE STUDY

In this section we present a case study to evaluate the
applicability of the DmS-Modeler tool. The main purpose
of this study is to demonstrate the real value of our tool
for the stakeholders during the development of a DmS. In
previous work, we have applied our framework for the mon-
itoring and eventual corrections of flight plan for Unmanned
Aerial Vehicles (UAVs) [9], since this system type requires
unforeseen context changes. Therefore, we will approach the
same system in this paper; however emphasizing the use of
the DmS-Modeler tool. Next, a brief description of our subject
application and the empirical strategies adopted for conducting
this case study is presented.

Subject Application. For our empirical analysis we have
selected an application addressed to the management of an
UAV in a simulated environment. In short, this application
is organized in three layers: (i) UAV, which is composed
of a set of UAVs; (ii) Communication, which contains the
servers for communication between UAVs and clients; and
(iii) Client, which represents the controllers of the UAVs in
different operating systems. The UAVs used in the scope of
this empirical study are equipped with five sensors: (i) altitude,
(ii) battery level, (iii) distance, (iv) speed, and (v) temperature.
These sensors provide numerical information that must be
discretized, since both algorithms of our tool require data in
the nominal form [20]. Operationally, this application enables
us to collect data from the environment via sensors, and
transferring it for classification. Thus, when a problem is
detected, a set of useful solutions is presented for correcting
the flight plan. In extreme cases, the system may exhibit
a recommendation to abort the operation. This last case is
recommended when the UAV integrity may be compromised.

Then, the UAV location is provided for our system, enabling
the vehicle to be rescued. Modifications are made in the flight
plan when the collected data tell us that something unplanned
is changing in the environment. Thus, even if no decision is
taken, the mission of the UAV may be compromised.

Empirical research strategy. Figure 3 illustrates the sys-
tematization for modeling of a DmS, which is organized in
two steps: (i) modeling of the problem; and (ii) calibration
of the modules. Initially, the stakeholders must identify the
monitoring points for such system (Step 1). Next, for each
point, a verification is conducted to obtain its output (i.e., Is it
a numerical or nominal value?). The main difference between
the modeling of numerical and nominal values consists of
definition of a label (i.e., nominal value) for an interval of
numerical values, as illustrated in the table fragment “battery
level sensor” (Step 3.1). For space reasons, only the discretiza-
tion of this sensor will be presented. The first column shows
the range to classify the battery level (second column) on a
scale of six to seven percentage points (i.e., A with six points
and B and C with seven points). The third column presents a
classification in a scale of 20 points in relation to first column.
We also defined that a classification has three levels, i.e., the
A level is the best state of a classification, the B level can be
considered as a region of stability, and the C level represents
a transition stage. Next, we combine the first letter of each
classification with respective battery charge levels to create a
nominal category, as shown in column 4. After discretization,
each sensor must be transformed in an attribute and its label
in value for it. Step 3.2 represents the insertion of monitoring
points (i.e., attributes) by the stakeholders into our tool. Step
4 represents the generation of a complete infrastructure for
the classification module (i.e., database containing all the
attributes and source code for this module). Step 5 represents
the mapping of solutions for each type of problem. In this
wizard, the stakeholders can select the project developed in the
previous step so that the recommendation module is generated
(Step 6). Next, an initial knowledge must be provided to the
databases of the classification and recommendation modules
(Step 7). Our tool provides a table for insertion of knowl-
edge for the classification module and a list for mapping of
solutions. Each line of this table represents a system state in
the execution environment. To overcome possible adversities
during its execution cycle, one or more solutions can be
created and associated to each state to maintain a system in
execution. Our tool also enables the validation of the inserted
knowledge by means of a wizard (Step 8), which aims to
ensure that a problem has one or more solution. After the in-
sertion of knowledge, the calibration process can be conducted
to evaluate the precision of a classification of problems and
the recommendation of solutions [9], [15], [19], [20].

VI. CONCLUSIONS AND FUTURE WORK

This paper presented DmS-Modeler tool that intends to
support the SaS development. This tool incorporates a frame-
work for decision-making [9] and, hence, the benefits of our
tool can also be extended for other communities of software

development. As reported in this paper, an approach was
proposed to systematize the development of a DmS using our
tool. Based on this scenario, the main contributions of this
paper are:

• For the SaS area by providing a means that facilitates the
development of DmS for SaS;

• For the use of our framework [9], providing a wizard for
modeling of the monitoring point. For instance automatic
generation of the classification and recommendation mod-
ules, insertion of initial knowledge, and calibration of
the DmS are other functionalities provided by our tool
that can executed by means of a wizard. Moreover, the
automation of the activities for the software development
tends to minimize human’ involvement and involuntary
generation of uncertainties, which are considered negative
factors for the software development, especially for the
SaS [5], [6], [8], [10], [9]; and

• For the RA area, since we have proposed the first RA
based on reflection [8] and the implementation of this
tool aims to optimize our initiative for the development
of such systems.

As future work, three goals are intended: (i) conduction
of more case studies intending to completely evaluate our
tool, including different software domains; (ii) implementation
of a new wizard for mapping of solutions to instructions
(i.e., source code), which would complete the development
cycle presented in Figure 2; and (iii) use of this tool in the
industry, since it is intended to evaluate its behavior when
it is applied in larger real environment of development and
execution. Therefore, it is expected that a positive scenario
of research, intending to have this tool become an effective
contribution to the software development community.

ACKNOWLEDGMENT

This research is supported by PROPe/UNESP and Brazilian
funding agencies (FAPESP, CNPq and CAPES).

REFERENCES

[1] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in FOSE’ 07, 2007, pp. 259–268.

[2] P. Maes, “Concepts and experiments in computational reflection,” SIG-
PLAN Notice, vol. 22, no. 12, pp. 147–155, December 1987.

[3] F. J. Affonso and E. L. L. Rodrigues, “A proposal of reference architec-
ture for the reconfigurable software development,” in SEKE’ 12, 2012,
pp. 668–671.

[4] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 1–42, 2009.

[5] J. Whitehead, “Collaboration in software engineering: A roadmap,” in
Future of Software Engineering, 2007, pp. 214–225.

[6] E. Y. Nakagawa, F. C. Ferrari, M. M. F. Sasaki, and J. C. Maldonado,
“An aspect-oriented reference architecture for software engineering
environments,” Journal of Systems and Software, vol. 84, no. 10, pp.
1670–1684, 2011.

[7] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A reference
model of reference architectures,” in WICSA/ECSA’ 12, 2012, pp.
297–301.

[8] F. J. Affonso and E. Y. Nakagawa, “A reference architecture based
on reflection for self-adaptive software,” in SBCARS’ 13, 2013, pp.
129–138.

[9] F. J. Affonso, G. Leite, R. A. P. Oliveira, and E. Y. Nakagawa, “A
framework based on learning techniques for decision-making in self-
adaptive software,” in SEKE’ 15, 2015, pp. 1–6.

Problem

...

...

...

...

Monitoring Points

Verification

For each Domain
Specialist

Software
Engineer

Stakeholders

?
Numerical

Discretization Process

1 2

3

4

3.1 3.2

Problems

Classification
Module

Solutions

Recommendation
Module

In
itia

l K
n

o
w

led
g

e

5

6

7 8

Insertion of Knowledge

Table fragment for the battery level sensor

Nominal

Fig. 3. Case study

[10] J. Gray, “Software engineering tools,” in HICSS’ 00, January 2000, pp.
3300–3301.

[11] D. Weyns, S. Malek, and J. Andersson, “Forms: a formal reference
model for self-adaptation,” in ICAC’ 10, 2010, pp. 205–214.

[12] C. E. Silva and R. Lemos, “A framework for automatic generation
of processes for self-adaptive software systems,” Informatica Journal,
vol. 35, no. 1, pp. 3–13, 2011.

[13] R. High, S. Kinder, and S. Graham, “Ibm’s soa foundation - an archi-
tectural introduction and overview,” 2005, available in: http://signallake.
com/innovation/soaNov05.pdf (Access on March 1, 2016).

[14] C. Schneider, A. Barker, and S. Dobson, “A survey of self-healing
systems frameworks,” Software: Practice and Experience, pp. n/a–n/a,
2014.

[15] H. Psaier and S. Dustdar, “A survey on self-healing systems: Approaches
and systems,” Computing, vol. 91, no. 1, pp. 43–73, Junuary 2011.

[16] Y. Qun, Y. Xian-chun, and X. Man-wu, “A framework for dynamic
software architecture-based self-healing,” in SMC’ 05, vol. 3, October
2005, pp. 2968–2972 Vol. 3.

[17] S.-W. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, and N. Hu, “Software
architecture-based adaptation for grid computing,” in HPDC’ 02, 2002,
pp. 389–398.

[18] M. H. Zadeh and M. A. Seyyedi, “A self-healing architecture for web

services based on failure prediction and a multi agent system,” in
ICADIWT’ 11, August 2011, pp. 48–52.

[19] H. Psaier, F. Skopik, D. Schall, and S. Dustdar, “Behavior monitoring
in self-healing service-oriented systems,” in COMPSAC’ 10, July 2010,
pp. 357–366.

[20] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman Pub-
lishing, 2005.

[21] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of
autonomic communications,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 1, no. 2, pp. 223–259, December 2006.

[22] IBM, “An architectural blueprint for autonomic computing,” [On-
line], World Wide Web, 2005, available in: http://www-03.ibm.com/
autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf (Ac-
cess on March 1, 2016).

[23] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD’ 93, 1993,
pp. 207–216.

[24] C. Tew, C. Giraud-Carrier, K. Tanner, and S. Burton, “Behavior-based
clustering and analysis of interestingness measures for association rule
mining,” Data Mining and Knowledge Discovery, vol. 28, no. 4, pp.
1004–1045, 2014.

