
DOI reference number: 10.18293/SEKE2016-182

Experimentation in the Industry for Automation of

Unit Testing in a Business Intelligence Environment
Igor Peterson Oliveira Santos

a
, André Vinícius R. P. Nascimento

b
, Juli Kelle Góis Costa

a
, Methanias Colaço Júnior

 a,b
,

Wenderson Campos Pereira
b

a
 Postgraduate Program in Computer Science - PROCC.

UFS – Federal University of Sergipe

São Cristóvão/SE - Brasil.

{igorp.ita, julikelle}@hotmail.com

b
 Competitive Intelligence Research and Practice Group –

NUPIC

Information Systems Departament - DSI

UFS – Federal University of Sergipe

Itabaiana/SE - Brasil.

andreviniciusnascimento@gmail.com, {mjrse,

wenderson_se}@hotmail.com

Abstract— This paper presents an approach to automate the

selection and execution of previously indentified test cases for

loading procedures in Business Intelligence (BI) environments

based on Data Warehouse (DW). To verify and validate the

approach, a unit test framework was developed. The overall goal

is achieve data quality improvement. The specific aim is reduce

test effort and, consequently, promote test activities in data

warehousing process. A controlled experiment evaluation was

carried out to investigate the adequacy of the proposed method

for data warehouse procedures development. The results of the

experiment show that our approach clearly reduces test effort

when compared with manual execution of test cases.

Keywords— Business Intelligence; Data Warehouse; Software

Testing; Data Quality; Experimental Software Engineering.

I. INTRODUCTION

Information represents a crucial factor for companies in
improving processes and decision making. To assist the
strategic areas of the organizations business intelligence (BI)
environments are presented as sets of technologies that support
the analysis of data and key performance indicators [1]. A
central component of BI systems is a Data Warehouse (DW), a
central repository of historical data. The idea behind this
approach is to select, integrate and organize data from the
operational systems and external sources, so they can be
accessed more efficiently and represent a single view of
enterprise data [1, 2, 3].

Despite the potential benefits of a DW, data quality issues
prevent users from realizing the benefits of a business
intelligence environment. Problems related to data quality can
arise in any stage of the ETL (Extract, Transform and Load)
process, especially in the loading phase. The main causes that
contribute to poor data quality in data warehousing are
identified in [4]. The lack of availability of automated unit
testing facility in ETL tools is also appointed as cause for the
poor data quality [4]. The low adoption of testing activities in
DW environment is credited to the differences between the
architecture of this environment and architectures of the generic
software systems. These differences mean that the testing
techniques used by the latter need to be adjusted for a DW
environment [5, 6].

The test of ETL procedures is considered the most critical
and complex test phase in DW environment because it directly
affects data quality [7]. ETL procedures, more precisely the

loading routines, exhibit the same behavior as database
applications. They operate on initial database state and generate
a final consistent database state. So, a black-box approach,
which combines the unit and application behavior of loading
procedures, is proposed. In this approach, the concern is with
the application interface, and not with the internal behavior and
program structure [8,9]. This approach to ETL routines, in some
environments, may be the only option, since the use of ETL
tools in DW environment produces codes or packages whose
internal structure is not known.

This paper presents the result of the construction and
experimentation of a unit testing framework to improve the
quality of loading procedures in a BI environment. Using a
black-box approach and treating the loading routines under the
application point of view, the framework generates initial and
final states of the database in function of test cases previously
specified. The expected behavior of the routines, the selection
of test cases and database conditions used are determined by
procedures metadata.

II. FRAMEWORK

A. Architecture

The framework will be used to perform tests under the
black-box approach. The code and the internal structure of the
routines will not be examined. The test cases previously
implemented, will be selected according to the characteristics of
the routine being tested. Each routine, in order to be covered by
the framework, must have a set of metadata registered. This set
of metadata was defined from the schema presented in [10].

B. FTUnit tool

The FTUnit tool is a framework used to perform unit tests in
loading procedures of a DW environment. It has been
developed in C#. More details about the tool and download are
available at <http://ftunit.wordpress.com/>.

C. Goal definition

Our work is presented here as an experimental process. It
follows the guidelines by Wohlin et al. in [11]. In this section,
we start introducing the experiment definition and planning.
The following sections, will direct to the experiment execution
and data analysis.

Our main goal is to evaluate the use of automated test
execution to loading routines in a Data Warehouse
environment.

mailto:andreviniciusnascimento@gmail.com

The experiment will target developers of ETL processes for
BI environments with at least 2 years of experience in the
market and one year of experience in ETL programming. The
goal was formalized using the GQM model proposed by Basili
and Weiss [12]: analyze the use of a DW unit testing
framework, with the purpose of evaluate (against manual
testing), with respect to the efficiency of the process of
executing test cases, from the point of view of developers and
decision support managers, in the context of programmers in a
BI company.

D. Planning

1) Hypothesis Formulation

The research question for the experiment that needs to be
answered is this: “A customized unit testing framework can
increase the productivity of developers during the testing
process in a DW?” To evaluate this question, it will be used a
measure: Average time for Manual testing and Automation
Testing. Having the purpose and measures defined, it will be
considered the hypothesis: 1) H0time - the execution of
automated and manual testing has same efficiency.
(μManualTestingTime = μAutomationTestingTime); 2) H1time - the execution of
automated testing is more efficient than the execution of manual
testing. (μManualTestingTime > μAutomationTestingTime).

Formally, the hypothesis we are trying to reject is H0time. To
ascertain which of the hypotheses is rejected, will be considered
the dependent and independent variables that can be seen as
follow.

a) Independent Variables

Next, the independent variables of the experiment are
described.

Description of Test Cases Used in the Experiment: The
loading routines for the DW environment are quite discussed in
[1,2]. Alternative approaches to the loading of dimensions can
be found in [13]. Algorithms for loading routines for the various
types of dimensions can be found in [14]. Test Cases categories
for ETL routines are pointed in [6]. This material, together with
the extensive experience of the authors in DW projects in the
public and private sectors, provided the basis for the elaboration
of categories and test cases to be considered by the framework.
The following categories are contemplated by the framework:
a) Unit tests and relationship; b) Number of records between
source and destination; c) Transformations between source and
destination; d) Processing of incorrect or rejected data; e) Null
values processing; f) Behavior type 1, type 2 and type 3

1
 for

dimensions attributes; g) Hybrid approaches for the treatment of
historical dimensions.

Description of the Use Case Used in the Experiment: the
characteristics of the use case chosen for the validation study
were based on practical situations reported by the selected
programmers. For the use case of the experiment, the goal was
to generate procedure to perform loads of Staging Area, from
employee table to the employee dimension. At this time, the
dimension has an historical storage, Type 2 for some attributes.
The other attributes are Type 1.

1 There is treatment of historical data, by storing in various attributes of the

same data record. So, can be created how many columns as desired for the

dimension [13].

Tests in the ETL Process: The ETL tests used in this work,
have two types of treatments for performing the experiment: 1)
Manual Testing: manual testing execution, based on the test
cases, in the ETL procedures, in SQL to load data defined in the
use case already presented earlier; 2) Automation Testing:
execution of tests based on test case, in the SQL code for the
same use case, using the proposed tool in this work, FTUnit.

b) Dependent Variables

It were used a measure as a dependent variable: Average
time, for manual testing and automation testing, measured using
a stopwatch, considering the average time spent on testing in
the procedures.

2) Participants Selection

The selection process of the participants will be done for
convenience, making the type of sampling per share in which
will be preserved the same characteristics of interest present in
the population as a whole. The contributor to be chosen will be
Qualycred (www.qualycred.com), a company that provides
consulting in BI solutions for industry. This company will
provide for the execution of the experiment, ten programmers
with four years of experience in other areas and one year of
experience working specifically with ETL for DW, in SGBD
SQL SERVER.

3) Experiment Project

The experiment was projected in a paired context, in which
a group will evaluate both approaches: Manual and Automated
execution of test. For understanding the execution of the test to
be done, ten test cases and one use case (seen in Independent
Variables section) were elaborated, which will be presented in a
well detailed way to the programmers.

The experiment will be separated into two groups of
participants. Will be drawn 5 programmers to start the tests to
the rules presented in the Employee Use Case, with the
execution of manual testing and, shortly after, the execution of
automation testing. The other participants in parallel, will make
the tests made to rules presented in same use case, with the
implementation of the automation testing and, shortly after,
with the execution of the manual testing. Thus, the randomness
will be enhanced, not prioritizing the manual or automated
learning.

4) Instrumentation

Figure 1. Charge for a dimension with behaviors of types 1 and 2.

The instrumentation process initially proceeded with the
environment setup for the experiment and planning the data
collect. It was conducted in a computer lab at Federal
University of Sergipe - UFS.

Figure 1 contains the representation of a load data from
TB_Aux_Employee (auxiliary table of employees) to the
DIM_Employee (dimension of employees) that represents a

dimension of types 1 and 2. To this dimension, the attributes
that match the type 1 are: name and CPF. The attributes of type
2 are: title, job, salary, sector and department.

III. EXPERIMENT OPERATION

A. The preparation

The following are listed the preparation steps for the
execution of the experiment. 1) DW environment Creation - in
this phase was defined and created the DW environment with
the dimensional schemes and staging area; 2) Definition of Test
Cases for loading routines - were defined test cases to be
followed by the developers of the experiment. 3) Review of
basic concepts of loading routines for the programmers - a
review of the loading routines, for DW environments with the
selected developers, was performed. 4) Training in testing
framework - a training with the programmers was realized to
become familiar with the tool.

In short, all computers were prepared with the same settings,
so programmers were on the same working conditions.
Moreover, it was presented to each programmer, a printed
document containing a detailed description of Use Case and test
cases that would be used by them, in case of any doubts.

B. Execution

At the end of the previous steps, the experiment was
initiated, it occurred according to the plan described in section
3. The evaluation of the tool at the end of the experiment, made
by the professionals, was positive, since they have commented
that the use of the tool have contributed to the reduction of time
in the test procedures.

1) Data Collection

It was calculated the time spent by each developer for both
manual and automated tests, of all test cases for the Employee
Use Case, taking into account the time for testing and all
necessary settings in FTUnit. Under supervision, each
programmer reported the completion and was recorded the time
on a timer, used for this purpose. The result of these collected
data will be presented in section 5 of this paper.

C. Data Validation

In order to perform the experiment, one factor was
considered, Test of the ETL Process, and two treatments,
manual and automated tests, using the FTUnit tool. Facing this
context, the average of testing time was computed.

As an aid to analysis, interpretation and validation, we used
two types of statistical tests, Shapiro-Wilk Test and the T Test.
Shapiro-Wilk test was used to verify normality of the samples.
The T test was used to compare the average of the two paired
samples [11]. All statistical tests were performed using the
SPSS tool [15].

IV. RESULTS

A. Analysis and Data Interpretation

To answer the question of research, the following dependent
variable was analyzed: The time to the testing process of each
procedure.

1) Time spent in the testing process.

Results - related to the testing time by each participant for
the Employee Use Case - show that the average time of the

developers for manual testing was 54.4 minutes, and 20.5
minutes for the automatic one.

These results suggest that the automated testing procedures
have, on average, shorter testing time, as compared with the
same test procedure performed manually by programmers with
experience in the area. Thus, from this preliminary analysis of
the data, it is assumed that the answer to the Research Question
would be "yes". The execution of automated testing can
increase the productivity of developers during the testing
process in a DW, since automation testing obtained a difference
of approximately 35 minutes. But is not possible to make such a
claim without sufficiently conclusive statistical evidence.

Thus, first, we established an apriority significance level of
0.05. The Shapiro-Wilk test ensured that the sample was
normally distributed. We found p-values of 0.659 and 0.311 for
execution of manual and automated testing, respectively. As the
p-value is the lowest possible significance with which it is
possible to reject the null hypothesis, and they are larger than
0.05, we cannot reject the hypothesis that the data is normally
distributed.

Finally, as the samples are not independent, the hypothesis
test applied in this context was the T-Test, characterized as
parametric for paired samples, which only requires normality of
the samples. We obtained the p-value of 0.000. This means the
p-value found is less than 0.0001, so we have more than 99%
certainty for the valued context. Thus, it was confirmed the
evidence of a difference between the averages of 33.9. As the
significance test is lower than 0.05, it is possible to reject the
null hypothesis. Consequently, we cannot reject the alternative
hypothesis that the execution of automated testing is more
efficient than the execution of manual testing.

B. Threats to validity

In spite of having achieved statistical significance in the
study, the following threats to the validity must be considered.

Threats to internal validity: Although participants have
been trained to use the tool, they do not use it daily. This lack of
constant contact with it may have affected the results, which
could be even better, pro-tool. The tool training was conducted
at the beginning of the experiment, considering a phenomenon
studied by psychology called Demand Characterization - which
considers that an experimental artifact may have an
interpretation of the purpose of the experiment by the
participants. This can lead to change of unconscious behavior,
to adapt to this interpretation [16]. According to this concept,
this training could be harmed the progress of the experiment,
but to mitigate this factor, can be said that had been used at least
two different approaches: The More The Merrier and
Unobtrusive Manipulations and Measures [16]. Respectively,
the first, to avoid bias with a single experimenter, the
experiment had another researcher to conduct the experiment
and an instructor for the tool, not involved with the research.
The second guided us not to say which factors and metrics
would be assessed, so that the participants had no clues about
the research hypothesis.

Threats to external validity: The low number of
participants can be a threat, since it can negatively influence the
results of the experiment. This threat was mitigated with the

convenience of the selection of programmers skilled in the ETL
area for BI environment.

Threats to the construction validity: The Specifications
for the use case and test cases may not have been very clear to
the understanding of some programmers. This threat was
mitigated with the prior reading and analysis of the
understanding, made by 3 ETL developers.

V. RELATED WORK

Through literature reviews, with systematic approaches,
were not found strongly related work for automated unit tests in
ETL tools. Consequently, the absence of ETL tools with these
characteristics may contribute to a lower integrity and a lower
quality of data, essential in large banks of decision support data.

Some moderately related works also seek solutions for the
automatic execution of Test Cases in DW environments. In [6]
it is presented a directed models approach for automatic
generation and execution of test cases based in formal models
of systems. The formal model adopted is based on the UML
language. The approach also depends on creating an extension
of UML language that can capture the transformations used in a
Data Warehousing process.

The QuerySurge [17] tool, developed by RTTS Company,
presents the possibility of automatic execution of unit tests. This
approach differs from ours, since the goal is to work with
programmed unit tests, not pre-defined by the tool. The
approach adopted is to create scripts that can capture
operational environment data and dimensional schema for
comparison. The tool does not use metadata to work with
already known transformations, as it happens in our approach.

Once the framework generates test cases based on
characteristics of the loads procedures being implemented, it
can be extended and used to test load routines created for any
ETL tools. So far was not found in literature any similar
approach, so we could make a comparison. The more similar
tool to the proposed work is the framework [18]. However, this
one represents a generic framework for database applications
and has no particularity regarding to loading routines for a Data
Warehouse environment.

VI. CONCLUSIONS

Business Intelligence requires valid, consistent, and
complete organizational data. These quality items represent
constant concerns for companies in the process of use of
decision support systems.

In this paper, we presented the proposal of using a unit
testing framework for loading routines in a BI environment
based on Data Warehouse. The motivation for adopting this
approach meets the problems pointed out in [19], as the main
causes for the poor quality of data in a DW environment.
Another motivation, also pointed in [6,7,8] is the need to adopt
different strategies, considering the differences between
traditional environments and DW environments, which can
contribute to the adoption of testing processes.

In this context, this work presents important contributions to
increasing the productivity and quality in software engineering
for loading routines of DWs, and encourages experimentation in
an industrial environment. The framework encapsulates a
method to accelerate and improve the quality of ETL process

tests based on SQL. It is noteworthy that the safe and efficient
execution of procedures in SQL directly in the database is an
option considered by much of the industry, requiring tools to
support tests in this type of approach in software engineering.

The proposed framework presents test cases previously
defined which cover the main categories of tests applied to
loading routines. Through a set of metadata that defines the
characteristics of the routines, the framework selects test cases
to be applied, generates the initial states of the database,
executes the routines, performs test cases, analyzes the final
state of the database and generates a report with the errors
encountered during the execution of each test case.

By virtue of what we have seen above and the framework
innovation, the presentation of this experiment will support the
adoption of the same or the creation of a similar approach for
companies that use this type of strategy.

As future work, experiments will be done evaluating the use
of the proposed framework against a generic database
application test framework, the DBUnit [18] which had been
constructed specifically for database application tests.

REFERENCES

[1] Colaço Jr., M.: Projetando sistemas de apoio à decisão baseados em Data

Warehouse. 1st ed., Rio de Janeiro: Axcel Books (2004)

[2] Kimball, R., Ross, R. M. and Thomthwaite, W.: The Data Warehouse lifecycle

toolkit. 2nd. ed., Indianapolis, Indiana: Wiley Publishing Inc (2008)

[3] Inmon, W. H.: Building the Data Warehouse. 4th ed., Indianapolis, Indiana: Wiley

Publishing Inc (2005)

[4] Ranjit S. and Kawaljeet, S.: A Descriptive Classification of Causes of Data Quality

Problems in Data Warehousing. 7 v. IJCSI International Journal Of Computer

Science Issues (2010)

[5] Deshpande, K.: Model Based Testing of Data Warehouse. IJCSI International

Journal of Computer Science Issues, Vol. 10, Issue 2, No 3 (2013)

[6] Elgamal, N., Elbastawissy, A. and Galol-edeen, G.: Data Warehouse Testing.

EDBT/ICDT ’13, Genoa, Italy (2013)

[7] Golfarelli, M. and Rizzi, S. A.: Comprehensive Approach to Data Warehouse

Testing. ACM 12th International Workshop on Data Warehousing and OLAP

(DOLAP ’09), Hong Kong, China (2009)

[8] Myers, G. J., Badgett, T. and Sandler, C.: The Art Of Software Testing. 3rd ed.,

New Jersey: Wiley (2012)

[9] Sommerville, I.: Engenharia de Software. 9th ed., São Paulo: Pearson (2011)

[10] J. K. G. Costa, I. P. O. Santos, A. V. R. P. Nascimento, M Colaço Jr.

Experimentação na Indústria para Aumento da Efetividade da Construção de

Procedimentos ETL em um Ambiente de Business Intelligence. SBSI 2015, May

26–29, Goiânia, Goiás, Brazil (2015)

[11] Wohlin, C., et al.: Experimentation in Software Engineering: An introduction. USA:

Kluwer Academic Publishers (2000)

[12] Basili, V. and Weiss, D.: A Methodology for Collecting Valid Software

Engineering Data. In: IEEE Transactions On Software Engineering, v.10 (3): 728-

738, November (1984)

[13] Santos, V. and Belo, O.: No Need to Type Slowly Changing Dimensions. IADIS

International Conference Information Systems (2011)

[14] I. P. O. Santos, J. K. G. Costa, A. V. R. P. Nascimento, M. Colaço Júnior.

Desevolvimento e Avaliação de uma Ferramenta de Geração Automática de Código

para Ambientes de Apoio à Decisão. In: XII WTICG, XII ERBASE (2012)

[15] SPSS, IBM Software, http://goo.gl/eXfcT3

[16] Orne, M. T.: Sobre a psicologia social da experiência psicológica: Com referência

particular para exigir características e suas implicações. (1962)

[17] QuerySurge, RTTS, http://www.querysurge.com/

[18] DBUnit, http://dbunit.sourceforge.net/

[19] Singh, R. and Singh, K.: A Descriptive Classification of Causes of Data Quality

Problems in Data Warehouse. IJCSI International Journal of Computer Science

Issues, Vol. 7, Issue 3, No 2, May (2010)

http://www.cs.umd.edu/~basili/publications/journals/J23.pdf
http://www.cs.umd.edu/~basili/publications/journals/J23.pdf

