
DOI reference number: 10.18293/SEKE2016-168

On Building Test Automation System for Mobile Applications Using GUI Ripping

Chuanqi Tao
Nanjing University of Science and Technology

Nanjing, Jiangsu, China
taochuanqi@njust.edu.cn

Jerry Gao
San Jose State University

San Jose, CA, USA
Taiyuan University of Technology, Taiyuan, China

Corresponding to: jerry.gao@sjsu.edu

Abstract: With the rapid advance of mobile computing
technology and wireless networking, there is a significant
increase of mobile subscriptions. This brings new business
requirements and demands in mobile software testing, and
causes new issues and challenges in mobile testing and
automation. Current existing mobile application testing
tools mostly concentrate on GUI, load and performance
testing which seldom consider large-scale concurrent
automation, coverage analysis, fault tolerance and usage of
well-defined models. This paper introduces an implemented
system that provides an automation solution across
platforms on diverse devices using GUI ripping test
scripting technique. Through incorporating open source
technologies such as Appium and Selenium Grid, this paper
addresses the scalable test automation control with the
capability of fault tolerant. Additionally, maximum test
coverage can also be obtained by executing parallel test
scripts within the model. Finally, the paper reports case
studies to indicate the feasibility and effectiveness of the
proposed approach.

Keywords: mobile application testing; test automation;
large-scale concurrent testing; GUI ripping

I. Introduction

With the rapid advance of mobile computing technology
and wireless networking, there is a significant increase of
mobile subscriptions. This brings new business
requirements and demands in mobile software testing, and
causes new issues and challenges in mobile testing and
automation. Mobile Application testing refers to testing
activities for native and web applications on mobile devices
using well-defined software test methods and tools to ensure
quality in functions, behaviors, performance, quality of
service and features like mobility, usability, inter-operation
ability, connectivity, security and privacy [10][22]. Most of
the present research work focuses on providing solutions to
the technical problems on mobile app white-box testing
methods, GUI-based test technique, and ad-hoc scripting
test tools;

GUI ripping has become an effective technology in GUI
test automation. Test cases and test execution can both be
automated using well-defined GUI ripping models [4]
[14][19][21]. Current existing mobile app tools mostly
concentrate on GUI, load and performance testing which
hardly considers large-scale concurrent automation,

coverage analysis, fault tolerance and usage of well-defined
models. The existing test automation approaches and tools
suffer from several challenges and problems. The first issue
is that it is too costly to deal with diversity of mobile test
environments on varieties of mobile devices, and the other
is the lack of cost-effective method and platforms to support
a unified mobile test automation crossing different mobile
platforms on diverse devices. Most of existing tools do not
analyze the data dependence between GUI components. In
summary, there is a lack of mobile test scripting technique
to address large-scale concurrent mobile test needs.

This paper intends to develop a system tool that provides
a large-scale automation solution using GUI ripping. By
incorporating open source technologies such as Appium and
Selenium Grid, we plan to address the scalable test
automation control. Additionally, maximum test coverage
can also be obtained by executing parallel test scripts within
the model. Hence, this approach will be useful in numerous
mobile app validation and test automation within the
industry. The contributions of this paper can be summarized
as follows.
- Test automation solution that would provide services

for concurrent test automation for multiple mobile
devices running on different platforms.

- Dependency analysis report which helps in identifying
the dependency existing between the multiple scripts
intended to run on different paths.

- Coverage analysis report after the end of each
successful test execution.

The paper is structured as follows. The next section
presents the background and related work. The system
requirement analysis is introduced in Section III. Section IV
presents the designed and implemented prototype tool for
the proposed approach. Case studies of testing on sample
mobile apps are shown in Section V. Conclusions and future
work are summarized in Section VI.

II. Background and Related Work
A. Background
The purpose of ripper is to identify maximum number of
structural information about the GUI of any android
application through the algorithm. Here, the application’s
windows are opened in depth-first manner. The ripper is
capable of extracting all the widgets and its properties from
a GUI window. Properties of a window can be size, color,
status or window types. GUI windows can be categorized
into two types. Model window allows users to fire an event

from within the window like a Save button. Modeless
window on the other hand, let users expand a set of
commands like Replace command, which doesn’t restrict
the user’s focus to a specific range of events within a
window. Thus, ripper abstracts widgets and their properties
and generates a GUI tree.
 Hierarchical nature of the GUI is represented in a GUI tree.
Each node of the GUI tree is called a window or activity
[14], [19]. An Event-Flow Graph (EFG) is generated by
taking the input as a GUI tree that is the outcome of
applying the ripper algorithm on the application. An EFG is
a directed graph epitomizing the GUI events. Each node in
the EFG is any GUI event. An edge from node u to node v
represents a ‘follows’ relationship that suggests event v can
be executed soon after the event u. Each event in the EFG
will contain the widget ID with which, the matching GUI
node can be identified through the GUI tree.

B. Related work

Huang et al. proposed an automated test case generation
framework for GUI testing. An accessibility framework
known as Microsoft UI Automation (UIA) is used to
perform Reverse engineering to generate the event flow
graph [1]. Memon et al. discussed GUI test modeling, test
generation and replay, and factors for controlling flakiness
of generated test cases [2]. The models used for event
spacing are state machine and graph models. Extracting,
generating and running GUI tests are performed using a tool
called GUITAR (GUI Testing frAmewRk). Li et al
presented a solution for GUI automation testing for
smartphone applications from user behavior models known
as AD Automation framework [3]. It supports behavior
modeling, automated GUI test case generation, test case
simulation and error diagnosis based on UML activity
diagrams. Test script library is constructed based on the
model and GUI test case generation makes use of these
libraries. Also the log analyser performs the error diagnosis
after test execution. Amalfitano et al proposed a technique
that automates Android mobile applications testing [4].
Amalfitano et al. also presented a tool called AndroidRipper
that uses an automated GUI-based technique to test Android
apps in a structured manner. It relies on a GUI crawler
which crawls through the application GUI to generate test
cases. This crawler will then reveal the fault points in the
application such as runtime crashes and it can also be used
in the regression testing. GUI ripping has become a popular
technology in GUI test automation using well-defined GUI
ripping models [2, 3]. GUI-based testing has been discussed
in numerous papers. For instance, Anand et al. [20]
introduced an automated testing approach to validating
mobile GUI event sequences for smart-phone apps.
Similarly, Amalfitano and his colleagues [21] presented a
tool called AndroidRipper that uses an automated GUI-
based technique to test Android apps in a structured manner.

Certain research efforts are dedicated to developing tools
or frameworks to address limitations in current commercial

tools. For example, JPF-ANDROID is a verification tool
that supports white-box testing for mobile apps, and
JeBUTi/ME is a tool that offers white-box test coverage
analysis based on a conventional CFG-based test model. A
few recent research papers focus on GUI-based testing using
scripts and GUI event-flow models [20][21].

III. System Requirement Analysis
The main business requirement for the system is test
automation which is cost effective and achieves maximum
coverage by following the model based testing. We have
used open source tools to achieve test automation. GUI
Ripper automatically analyses the mobile application by
examining the Graphical User Interface (GUI). It uses both
standardized exploration strategies such as DFS (Depth First
Search) and BFS (Breadth First Search) and random
techniques. This results in an abstract GUI model which is
also known as GUI tree [19]. An Event Flow Graph can be
deduced from this GUI tree graph. Test sequence and test
cases are generated based on the Event Flow Graph. This
type of model based approach helps to achieve maximum
degree of coverage of the application UI.

The description of use case can be illustrated as follows.
User accesses the web page and uploads the application
which is an apk file; A model is generated by the
automation server by the GUI ripping process, which the
user is able to view in an XML format; The user can also
view the dependencies; User gets the tests scripts being
generated by the automation server; The test scripts are run
by the user with the help of runner component; After the test
script execution, user can view the test execution summary;
Coverage analysis is provided to the user. Table 1 shows
system level functionalities by explaining the basic
components available in our system and the corresponding
responsibilities. Due to space limitation, other requirements
such as non-function, behavior, resource, and etc are not
listed here.

Table 1 Several typical function requirement of the system
Components Responsibilities

Emulator/Mobile
Environment Setup

Helps during the mobile/Emulator
environment setup at deployment

GUIRipper Traverses applications’ GUI and generate
GUI model

EFG Converts GUI model into event flow
graph with XML format

TestGenerator Identifies the action sequence and
generating test scripts based on it.

CoverageAnalyzer Responsible for test result analysis and
coverage analysis.

IV. Design and Implementation for the System
This section presents the detailed software system
architecture and explains about the involved components
and their relations and connectivity.
System architecture design
Existing mobile testing tools face several challenges and
issues. We intend to design and implement a feasible cost

effective solution to model based test automation as
depicted in Figure 1. Test automation web application is an
interface for users to upload android APK file. It displays
model and graph. Users can also view the test execution and
test summary using the UI interface through MAC terminal.
Test Automation Server takes the uploaded APK file as the
input to proceed further with ripping, analyzing
dependencies and generating test cases. Test scripts are built
based on the grouped scenarios. These test scripts are fed to
the test runner module. Test runner passes the test scripts to
the selenium grid. With the appium nodes running, test
scripts are executed on the registered mobile devices and
emulators. Model manager stores the path details and
generates model in the database and likewise Test Gen and
Runner store test scripts and test results respectively.

Concurrent Test
Automation Web

Application

Test Automation
Server

Tests Runner

User

Test
Scripts

View Model

View Test Execution

View Test Summary

GUI Ripper

EFG Converter

Dependency Analyzer

View Test Summary

Selenium Grid

Appium Node

Android Device

Emulator

 Figure 1 High level infrastructure diagram

Conceptual Framework- To achieve model based test
automation, we designed a test automation server. It is a
conceptual framework which includes the interaction
between all the components of the automation severs. We
have included the sub modules of each component. Parser in
the diagram is tool which fetches the elements from the
under test application. Using this application data in GUI
traverse or GUI ripping algorithms we can generate the test
model in the model manager component. We also perform
Scenario extraction and dependency analysis using this
generated model. Dependencies here are among screens,
function etc. Based on the analysis of model manager, a
Test Gen component generates the action sequence and test
scripts. These test scripts are then fed into Runner
component where the actual test execution occurs. Finally
the Test Analyzer component does the post-test analysis to
generate the coverage report and test summary.
Centralized Test Automation Platform- To achieve
scalability, we designed a scalable grid node diverse
framework. Multiple scripts can run on multiple mobile
devices irrespective of the platform and version. Some well-
known open source technologies in Selenium grid and
Appium are incorporated.
Test Runner Components- As depicted in Figure 2, test
runner components constitute of selenium grid, appium
nodes, android mobile devices and emulators. Selenium grid

acts as hub and supports large scale distributed testing. It
manages multiple nodes, checks for active and inactive grid
and updates the status. Multiple appium nodes can be
registered to the hub. It supports mobile application
automation testing. Multiple devices and emulators can be
incorporated for test automation using selenium hub –
appium node configurations.

Figure 2 TestRunner component samples

Test Automation Server Components- We have divided
our test automation server into four main modules, i.e., GUI
Ripper, Dependancy Analyzer, Test Gen, Runner to serve
various purposes like generating test model, analyzing
dependencies, generating testing cases and executing test
scripts.

 Figure 3 TippyTipper sample android application

V. Case Studies
A. Study object
To apply the developed tool for mobile application GUI
testing, we used several realistic mobile applications and
systems. Here we choose TippyTipper as the sample android
application to illustrate our approach. This is a simple
application to calculate the tips for a meal. Figure 3
illustrates the simple functionalities existing in the
application. This application has 3 windows. In the first
window, it allows the users to enter the bill amount with
numeric keypad. The DEL button deletes a rightmost (to the

cursor) numeric number and CLEAR button clears the
number entered in the edit text. The CALCULATE button
allows the user to move into the second window. Second
window displays total bill amount including the calculated
tax amount. It also has the progress bar with which you can
modify the percentage of tax you want to calculate (0-100),
option to roundup and split the bills. On pressing the SPLIT
BILLS, the control goes to the third window, which has the
option to modify the number of users within the bill has to
be shared.

Below subsection shows the detailed approach we
followed for automated testing of TippyTipper application.

B. Model generation
We have used the open source GUI ripper algorithm for
ripping the GUI. This will result in a file with its GUI
components which is basically a GUI tree. This is later fed
into the converter, which eventually produces our model as
Event Flow Graph.
 The purpose of Ripper is to identify maximum number of
structural information about the GUI of any android
application through the algorithm. Here, the application’s
windows are opened in depth-first manner. The ripper is
capable of extracting all the widgets and its properties from
a GUI window. Properties of a window can be size, color,
status or window types. GUI windows can be categorized
into two types. Model window allows the user to fire an
event within the window, like a Save button. Modeless
window on the other hand, allows the user to expand a set of
commands like Replace command, which doesn’t restrict
the user’s focus to a specific range of events within a
window. Thus, ripper abstracts widgets and their properties
and generates a GUI tree. Each EFG will have an adjacency
matrix which helps in identifying the edge between two
nodes. If the value is 0, there is no edge between 2 nodes. If
the value is 1, there exists an edge. If the value is 2, there
exists an edge to itself.

In our implementation, the pictorial representation of the
graph is drawn with the help of the adjacency matrix present
in the EFG file. The GraphViz tool is used for displaying the
graph. The EFG file is first converted into dot file format,
and then fed into the GraphViz which generates the nodes
and edges based on the adjacency matrix.

C. Dependency analysis
Dependency analysis is required in order to achieve the
concurrency of test automation. The dependent nodes are
clustered in order to identify the test cases to be executed in
different cycles. To generate a cluster, loops within the
graph have to be identified. Hence, the input to this
component would be the EFG generated through ripper.

The dependency can be identified w. r. t features, data or
function. We are planning to implement a high level
dependency based on the connectivity existing within the
application based on the EFG. However, this dependency
does not provide the complete dependency existing within

the model. Therefore, we are using the Donald B. Johnson
algorithm to identify the elementary cycles in a graph at first.
This is based on the search for the strongly connected
components within the graph. The two important modules
of the program are given below. This piece of code
identifies the list of objects that contains list of nodes of all
elementary cycles in the graph.

D. Test case generation
The application components are nested and hidden once the
application is launched. This makes the task of test case
generation tedious and time consuming. Thus, the Event
flow graph is used to generate the test case for AUT. The
test criteria for generating the test cases have been kept that
each event in the EFG covers at least 5 test cases. The graph
traversal method is used to traverse through the EFG to
identify the starting main screen and to track the count of
the traversal. The maximum limit for the events in a single
event sequence has been kept as 50. The test case inserts the
connecting events in the test case to make it executable on
the real GUI.

E. Test script runner
Test script runner takes the generated test cases and the
model as the input. For each test case, the runner checks the
corresponding edges and events in the GUI tree and EFG
model for knowing the window and widget information on
which the events are executed. The Test runner constitutes
of Selenium Grid, Appium nodes, Android Devices and
emulators. To begin with the runner process, selenium is
first registered as a hub to control all the nodes configured.
After successful launch of selenium grid server, appium
nodes are registered at different ports. Each appium node
has its own configuration.

Figure 4 Test results samples

The node configuration includes capabilities of the appium
node. The browser name, version, platform etc can be
defined here. The configuration part includes the hubHost,
which is the ip address of the machine on which selenium
grid is running. The ip address of the hub Host and URL are
where the machine appium is running on. The hub Port is
4444 by default, where the selenium grid is listening for
requests. Different appium nodes can be registered at
different ports by assigning different port numbers.

Based on the data dependancies, test scripts are grouped
into cycles. Each cycle has test scripts based on the paths for
the dependant node. As shown in Figure 4, test results are

shown after execution of all test cycles. For example, Cycle
2 covers test scripts for one node whose date is dependent
on other nodes. Hence, different cycles are color coded.

Figure 5 Event Flow Graph with node coverage analysis

As depicted in Figure 5, nodes are reached by finding their
xpath. The Figure shows the tests results after execution of
all test cycles. Each test-script determines a dependant path.
All possible node paths covered are color coded in the graph
based on the cycles. For cycle 1 the color code is Magenta,
cycle 2 it is Cyan and cycle 3 is Purple. For any test script
that fails the color code is red. The tippy tipper app has 25
nodes altogether. We achieved 92% node coverage by
covering 22 nodes through our test scripts as depicted in
Figure 5. The nodes covered are colored in orange. The
uncovered paths are in depicted in black.The color codes are
illustrated as follows.
Magenta - Cycle 1 Test scripts – Scenarios covered
Cyan – Cycle 2 Test scripts – Scenarios covered
Purple – Cycle 3 Test scripts – Scenarios covered
Black – Scenarios not covered
Orange – Covered nodes

F. Limitations, and Experience Learned
The proposed approach suffers from some limitations. For
example, the syntax is currently dependent on variables.

Thus if the variables associated change, the step definitions
need to be modified. As a complex problem in the known
space, the new id needs to be extracted from the app
properties. Therefore, there is tremendous scope to automate
and reduce this dependency on the variables in the future
work.

Initially, to set up ith the infrastructure, we planed to
support test automation where in the hub manager should be
robust enough to back and forth data between nodes and test
servers/database. Also, since diverse platforms are
supported, the same test script written should work on
mobile devices running on multiple platforms. Additionally,
test scripts are run on multiple devices simultaneously so
that scalability is achieved. Furthermore, it has to be taken
care that the final solution is fault tolerant, i.e., if a single
script fails in one of the devices, it should not fault the other
scripts running on the device. Nevertheless, it should not
stop the scripts running on other mobile devices. Hence, the
automation solution has the challenge of building concurrent,
scalable, fault tolerant, unified mobile test automation tool.

VI. Conclusions and Future Work

This paper specified the requirements, design, schedule and
budget plan related to our project from the industry
perspective. All the team members contributed equally in the
entire process and we had great scope for learning from each
other. In this paper we aim to develop a tool that performs
concurrent test automation for mobile applications. We will
make use of open source tools to achieve our aim through
this project. The approach aimed at solving several
challenges faced by the existing tools in the market. The
achieved solution provides GUI test automation of android
apps based on model and data dependencies.
 Currently our approach supports a unified central test
automation platform for only Android OS. It can be further
enhanced by adding GUI ripper for iOS apps. This way it
can be extended to iOS OS as well. In addition to this, the
test runner can be deployed on Amazon EC2 or OpenStack
to provide efficient approach for scalability. By then
scalability can be achieved at grid level, which is at node
level currently.

References

[1] Y. Huang and L. Lu, “Apply ant colony to event-flow model

for graphical user interface test case generation,” IET.Software,
pp.50-60, Feb.2012.

[2] A.M. Memon and M.B. Cohen, “Automated testing of GUI
applications: Models, tools, and controlling flakiness,” in 2013
Int.Conf. Software Engineering (ICSE), pp.1479-1480.

[3] A. Li, Z. Qin, M. Chen and J. Liu, “ADAutomation: An
Activity Diagram Based Automated GUI Testing Framework
for Smartphone Applications,” in 2014 Int. Conf. Software
Security and Reliability, pp. 68-77.

[4] D. Amalfitano, A.R. Fasolino and P. Tramontana, “A GUI
Crawling-based technique for Android Mobile Application
Testing,” in 2011 Int. Conf. Software Testing, Verification and
Validation Workshop (ICSTW), pp. 252-261.

[5] V. Gaur, V. Ragunathan and V. Prakash (2011), “Mobile Test
Automation Solutions,” Hexaware Technologies., Jamesburg,
NJ, Mobile Accelerator White Paper, Available on
http://hexaware.com/casestudies/hs-it-wp-1.pdf.

[6] Testing Strategies and Tactics for Mobile Applications,
Keynote Systems, Inc., White Paper, Available at
http://www.keynote.com/resources/whitepapers/testing-
strategies-tactics-for-mobile-applications.

[7] A. Memom, I. Banerjee and A. Nagarajan, “GUI Ripping:
Reverse Engineering of Graphical User Interfaces for Testing,”
in 2003 Working Conf. Reverse Engineering (WCRE), pp.
260-269.

[8] J. Bo, L.Xiang and G. Xiaopeng, “Mobile Test: A Tool
Supporting Automatic Black Box Test for Software on Smart
Mobile Devices,” in 2007 Int. Workshop Automation of
Software Test, pp. 8.

[9] P. K. Govindasamy(2012), “Selecting the Right Mobile Test
Automation Strategy: Challenges and Principles,”, cognizant
20-20 insights Inc., Available at
http://www.cognizant.com/InsightsWhitepapers/Selecting-
the-Right-Mobile-Test-Automation-Strategy-Challenges-and-
Principles.pdf.

[10] J. Gao, X. Bai, W. T. Tsai, T. Uehara, “Mobile App Testing –
A Tutorial”, IEEE Computer – Special Issue on Software
Validation,Vol 47, No.2, pp.46-55, 2014.

[11] J. Gao, C.C.Y. Toyoshima, D.K. TLeung, “Engineering on the
Internet for Global Software Production”, Computer journal,
Vol 32, No.5, pp. 38-47, May 1999.

[12] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, J. Kazmeier,
“Automation of GUI testing using a model-driven approach”,
International workshop on Automation of software test, pp.9-
14, 2006.

[13] J. Gao, C. Tao, “Modeling mobile application test platform and
environment: testing criteria and complexity analysis”,
Industry Contributions to Test Automation and Model-Based
Testing, pp.28-33, 2014.

[14] A. M. Memon, M. E. Pollack, M. L. Soffa, “Hierarchical GUI
Test Case Generation Using Automated Planning”, IEEE
Transactions on Software Engineering - Special issue on 1999
international conference on software engineering, Vol 27, No.2,
February 2001.

[15] C. Siemens, “The Search for Mobile App Test Automation”,
blog, November 19, 2013, Available at
http://engineering.zillow.com/the-search-for-mobile-app-
testautomation/

[16] Test Automation Tools for Mobile Applications: A brief
survey, white paper, HSC PROPRIETARY, Available at
http://www.hsc.com/Portals/0//Uploads/Articles/hsc_whitepa
per_mobileTestAuto
mation_22Feb2013634971268468845610.pdf

[17] Sebastian Bauersfeld, A Metaheuristic Approach to Automatic
Test Case Generation for GUI-Based Applications, 22 August
2011, available at
http://www2.informatik.huberlin.de/swt/dipl/bauersfeld-
2011.pdf

[18] G.J. Cong, D. Bader, Lockfree Parallel Agorithms: An
experimental Study, available at,
http://www.cc.gatech.edu/~bader/papers/lockfree-
HiPC2004.pdf.

[19] A. Memom, I. Banerjee, B. N. Nguyen, B. Robbins. The first
decade of GUI ripping: Extensions, applications, and broader
impacts, in Working Conf. Reverse Engineering (WCRE
2013), pp 11-20.

[20] S. Anand et al., “Automated Concolic Testing of Smartphone
Apps,”Proc. ACM SIGSOFT 20th Int’l Symp. Foundations of
Software Eng. (FSE12), 2012, pp. 1–11.

[21] D. Amalfitano et al., “Using GUI Ripping for Automated
Testing ofAndroid Applications,” Proc. 27th IEEE/ACM Int’l
Conf. Automated SoftwareEng. (ASE 12), 2012, pp. 258–261.

[22] H. Muccini, A. D. Francesco, and P. Esposito, “Software
Testing of Mobile Applications: Challenges and Future
Research Directions”, Proceedings of International Workshop
on Automatic Software Test Automation, 2012, pp 29-35.

Acknowledgement
This paper is supported by the National Natural Science
Foundation of China under Grant No.61402229 and
No.61502233; the Open Fund of the State Key Laboratory
for Novel Software Technology (KFKT2015B10), and the
Postdoctoral Fund of Jiangsu Province under Grant
No.1401043B.

