Exploring the Influence of Time Factor in Bug Report Prioritization

Zhengjie Xu, Tieke He, Weiqiang Zhang, Yabin Wang, Jia Liu*, Zhenyu Chen
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
*liujia@nju.edu.cn

Abstract

Time factor has been widely applied into a wide range of
data mining areas, such as social network and information
retrieval. The main idea of taking time factor into consid-
eration is that human activities may have some relations to
time pattern. However, little attention has been pulled on
the study of time factor in the area of software engineering.
In this paper, we endeavour to explore to what extent time
factor affects the prioritization of bug reports, a specified
while important task in software engineering. Specifically,
we test four time factors that may have some influence on
this task, which are time of day, normal time, day of week,
and days to major version. After the validation of related-
ness of all these factors, we conduct an extensive set of ex-
periments on two datasets to verify the effectiveness of these
factors. The experimental results demonstrate that we can
effectively improve the results by metrics of both Precision
and Recall, on two classical models, i.e., the SVM model
and Naive Bayes model.

Keywords: Time factor; bug report priorization;
SVM

1. Introduction

Error or so-called bug reports are quite common dur-
ing the process of software development and maintenance,
which are critical to the stability as well as security of the
software. Users, developers or any members who will use
the software may submit a bug report. Thus, it is quite im-
portant for the developers to judge and analyze the bugs.
A bug repository is then created to store great numbers of
bug reports. Bugzilla, a bug repository came out during
the development of Mozilla, is now widely used in most
open-source software development. However, without be-
ing analyzed, bug reports are just none of use for the de-
velopers. Therefore, analyzing whether the bugs are valid
or not, correct or not, important or not even unique or not
becomes a necessary process. This is so-called bug triag-
ing. For a bug triager, if he analyzes the bug reports one

DOI reference number: 10.18293/SEKE2016-162

by one in time sequence, he will be overwhelmed by lots of
data and thus, some important bugs may be ignored, which
does great harm to the whole maintenance of the software.
Hence, a way to prioritize the bug reports becomes an in-
creasingly need for the developers.

In most researches in prioritization, adopted factors such
as the textual content of the bug report, the author and so on
are quite common. For example, the DRONE [12] frame-
work takes textual, author, related-report, severity and prod-
uct as their judging features. By judging these features, we
can prioritize the bug reports to some extent. Kremenek
et al. [9] used the successful as well as the failed checks
found by the bug-finding tools to prioritize the bugs. Tools’
analyzing decisions and Z-ranking scheme are used to rank
the bugs’ priority. These factors are basic and fundamental
which are used widely in bug prioritization.

However, there is a sort of factors that most researchers
did not notice or not pay too much attention to in the area of
software engineering. It is the time factor, which includes
the time the bug report is handed in as well as the existing
time of the bug report. All the researches tend to ignore the
factor of time, which, we believe, is cursory. Other subjects
have given us the lesson that time factor can be critical and
should be put emphasis on: in economy, time influences the
value of money; in the subject of journalism and communi-
cation, time also affects the value of the news. As we can
see, time factor is critical in many areas and therefore, a
potential feature in deciding the priority of the bug report.
Inspired from these thoughts, we have raised the question
whether time factor has an impact on the bug prioritization.

On the other hand, time-based bug prioritization is dif-
ficult to accomplish. There are lots of challenges we have
to face. Unlike other factors, such as author, textual content
and so on, time factor is not as clear as those features and
not so easy to extract from the bug report. Meanwhile, as al-
most none of the current prioritization model includes time
factor, how to merge the time factor into the model becomes
a problem. These are two of the basic problems we meet.

To solve this problem, we first adopt significance test in
judging the relevance between time factor and bug reports’
priority. This part of experiment will show the relevance

roughly, which determines whether time will affect the pri-
ority of bug reports or not. Afterwards, we have made a
contrast experiment on to what extents time factor can in-
fluence the priority. A constructed model in past researches
will be used in the experiment as well as the model merged
with the factor of time. By this means, we can easily tell the
effects of merging time factor into a prioritization model.

Briefly, we process the time factors as follows. 1) For
the time of day (TOD) factor, we divide a weekday into 24
parts by hour, and fit every report into them accordingly. 2).
For the normal time (NT) factor, we first aggregate every re-
porters’ reporting time during the day, and then find his/her
normal reporting time, after which a 0 or 1 is assigned to
this factor that indicates a report is in normal time (0) or
not (1). 3). For the day of week (DOW) factor, we divide
a week into six parts, i.e., Monday to Friday, together with
the Weekend, and then a number is used to label each re-
port, e.g., 0 for Monday, and so on so forth. 4). And for the
days to major version (DTM), we mainly mean the report-
ing days after a major version of the related project, and in
this implementation, we roughly divide the time length by
weeks, i.e., within one week after a major version, between
one week and two weeks, and so on so forth, and reports
that are over 8 weeks are gathered into one class, following
the above style, we assign a number to each report with 0, 1
and so on.

The main contributions of this article are summarized as
follows.

1. We propose a new feature, time factor, to examine
the priority of the bug raised by the reports. Past re-
searches have only considered factors on other dimen-
sions but failed to figure out the importance of time
factor in prioritization.

2. We examine how time factors affect the prioritization,
and tell the extents of the optimization by adding the
time factors to the model.

3. We have experimented our solution on huge numbers
of bug reports to determine the priority of the bugs.
The result shows that our solution can significantly im-
prove the correctness and effectiveness of prioritiza-
tion.

The rest of this paper is organized as follows. Section
2 presents the background and some relate work, the intu-
itions of the proposed time factors is discussed in Section
3, and the comparing experiments are shown in Section 4,
along with the discussion. Then finally, we conclude our
work in Section 5.

2 Background and Related Work

Bug triage is needed in a bug repository to examine all
the bugs reports entered into the repository. There are sev-
eral features for the triagers to examine. Basically, whether
the bug report is duplicate or not will be examined first.
Then usually the validity of the bug report will be checked.
The basic purpose of these judgments is to remove all the
potential bug reports that are unnecessary to be resolved.
After examining these features, triagers will take other fea-
tures in the bug report to decide the severity and priority or
change the former ones of the bug report in order to ensure
that the most important bugs will be resolved quickly and
well enough. Therefore, prioritization is meaningful in bug
triage.

As we are going to prioritize the bug reports by judging
their features, we decide to use two classification algorithms
to build up our model in two different ways. The two algo-
rithms are Support Vector Machine and Nave Bayes.

Support Vector Machines build non-linear models from
training sets and are especially suitable for text classifica-
tion. For instance, for two different categories in a plane,
what SVM does is to draw a graph to separate these two cat-
egories as far as possible. The model it builds assigns new
entities into one category or the others, which is a so-called
non-probabilistic binary linear classifier. For prioritization,
we have 5 classes to categorize (from P; to Ps), which
means this is a multi-class classification. Naive Bayes, on
the other hand, is just a simple probabilistic based on the
Bayes’ theorem. All the models are based on the hypothesis
that every feature is independent from others. As the Bayes’
theorem considers the probability of an event based differ-
ent parameters or conditions, Naive Bayes simply uses this
theorem to classify different categories according to several
features given by the training set. Also, Naive Bayes has a
good compatibility of classifying the textual information.

Since bug reports prioritization is put great emphasis on
and studied a lot, what we have to do is to try to advance
the precision of the prioritization. After reviewing the re-
searches on prioritization, we find that most researchers ne-
glect one of the factors that we are interested in. That is the
time factor. Many researchers, however, take it unimportant
and think that it is no use in predicting the prioritization.
We, on the contrary, opposed to this idea and supposed that
time factor can be critical to the prioritization, especially ac-
cording to the influence of time on other factor. In the study
of social network, time is an important feature to be consid-
ered. Since human activities are immensely influenced by
the time, time should not be ignored. Similar to this thought,
since bug reports are submitted by people who will be easily
influenced by the factor of time, we think that the severity
or the priority of the bug report is relevant to the time fac-
tor. Thus, we raised this research to find the relationship

between time factor and prioritization.

According to several researches made on bug triage,
many attributes of the bug reports are used to determine
the severity and priority of them. For example, Cubranic
[5] has worked on recommending the bug reports accord-
ing to their descriptions. By using the text categorization,
they can decide which developer is responsible for a certain
bug. Ahsan et al. [1] uses other features such as the titles
and author of the bug reports in the classifier. These factors
help the prediction become more accurate. Also, different
measures for classification are taken to accomplish the goal.
Kanwal et al. [7] used SVM and Naive Bayes to classify
the bug reports and compare two different ways for their
efficiency and precision. Anvik et al. [2, 3, 4] develops dif-
ferent classification models due to several machine learning
techniques. After comparing each of the models, they gave
out a brief overview of the advantages and disadvantages of
using these models.

Also, there are many related works in studying the in-
fluence of time factor on other areas. For instance, Kout-
sonikola et al. [8] proposes a clustering framework which
groups users according to their preferred topics and the time
locality of their tagging activity. By this means, they can
reveal the topic-domain of users interests and significantly
contributes in a profile construction process. Sutton et al.
[11] assigns credit by means of the difference between tem-
porally successive predictions. They prove their conver-
gence and optimality for special cases and relate them to
supervised-learning methods. Wang et al. [13] presents
an LDA-style topic model that captures not only the low-
dimensional structure of data, but also how the structure
changes over time, showing improved topics, better times-
tamp prediction, and interpretable trends.

Some researches also do a lot in the field of machine
learning, especially in SVM and Naive Bayes which we use
in our research. Joachims et al. [6] did a lot in making large
scale SVM learning practical. It presents algorithmic and
computational results developed for SVMlight V2.0, which
make large-scale SVM training more practical. The results
give guidelines for the application of SVMs to large do-
mains. McCallum et al. [10] simply empirically compared
performance of two different ways of classification on five
text corpora and shows the advantage and disadvantage of
different Naive Bayes models, which gave us ideas about
which way to choose for modeling the prioritization of the
bug reports.

3 Intuitions

In this research, we divide the time factor of the bug re-
ports into 4 different parts, i.e., TOD, NT, DOW and DTM.
At first we chose these factors basically from our experience
and intuition. Then we made several observations on these

factors and found some evidence about them.

Intuition I: the severity or the priority is related to the
time of the day.

This thought comes from our own experience, when we
were suddenly called late in the night to solve an important
bug. This bug report was handed in the mid-night, which is
a rare time period for bug reports. Through this experience,
we began to notice the time when a bug report is submit-
ted. From our observation, those bug reports handed in a
rare time period are more likely to be marked as severe and
important. Thus, we believe that the severity or the priority
is related to the time of the day

Intuition 2: the severity or the priority is related to the
time whether a reporter submit a bug report in the time pe-
riod he normally do.

Similar to our intuition 1, we suppose that a reporter
would have different habits of reporting a bug, e.g., nor-
mally, he would report during the morning, when we notice
a report that is reported in the afternoon, there is a high
probability that this bug report has a high priority.

Intuition 3: the severity or the priority is related to the
day of the week.

We suppose that the day in a week is also critical to
the priority of a bug report. For instance, many develop-
ers may meet the case when they have to work overtime
during the weekends, basically solving a bug reported on
Friday or weekends. Some time especially when holidays
and festivals will make the bug report rank higher and need
to be solved at once. From this observation, we believe that
severity and priority is related to the day of the week, and
specifically, we divide a week by Monday to Friday, and the
Weekend.

Intuition 4: the severity or the priority is affected by the
days related to the latest major version.

When a new version of the software is released, it is quite
common to see patches being installed soon after the re-
lease. Usually, the bug reports which are submitted most
closest to the release date are thought the most important,
mainly because these bugs are supposed to be the most ob-
vious and easiest to be found. Thus, those bug reports sub-
mitted soon after the new major version released are always
considered necessary to solve immediately.

4 Experiment
4.1 Data

In this paper, we collected our dataset from the Trac!
Open Source Project. It is an enhanced wiki and issue track-
ing system for software development projects. It uses a
minimalistic approach to web-based software project man-
agement. Mainly, we collected data of two projects, the

Uhttps://trac.edgewall.org

first is Trac itself, and the other is the Wordpress? project.
And specifically, the collected bug reports for Wordpress
was between June, 2004 and M arch, 2013, while the bug
reports for Trac project was between August, 2003 and
July,2013. The statistics of these two datasets is shown
in Table 1.

Table 1. Descriptive statistics of dataset

Project # Bug reports | # Reporter | # Versions
Wordpress 23,848 6,013 18
Trac 10,416 4,701 11

From these reports, we extract several basic features,
which include id, current status, title, type, reporter, owner,
priority, milestone, component, severity, keywords, cc and
description. Also, as we take time factor as the testing fac-
tors, other features that may be ignored by other models,
such as open time, version, are also included in our fea-
tures. To note, only those with status values such as ‘re-
solved’, ‘closed’, ‘confirmed’, ‘fixed’ or ‘duplicate’ will be
used to train our model, others may be supplementary for
our results. Figure 1 shows an example of the used bug re-
port.

ened 3 years ago
fied 7 months ago

#10735 new enhancement
create a new ticket starting from an existing ticket comment

Reported by Christian Boos

Priority high Milestone: next-major-releases
Component: ticket system Version: 0.13dev

Severity: normal Keywords: ticketclone

Description

The idea is much the same as the one for TicketClone, but instead of "cloning" the whole ticket in * Reply
intent (as materialized by copying the ticket's description over), we would refine a specific ticket

comment (by taking the ticket's comment as the new ticket description).

This can be handy to avoid derailing a ticket into handling too many things at once, so when something is
identified and that clearly needs a dedicated treatment, making a new ticket out of it is just a click away, and
you'll have the new ticket starting off with the same fields as the "parent" ticket (yes, the same UI could lead
to the creation of subtickets once we have that).

Interestingly, the current source:trunk/tracopt/ticket/clone.py@11079 .. feature is implemented as an
extension using Genshi (ITemplateStreamFilter). The present extension achieves a similar result but relies
on JavaScript only. For now, only the "create from comment" is done via JavaScript (well,

actually, as this is better suited for embedding little HTML snippets), but the "clone ticket" action itself could
be ported to js as well.

Figure 1. An example of Trac bug report

4.2 Metrics

We mainly use Precision, Recall to evaluate the effec-
tiveness of our proposed approach.

Precision is defined as the ratio of relevant items that
are predicted to all the predicted ones. In our experiments,
relevant items are bug reports with priority that match the
predicted priorities, so the Precision can be calculated by
following equation:

Zhttps://wordpress.com

Relevant N PredictedOnes
Numberof Predicted

Recall is the defined as the ratio of relevant items that are
predicted to all the relevant ones. In our experiments, for
one bug report, we have ground truth data of what priority
of that bug report, so Recall can be defined as follows:

Precision =

Relevant N PredictedOnes
Numberof Relevant

Recall =

4.3 Significance Test

In order to find whether time factor have an influence
on the prioritization of the bug reports, we performed the
significance test to test the correlation between the 4 dif-
ferent kinds of time factors and the priority of the bug re-
ports. Specifically, we adopt the Spearman correlation in
our work, it is a non-parametric test that is used to measure
the degree of association between two variables. Spearman
correlation does not assume any assumptions about the dis-
tribution of the data and is the appropriate correlation anal-
ysis when the variables are measured on a scale that is at
least ordinal. The formula used to calculate the Spearman
correlation is as follows:

6> d;*
n(n? —1)

where p stands for the Spearman correlation, d; is the dif-
ference between the ranks of corresponding values, and n is
the number of values in each data set.

As a result, we got the following correlation for the four
proposed time factors, as depicted in Table 2.

p=1- (1

Table 2. The Spearman correlation of each
time factor

Project TOD NT DOW DTM
Wordpress | 0.022** | -0.014 | 0.006 | -0.028**
Trac -0.008 | 0.052** | -0.010 | 0.057**

** indicates the p-value < 0.01, which is significant.

From the result, we can see that time factor DTM is sig-
nificant for both projects, and the TOD is effective for the
Wordpress project, while the NT factor is effective for the
Trac project. In our two chosen projects, the proposed time
factor DOW is not significant according to the generated re-
sult.

4.4 Experimental results

Following the result of the significance testing, we eval-
uate to what extent these proposed time factors can affect

the task of bug report prioritization. First, we build up the
model by using the basic features of the bug reports, which
has been done by many researches before. Then, we build
another model by incorporate the time factor as well as the
basic features to see what are the differences. From the re-
sulting data, we can know the influence of the time factor
on the prioritization on each project.

For ease of understanding, in this experiment we only
use the following basic features as to build the common
classification models, i.e., the status, type, component,
severity and reporter. And the classification models adopted
in this paper are the SVM model and Naive Bayes.

In detail, a Support Vector Machine constructs a hyper-
plane or set of hyperplanes in a high or infinite dimensional
space, then it can be used for classification. A good sep-
aration is achieved by the hyperplane that has the largest
distance to the nearest training-data point of any class (so-
called functional margin), since in general the larger the
margin the lower the generalization error of the classifier.
Naive Bayes is a simple technique for constructing classi-
fiers, models that assign class labels to problem instances,
represented as vectors of the feature values, where the class
labels are drawn from some finite set. All different versions
of Naive Bayes algorithms are based on a common princi-
ple: all naive Bayes classifiers assume that the value of a
particular feature is independent of the value of any other
feature, given the class variable.

For our case, there are mainly three sets of comparisons,
i.e., 1). for the Wordpress project, we need to compare
between basic features and after taking in the 7OD time
factor, 2). for the Trac project, we need will compare be-
tween the basic features based models and the with the NT
time factor included, 3). and finally, for both projects, we
should compare between the basic features based models
and when the DTM time factor is considered. And for all
these comparisons, the experiments are conducted on the
above-mentioned two models.

Following we present the results of our comparisons.

Table 3 depicts the comparing result for the Wordpress
project on the SVM model and Naive Bayes model, between
only adopting the basic features and incorporating the TOD
time factor. From which we can see that after taking the
TOD time factor into consideration, the Precision and Re-
call are both improved by about 3%.

Table 3. TOD in Wordpress

Project Wordpress
Models Metrics Precision | Recall
Basic 0.694 0.833
SVM With TOD 0.711 0.847
Naive Baves Basic 0.787 0.826
Y “With TOD | 0.802 | 0.841

Table 4 illustrates the comparing result for the Trac
project on the SVM model and Naive Bayes model, between
simply adopting the basic features and incorporating the NT
time factor. From which we can see by taking into account
the NT time factor, the effectiveness of prioritization is evi-
dently improved.

Table 4. NT in Trac

Project Trac
Models Metrics | Precision | Recall
Basic 0.571 0.756
SVM With NT 0.593 0.787
Naive Baves Basic 0.668 0.745
Ve PSS TWaRNT | 0.689 | 0.782

Table 5 presents the comparing result between only using
the basic features and adopting the DTM time factors, on the
two models, for both of the two projects. From the result
we can conclude that for both project, and using both SVM
and Naive Bayes, after bringing in the DTM time factor, the
ability of prioritization is improved.

Table 5. DTM in both projects

Project Wordpress Trac
Models Metrics Precision | Recall | Precision | Recall
SVM Basic 0.694 0.833 0.571 0.756
With DTM 0.726 0.853 0.597 0.799
NB Basic 0.787 0.826 0.668 0.745
With DTM 0.793 0.838 0.692 0.783

4.5 Threats to validity

In our research, all the threats to the validity come ba-
sically from the experimental errors. Though we checked
the process and implementation of our experiments, there
are still some errors that we could not avoid. As all the data
we use are triaged and prioritized by human, many severity
and priority may be subjective and vary from person to per-
son, or even worse, sometimes they could be wrong. Rela-
tively, time factor is objective and does not have too much
influence on the validity. This is the threat to the internal
validity. For external validity, the threat is that all the data
we use come from one source. Though we used more than
ten thousand reports, we track all these bug reports from the
Trac Open Source Project, which means that we could not
be comprehensive to all the sources of bug reports. In the
future, if time permits, we would probably track more bug
reports from other sources, which can increase the reliabil-
ity and sustainability of our research.

5 Conclusion

This paper introduces the time factor in the bug report
prioritization. Specifically, we investigated four time fac-
tors, i.e., the time of the day, the normal time, day of week
and days to the latest major version. For our specific case,
the TOD time factor and DTM time factor is effective for
project Wordpress, while for the Trac project the NT time
factor and DTM time factor is effective. Our experimen-
tal results demonstrate that incorporating the time factors
can effectively improve the Precision and Recall for bug re-
port prioritization. In future, we will consider evaluating
our proposal on more sources of data, as well as adopting
more sorts of classification models.

References

[1] S. N. Ahsan, J. Ferzund, and F. Wotawa. Automatic
software bug triage system (bts) based on latent se-
mantic indexing and support vector machine. In Soft-
ware Engineering Advances, 2009. ICSEA’09. Fourth
International Conference on, pages 216-221. IEEE,
20009.

[2] J. Anvik. Automating bug report assignment. In Pro-
ceedings of the 28th international conference on Soft-
ware engineering, pages 937-940. ACM, 2006.

[3] J. Anvik, L. Hiew, and G. C. Murphy. Coping with
an open bug repository. In Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange,
pages 35-39. ACM, 2005.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should
fix this bug? In Proceedings of the 28th international
conference on Software engineering, pages 361-370.
ACM, 2006.

[5] D. Cubrani¢. Automatic bug triage using text cate-
gorization. In In SEKE 2004: Proceedings of the
Sixteenth International Conference on Software Engi-
neering & Knowledge Engineering. Citeseer, 2004.

[6] T.Joachims. Making large scale svm learning practi-
cal. Technical report, Universitdat Dortmund, 1999.

[7] J. Kanwal and O. Magbool. Bug prioritization to facil-
itate bug report triage. Journal of Computer Science
and Technology, 27(2):397-412, 2012.

[8] V. Koutsonikola, A. Vakali, E. Giannakidou, and
I. Kompatsiaris. Clustering of social tagging system
users: A topic and time based approach. Springer,
2009.

[9] T. Kremenek and D. Engler. Z-ranking: Using statis-
tical analysis to counter the impact of static analysis
approximations. In Static Analysis, pages 295-315.
Springer, 2003.

[10] A.McCallum, K. Nigam, et al. A comparison of event
models for naive bayes text classification. In AAAI-98
workshop on learning for text categorization, volume
752, pages 41-48. Citeseer, 1998.

[11] R. S. Sutton. Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9-44,
1988.

[12] Y. Tian, D. Lo, and C. Sun. Drone: Predicting prior-
ity of reported bugs by multi-factor analysis. In 2013
IEEE International Conference on Software Mainte-
nance, pages 200-209. IEEE, 2013.

[13] X. Wang and A. McCallum. Topics over time: a non-
markov continuous-time model of topical trends. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 424—433. ACM, 2006.

