

Component-based process
For modeling language evaluation

Khaoula Sayeb, Oualid Khayati, Naoufel Kraeim

RIAD-ENSI

University of Manouba

Manouba, Tunisia

firstname.lastname@gmail.com

Abstract—This paper presents a component-based approach to

build a modeling language evaluation process. We firstly define a

process components repository that capitalizes and implements

solutions for modeling language evaluation. We describe the

process component model. Then we describe how we reuse the

process components repository to define a process for modeling

language evaluation based on pre-built components.

Keywords-process component; modeling language; evaluation;

component model; reuse; components repository.

I. INTRODUCTION

One of the major evolutions in software development is the

component-oriented programming approach. It facilitates the

construction of complex applications, their deployment, their

administration and their evolution control. The rise of software

components produces two types of complementary processes:

 The design for reuse: components engineering needed to
create, enrich and maintain a repository of reusable
components. It implements the identifying features,
specification, development, validation and organization
of components.

 The design by reuse: components based engineering
consists on the reuse of pre-built components to define
new products.

Components-based approach is applied to software
engineering, method engineering and also process engineering.
In our approach, we propose a process components repository
that we use later to define an evaluation process. Each process
component describes a modeling language (ML) evaluation
solution. It can be then composed and connected with other
components to build a ML evaluation process. The aim of this
paper is to present the process component model. This later
describes process components structure, relationships and
composition rules. We present the process components
repository and how we reuse it to define a component-based
process for ML evaluation.

This paper is structured as following: In the second section,
we give an overview about ML evaluation. We introduce our
process component model in section three. Section four is
dedicated to describe the components-based process for ML
evaluation and to give a demonstration example that explains our
approach. We finish this paper by the conclusion.

II. MODELING LANGUAGE EVALUATION

A ML has a key role in software modeling process. It affects
directly the quality of software design (models) and so the final
software quality. A ML is defined as the models expression
language [1]. It is determined by a semantic (that is a set of
concepts and rules that specify the field), a concrete syntax
(which is a set of symbols that represent concepts) and an
abstract syntax (expressed by meta-model) [2].

Although the ML evaluation domain is relatively recent,
there are a huge variety of approaches and frameworks in this
field. They propose solutions, instructions and features to qualify
or quantify the ML quality. We propose to unify and organize
terms on this domain. Then, each quality approach is called
quality framework. For instance, the physics of notations
(Moody’s framework [3]) is a framework for concrete syntax
evaluation, sequal (krogstie’s framework [4]) proposes a generic
framework for the whole language evaluation, etc. A quality
framework is composed of a set of quality attributes. The
concept of quality attributes unifies existing concepts in the
literature such as dimensions, attributes, features or sub-features,
criteria, factors, etc. The physics of notations proposes nine
quality attributes to define the cognitive effectiveness of a visual
notations in general and specifically graphical concrete syntax.
Perceptual discriminability is a quality attribute that determines
the ease and accuracy with which graphical symbols can be
differentiated from each other. It uses other quality attributes to
decompose the solution (perceptual discriminability uses visual
distance and perceptual popout). To measure quality attributes,
we use evaluation techniques that can be a metric or a qualitative
or quantitative protocol. In addition, an evaluation technique
offers a concrete outcome that estimates a quality attribute.

We use process components to model knowledge in the ML
evaluation domain. Our first purpose is to provide a structured
documentation about this field. Secondly, we aim to provide
tools for the implementation and the built of a components-based
process. Process components are defined following a model that
we describe in the next section.

III. DESIGN FOR REUSE: PROCESS COMPONENT

In our approach, a process component is a component that
provides a solution for ML. In this section, we present the
process component model. A component model consists of a set
of conventions to be followed in the construction and use of

 DOI reference number: 10.18293/SEKE2016-159

components. It has to define the component structure,
relationships and component reuse techniques.

A process component can be a conceptual component (a
design pattern that describes a framework, a quality attribute or
an evaluation technique) or a software component (that
implements a conceptual component). A design pattern
describes the context of the framework, the solution provided
and the problem resolved by the framework. In addition, we use
design pattern to capitalize knowledge about ML evaluation. A
software component implements the solution offered by
conceptual component. For instance, a conceptual component
describes the solution to assess the visual distance between
concrete syntax symbols. An associated software component
takes in entry the list of concrete syntax symbols and measures
the visual distance between them. The result of the conceptual
component is a solution approach. The result of the software
component is a significant value that represent the visual
distance. The next subsections detail conceptual and software
component models.

A. Conceptual component model

We use design pattern to describe our conceptual component.
A design pattern is defined as a solution of a recurring problem
in a context. The design pattern model specifies the structure
adopted by the designer to represent patterns. It is composed of
a set of rubrics. To define our process design pattern, we use the
P-SIGMA [5] model that we adapt to take into account the
capitalization needs. Moreover, we add some rubrics and
customize others. P-Sigma is composed of three parts: Interface,
Realization and Relation. Interface part contains all elements
allowing pattern's selection. Realization part gives the pattern
solution. Finally, the relationship part describe links between
patterns. Fig.1 describes our adapted version of the P-SIGMA
formalism (Adapted rubrics are gray). We add the reference
rubric which gives the source of the approach described by the
conceptual component. The realize rubric is added to define a
new relationship. The classification rubric is customized to deal
with our classification approach.

Figure 1. Adapted P-SIGMA

Conceptual components are described in more details with
examples in a further work [6]. The following table (TABLE1)
presents the conceptual component that describes the quality
attribute: perceptual discriminability.

TABLE 1. CONCEPTUAL COMPONENT: PERCEPTUAL DISCRIMINABILITY

Interface

Identifier: perceptual discriminability

Classification: Graphical concrete syntax, semiotic

framework, evaluation.

Problem: Are symbols distinguishable between each other?

How to define ML graphic elements that are perceptually

different?

Context: The construction of a new ML.

The evaluation of the graphical concrete syntax.

Realization

Solution: we describe how to determine the perceptual

discriminability [1]. It is too long to express here.

References:
[1] D.L. Moody. The ’physics’ of notations: Toward a scientific basis for

constructing visual notations in software engineering. IEEE Transactions

on Software Engineering, 2009.

Relationship

Use: Visual distance, perceptual popout.

B. Software component Model

The widely accepted definition of software components is
that of [7]: "A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be deployed
independently and is subject to composition by third parties". A
software component model is a definition of the semantics of
components (that is, what components are meant to be), the
syntax of components (that is, how they are defined, constructed,
and represented), and the composition rules of components (that
is, how they are composed or assembled) [8].

In this subsection, we present our software components
model for ML evaluation. This model defines software
components structure, relationships and its composition rules.

1) Software component structure
The component structure is presented in Fig.2. Depending of

the component's architecture, we distinguish two component's
types. The primitive component is a "basic" component. The
composite component is an aggregation of several primitive or
composite components.

Each component is a part of an evaluation process. It has to
realize a processing that measures quality (a solution). It
requires, for this aim, parameter of the evaluation and then it
provides results. Therefore, a component is composed of a
solution and a set of ports. The ports realize provided and
required interfaces either to acquire parameters necessary for the
assessment or to provide descriptions and results of the
evaluation. Then a component can have a required interface
“Evaluation parameters” for acquiring the necessary parameters
of the evaluation and a “Primary result” interface for gathering
primary results needed to calculate the result of the concerned
component. “Primary result” interface is not mandatory for all
components. For provided interface, a component must have An
evaluation purpose and a Final result interfaces. The first one to
describe the purpose for which this component is used and
integrated into an evaluation process. The second one to provide
the evaluation result. In the case of a primitive component, it will
be a result of the evaluation. In the case of a composite
component, this will be a combination of other components
results. The combination is done using a formula defined in the
component solution.

Figure 2. Software component structure

In this subsection, we defined the software components
structure. The next step is the definition of relationships.

2) Relationship
As mentioned bellow, a software component implements a

quality framework, a validation, a quality attribute or an
evaluation technique. We have to define relationships between
components. Furthermore, we have four types of relationships.

The composition relationship: one component is composed
of other components. Therefore, its treatment is delegated to its
composite components. Specifically in our approach, quality
framework components and validation components must be
composed of at least one quality attribute component.

The realization relationship: it connects two components
where the solution of the former is more refined than that of the
second. This relationship connects a quality attribute component
and an evaluation technique component. Indeed an evaluation
technique component realizes a quality attribute component by
providing the tools to calculate it and enhance its solution.

 The use relationship: it connects two quality attributes
components. It allows the decomposition of a problem described
by a component more elementary components. More
specifically, in our case, a quality attribute component uses the
results provided by the used quality attribute components.

 The alternative relationship: it connects two evaluation
techniques components that provide two alternative solutions for
the same problem. Therefore, these components realize the same
quality attribute component.

3) Composition rules
Composition specifies how components are interconnected.

Compositions declare instances number of components and
define their configuration. Furthermore, a composition specifies
how the ports of those instances are wired, i.e., which connector
is used for connecting which ports. In our approach, we define
the following composition rules:

 Hierarchical composition and encapsulation (built
components, sub-components): Composite components (quality
frameworks component and validation components) encapsulate
all the components involved in their achievements. In this case,
each port of the composite component should be linked to one
or more interfaces of its son components. Especially, the final
result of a composite component is calculated based on primary
results of a its sub-components.

 Interconnection components throw connectors: In fact, the
connector can assemble components using their provided and
required interfaces. In our approach, we have two

interconnections throw connectors. The first case (Case1) when
a quality attribute component uses other quality attribute
components (in Fig.4 perceptual discriminability uses visual
distance and perceptual popout). The second case (Case2) when
evaluation technique components realize a quality attribute
component (in Fig.4 metric for visual distance realizes visual
distance. In both cases (Case1 and Case2), the connection is
made between a required interface final result and one or more
provided interfaces primary result.

A demonstration of composition rules is shown in section
four where we present a minimal example of application of
process component to define a process for ML evaluation.

IV. DESIGN BY REUSE: COMPONENT BASED PROCESS

Component-based software engineering aims to improve the
software engineering process by providing reusable
components. Following the process component model described
in section three, we create a components repository that
capitalizes knowledge about ML evaluation. Software
components serve to build a component-based process. In
addition, a ML assessor selects software components form the
repository and implements an evaluation process. In this section,
we firstly present an evaluation process model. Then we give a
minimal example that instantiates it.

A. Evaluation process model

We propose a model for the ML evaluation process that
resumes all related features (Fig.3). In addition, a ML evaluation
process is applied to a subject which is the parameter of the
evaluation and produces as result an execution report. It depends
on the context and the needs of the assessor. The context may be
a comparative study of existing MLs or an improvement and
validation of a ML under construction. The subject of an
evaluation process may be a ML [4], a part of the ML (i.e.
concrete syntax [3]), a ML family (i.e. Business Process ML
[9]) or even just a ML property (i.e. usability [10]).

Figure 3. Evaluation process model

Besides, a ML evaluation process is composed of quality
frameworks that provide solution for evaluating a ML. A quality
framework is composed of validation and a set of quality
attributes. A validation is an optional part in a quality
framework. It provides an assessment of a ML by validating one
of its parts relative to another as a set of quality attributes (for
example evaluate the concrete syntax with respect to the abstract
syntax). A quality attribute is realized by means of evaluation
techniques (which calculate it throw metrics or throw protocols
offering a concrete outcome of the evaluation).

A ML evaluation process is composed of one or many
frameworks. A ML assessor builds an evaluation process by the
selection of existing frameworks. We use the concept of process
component to model these frameworks.

B. Evaluation process example

We propose a component base composed of conceptual and

software components. Conceptual component capitalizes

solution for ML evaluation. A ML assessor documents about the

domain throw conceptual components. If he decides to

implement an evaluation process, he has to define its context and

its subject. Then he selects software components that compose

the evaluation process. Its execution produces a report that

resumes its application result. In this section, we give an

evaluation process example that explains our solution and

instantiates the proposed evaluation process model.

The process example:

Context: the evaluation of a graphical ML concrete syntax and

its validation compared to the abstract syntax.

Subject: a graphical concrete syntax and an abstract syntax.

The evaluation process: the component diagram in Fig.4

represents software components that compose the example

process. We use the framework proposed by Moody [4] for

assessing graphical concrete syntax. It is composed of eight

quality attributes to evaluate the cognitive effectiveness of a

graphical concrete syntax and a quality attribute (semiotic

clarity) that validates the concrete syntax with respect to the

abstract syntax. In this example process, we just implement two

of them (semiotic clarity and perceptual Discriminability).

Some informations are not represented to simplify the diagram.

For instance, we had to wire each provided interface evaluation

purpose (EP) of a composite component to the relative

composed component. It is similar for the required interface

parameter (P).

Abbreviation meaning in the Fig.4 are as following:

P: Parameter; PR: Primary result; FR: Final result; EP:

Evaluation purpose.

Result: a report that gathers all final results in the order of the

process execution and its composition to get the process result.

This process example have to be calculated on a graphical

concrete syntax (i.e., that of UML) to acquire concrete result.

V. CONCLUSION

In this paper, we have presented a process component model that

describes the process component structure, relationships and

composition rules. In addition, we use two components types:

conceptual components that describe a ML evaluation approach;

and software components that implement it. Conceptual

components provide a structured documentation. Software

components are used to build a ML evaluation process. Benefits

of using component to represent our process is that 1) we favor

the capitalization and the reuse of ML evaluation works; 2) we

build flexible process adapted to the assessment context and

needs. We also propose an evaluation process model that

describes ML evaluation process.

REFERENCES

[1] Object Management Group, "Meta Object Facility (MOF) 2.0 Core

Specification," 2006.

[2] A. Kleppe, "A Language Description is More than a Metamodel,"
ATEM, 2007.

[3] D. L. Moody, "The “Physics” of Notations: Toward a Scientific Basis

for Constructing Visual Notations in software engineering," 2009.

[4] J. Krogstie, "Evaluating UML using a generic quality framework," chez

UML and the unified process, USA, IGI Publishing, Hershey, PA,,
2003, pp. 1-22.

[5] A. Conte, J.-P. Giraudin, J.-C. Freire Junior, I. Hassine and D. Rieu, "A

tool and a formalism to design and apply patterns," SugarloafPLoP,
2002.

[6] K. Sayeb, D. Rieu, S. Dupuy-Chessa et N. Mandran, "Qualité des

langages de modélisation et des modèles: vers un catalogue des patrons
collaboratifs," INFORSID, 2012.

[7] C. Szyperski, "Component Software: Beyond Object-Oriented

Programming", 2nd Addison-Wesley, 2002.

[8] K.-K. Lau et Z. Wang, "A survey of software component models," IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 2007.

[9] B. List et B. Korherr, "An Evaluation of Conceptual Business Process
Modelling Languages," SAC, 2006.

[10] K. Figly, J. Mendlingz et M. Strembecky, "Towards a Usability

Assessment of Process Modeling Languages," 2009.

Figure 4. Evaluation process example

