
Effectively Testing of Timed Composite Systems using Test Case Prioritization∗

Huu Nghia Nguyen
Montimage EURL

Paris, France
huunghia.nguyen@montimage.com

Fatiha Zaı̈di
LRI-CNRS, Univ. Paris-Saclay,

91405, Orsay, France
fatiha.zaidi@lri.fr

Ana R. Cavalli
SAMOVAR-CNRS, Télécom SudParis

Univ. Paris-Saclay, Évry, France
ana.cavalli@telecom-sudparis.eu

Abstract—A composite system consists of several components
which can be developed separately and deployed in distributed
environments. Executing test cases on such kind of systems
requires more effort due to their size and their distributed
environments. A critical issue is to prioritize efficient test cases
to be firstly executed. We present in this paper a framework
to generate test cases and to select the efficient ones to test
the composite systems with taking into account time properties.
Particularly, the framework generates a set of test cases based
on a model of the system, which cover a given test objective. The
test cases are then prioritized in an execution order to detect
quickly faults, thus reducing the efforts of test execution and
increasing the effectiveness of the testing process. The framework
is complemented with an open-source toolchain for automating
test case generation. It has been experimentally evaluated on the
European Train Control System case study. The initial results
show that the approach can save 40% of test execution effort.

I. INTRODUCTION

Even if formal methods can be used to avoid faults in the
design and implementation processes, such as by generating
code skeleton of system from its specification, testing remains
the only means to gain some confidence in a final product [1].
The testing process consists of test case generation and test
case execution. The model-based testing approach generates
test cases based on formal models that represent the expected
behaviors of System Under Tests (SUTs) rather than on source
codes of the SUTs. Such testing process is known as black-box
testing. An advantage of black-box test case generation is that
it is possible to perform it as soon as a specification model is
available, that is, before the production code is written.

The testing process is highly dependent on the faults detection
ability of test cases. Test case generation is a main area of
research in the field of software testing. Efficient test cases
decrease the chances of failure of the system and ensure the
quality of the system. They are very important in distributed
testing of a composite system in which we need to execute them
on the overall system. This is usually hard because tests must
be deployed on a high number of components which can be
autonomous, developed independently, and deployed in a (real)
distributed environment. Metrics, e.g., [2], used to evaluate test
cases efficiency are usually based on their execution results
such as, number of real faults detected, execution time, code
coverage. This means that a test case can be known as efficient
only after it is executed. The question is how we can predict a
test case is better than another one in order to execute it firstly.
Furthermore, as the set of faults in a SUT is usually unknown,

The work described in this paper has been partially financed by the ITEA3
MEASURE project no 14009

DOI reference number: 10.18293/SEKE2016-153

the definition of an efficient test case based on the number of
real faults, which are detected by the test case, is not useful
to practitioners who are creating test cases, nor to researchers
who are creating and evaluating tools that generate test cases

The authors in [3] deal with distributed testing of systems
that interact with their environment at physically distributed
interfaces, called ports. The authors present several distributed
conformance relations based on ioco, e.g., dioco, c-dioco, p-
dioco. An algorithm of test generation for each relation is also
presented. The approach is based on a passive testing approach,
i.e., the testers do not send stimulus to the SUT but only observe
it. The generation of test cases is not tackled in their framework.
In [4], the authors use Timed Input Output Transition System
(TIOTS) to theoretically reason about conformance, then they
propose to use Timed Input Output Symbolic Transition System
to describe test models. It gives an algorithm applying to
offline testing to check observed logs of SUT against traces
of the specification.

Optimization of test cases has been studied since long time [5].
Besides test cases prioritization approach for optimizing, there
exists another approach, such as [6], [7], that tries to minimize
the number of test cases in a test suite. This technique uses
information about the program and the test suite to remove
test cases which became redundant with time. An advantage of
the prioritization with respect to this approach is that it does
not discard or permanently remove some test cases from the
test suite. Our framework can be used by both approaches as
it gives the fault detection abilities of test cases. Indeed, one
is able, based on these abilities, to decide, depending on the
selected test strategy, either to execute firstly a test case, e.g.,
when its ability is high; or to remove a test case, e.g., when it
can kill mutants that can be killed by another test case having
higher ability.

We propose an effective test cases generation method applied
to timed composite systems to maximize the ability of faults
detection, consequently minimizing the effort, time and cost of
tests execution. Our contributions are mainly on: (i) a formal
model of timed distributed composite systems described by
means of cooperating TIOTSs, (ii) a generation of distributed
test cases, (iii) an evaluation of generated test cases to predict
their abilities of fault detection, and (iv) the availability of an
open-source toolchain1 to support the automatic generation and
evaluation of test cases.

The rest of the paper is structured as follows. Section II
contains the basis of the proposed approach. Section III
introduces an experimental evaluation of the proposed approach
on the European Train Control System (ETCS). We also present

1 The tools are freely available under GPL 2.0 licence at http://github.com/
nhnghia/testgen-ifx, and https://github.com/nhnghia/if2dot/tree/2java

http://github.com/nhnghia/testgen-ifx
http://github.com/nhnghia/testgen-ifx
https://github.com/nhnghia/if2dot/tree/2java


in this section our tools’ implementation for automatically
generating and evaluating test cases and an evaluation of the
scalability of the tools. We give the conclusion and future work
in Section IV.

II. PROPOSED APPROACH

The SUT in our approach is defined by n components.
Its testing system has n testers, each tester is attached to
one component in order to test it. There is no need of
communication between the testers. Each tester has a clock.
These clocks progress at the same rate. A tester acts as the
environment of its component, e.g., it can send messages to
the component and receive the responses from the component.
It can also observe all inputs and outputs of its component
with other components. A tester is put nearly enough with its
component such that the communications between them have
no delay, although the communications between components
may have delays.

Let us take a simple example of a composite system having
two components p1 and p2. The component p1 can output either
a or c, denoted as !a+!c, while p2 can receive either a or b,
denoted as ?a+?b. It is easy to see that their composition can
do !a, then ?a and that p1 (resp. p2) cannot do !c (resp. ?b) in
the composition. A test case tc of the system should be the
sequence !a; ?a. It is projected to get local test cases: a local
test case of p1 is !a while the one of p2 is ?a. In the test case
execution process, let say the tester of p1 sees that p1 emits
a while the one of p2 sees that p2 receives b, e.g., it is sent
by the network. In that case, we will have two local verdicts:
pass for the first tester, and fail for the second one. Hence the
verdict of tc will be fail, thus a fault is detected. Let us note
that the local test of p2 cannot detect this fault if it is tested
separately since ?b is allowed by the local model of p2.

Modeling. We use TIOTSs to model components of SUTs.
Basically, a TIOTS is a Labeled Transition System (LTS) over
the set of (real) events with inputs I and outputs O, and the set
of time distances D between events. Time distances between
events are measured by duration variables d ∈ D, e.g., they are
positive real numbers. A transition is untimed if it is labeled
by an event α with α ∈ I ∪ O; or timed if it is labeled by
a duration d with d ∈ D. A trace of a TIOTS is defined as
a sequence of labels tc = 〈l1, l2, . . . , ln〉 with li ∈ L if there
exist a sequence of transitions labeled by l1, ..., ln respectively.

A SUT is a system consisting of several components. A
component can interact with other components in the SUT but
also with the environment that can be considered as a special
participant of the SUT. Each component is identified by a
unique name in its composite system. It has a model which
describes the expected behaviors realized by the component.
We model a component by a TIOTS. The basic events of a
component are defined by a set of inputs or outputs of the
component with the other participants in the composite system
or with its environment.

Let p1, p2, . . . pn, e be a finite set of identifiers of compo-
nents participating in the composite system to be tested, and
a, b, . . . ∈ M be a finite set of messages, an output realized
by the component p1 to p2 is denoted by !a[1,2] while ?b[2,1]

denotes an input b of p1 from p2. In this definition, we use a
special identity e to denote the environment, e.g., ?a[e,1] denotes

an input a of the component p1 from the environment.

We also model timed composite systems by TIOTSs. The
legal behaviors of a composition depends on the communication
model used for the description of the message exchanges be-
tween its components. A communication model is characterized
by a set of queues being put among components. A queue ∆
is characterized by its size and its kind of message ordering,
e.g., ordered or unordered. We proposed 5 rules and their
symmetrical rules [8] to construct a composition model from
n local models.

Generating Test Cases. A (timed) test case is a sequence of
inputs, outputs and durations. It represents a trace of a TIOTS
and it covers some test objectives. We distinguish two kinds
of test cases: global test cases and local ones. A global test
case tc is a test case generated from a model of a composition
system. On the contrary, a local test case tci of a component pi
participating in the system contains only events concerning the
component. Once having a global test case, we need to project
it on each participant component to get local test cases.

A local test case of tester tk that tests the component pk of
the SUT is a sequence tck = 〈d1, α1, d2, α2, . . . , αm〉, where
di ∈ D and each αi is one of the following, where e denotes
the environment:

• !b[i,e]: an output of message b to the tester
• ?a[e,i]: an input of message a sent by the tester
• !b[i,j]: an observation of a send message b of pi to its

component partner pj , with i 6= j
• ?a[j,i]: an observation of a reception message a of pi from

its component partner pj , with i 6= j

This definition requires that a test case always ends by a real
event that could be an input or an output. Indeed, if we had a
test case 〈d1, α1, . . . αn, dn〉 with dn 6= 0, then a tester would
need to wait dn time units before giving its final verdict. Thus
this delay is not necessary as it has no effect to the verdict.

The projection process inputs a global test case tc and outputs
a set of local test cases {tc1, . . . , tcn}. The local test case tck
is obtained from tc by retaining only the events such that
the component pk participates in, e.g., !a[i,j] or ?b[i,j] with
k ∈ {i, j}. The durations are preserved in all local test cases.
Since an event, that does not concern pk, will be removed in
tck, there may be two durations that will be put successively
in tck. We finally need to sum up all consecutive durations of
local test cases.

A verdict of a local test case is given by comparing the
expected result in the test case with the result given by the test
execution. That is either an output, or a duration after that an
output should happen. Let us take an example, a local tester
needs to execute the local test case: !a[e,1]; 1; !b[1,2]. After the
tester sends a to p1, there are the following possibilities:

• if the tester receives an output from p1 then the verdict is fail,
• if the tester sees a message from p1 to p2:
◦ if the message is not b then the verdict is fail,
◦ otherwise:

if the duration between the two messages equals 1 then
the verdict is pass,
otherwise the verdict is fail



The execution of a global test case is done through executing
its local test cases. A global test case tc gives a pass verdict
only if all of its local test cases give pass verdicts. Basically, the
test execution of a global test case will pass the following steps:

1) Generate local test cases {tc1, . . . , tcn} from tc
2) Set the local test case tci to the local tester ti
3) Launch each local tester
4) Wait until all testers finish
5) Emit a verdict pass if all testers emit pass, otherwise fail

Prioritizing Test Cases. An important factor to evaluate a
good test case is the number of real faults detected by the test
case. This means that the evaluation can be performed only
after the execution of test cases. We propose to evaluate a
test case by executing it against a simulator rather than a real
implementation of the SUT. Thus it is evaluated even the SUT
has not been yet completely implemented. This also permits
to use fault injection testing [9] to evaluate the fault detection
ability of the test case.

We use the mutation analysis technique to evaluate the
prioritization of the generated test cases. Mutation analysis is a
well-known approach to assess the quality of test cases or testing
techniques [10]. We have built a simulator programming in Java
for each component of a SUT. A simulator acts with respect to
the model of its component. A SUT has n components that will
be simulated by n simulators executing together. Artificial faults
are then injected into the simulators. Each mutated version of
a simulator, called mutant, is tested against test cases to detect
deviations in behaviors of the original version that differ from
the mutant, i.e., the verdicts should be fail. We consider a
mutant being killed by a test case if the verdict of executing
the test case on the mutant is fail, i.e., a fault is detected by
the test case. A test case which does not kill (or detect) any
mutants (or faults) is considered defective. The mutation score
of a test case is measured by the percentage of mutants being
killed by itself. Generally, a test case that has a higher mutation
score is assumed to detect more real faults than the one that
has a lower mutation score [11]. The evaluation of a local test
case passes the following steps:

1) Generate a set of simulators {s1, . . . , sn} from models of n
components of the SUT,

2) Inject faults in each simulator si to obtain its mutants,
3) For each global test case tc:

a) Project to local test cases {tc1, . . . , tcn},
b) Perform local test case tci on each mutant of si,
c) Calculate the number of mutants being killed,
d) Set mutation score of the test case tc to the percent of

mutants being killed.

We prioritize the generated test cases based on their muta-
tion scores for the goal of fault detection rate, that is a measure
of how quickly faults are detected during the testing process:

1) The first test case being selected is the one having the
highest mutation score

2) The next test case is the one that kills the most mutants
that are not killed by the previous test cases. This means
that the second test case has the ability of detecting faults
that cannot be detected by the first one

3) If two test cases tc1 and tc2 have the same mutation score,
and the number of events of tc1 is greater than the ones of

tc2, then tc2 has a higher priority than tc1 as its tester will
have fewer interactions with the SUT but the same mutation
score, i.e., same ability of fault detection.

III. EXPERIMENTAL VALIDATION

Tool Implementation. We have built two open-source tools
to support the framework, the TestGen-IFx to generate test
cases, and IF2Java to generate Java simulator from Intermediate
Format (IF) specification. IF is a formal language used to
describe models of real-time systems. We use IF language to
describe the models of each component of the SUT rather
than using directly TIOTSs which are more intuitive to reason
about the framework such as timed model, composition, trace,
test cases. It allows to describe quickly a model due to its
expressiveness: the IF models of the case study presented in
this paper have 8 states and 14 transitions but their TIOTSs
contain totally 49488 states and 80598 transitions. The readers
are invited to refer to [12] for further details of IF language.

The TestGen-IFx tool has been developed to generate
distributed test cases for distributed testing. It inputs an IF
specification file, and a configuration file. The IF specification
file contains all models of components of the SUT, each
model is represented by an IF process. The selected exploration
strategy is recorded into a configuration file. Depending on the
kind of the strategy, some other parameters may be required,
e.g., search depth number, and test objectives. The main output
of the tool is a set of local test cases. For each global test case
found, the tool projects it in n files, each one contains a local
test. The tool also displays statistics about the test generation
process such as execution time, number of generated test cases.

The IF2Java tool has been developed for generating simula-
tors that is used for the evaluation of the test cases generated
by TestGen-IFx. It inputs an IF file, and outputs a Java file. The
IF file contains models of components of a timed distributed
system. The Java file contains several Java classes which each
one describes the behavior of a component. We obtain a Java
program, called simulator, after compiling the Java file and
our simulator library. The simulator acts, e.g., receiving inputs
and sending outputs, wrt. its model, which is specified in the
IF file. When executing, the simulator inputs a local test case,
then gives a verdict.

Case Study Description. The ETCS is an automatic train con-
trol system designed to replace progressively the incompatible
safety systems currently used by European railways. In the
ETCS level 3 [13], a train is equipped with an Onboard Unit
(OBU) and it is controlled by a Radio Block Center (RBC).
We consider the ETCS as a composite system consisting of two
distributed components, OBU and RBC, running in parallel,
see Figure 1, and communicating by message exchanges via
Global System for Mobile Communications - Railway.

In the ETCS, a train moves in virtual moving blocks defined
by its RBC via Movement Authorities (MAs). A MA defines
a location, called End Of Authority (EOA), to which the train
is authorized to move. Beyond this location, the location is a
danger point such as the entry point of an occupied block section
or the position of the safe rear end of a precedent train. To
ensure the train is able to stop at the given EOA, a MA contains
also a release speed that is a speed limit under which the train
is allowed to run. We do not present its formal models due to



Fig. 1. Interaction between ETCS Components

lack of space2. Particularly, the OBU receives its information
about its current estimated location, e.g., ELocation, then
sends this location to RBC via MA requests. Based on
received information: location of the train, and location of
danger point, e.g., DLocation, the RBC determines MAs
of the train and sends it to the OBU. The release speeds
are calculated by the procedure getReleaseSpeed. The
calculation is based on the distance from the train to the
EOA and on the capacity of the brake system of the train
such that the train is able to stop the train at the EOA.
By comparing the current estimated speed of the train, e.g.,
ESpeed, to the release speed encapsulated in MA, the OBU
may generate an emergency brake command, e.g., EBcmd(1),
and Driver Machine Interface (DMI) commands to display
relevant information to the driver, e.g., DMIcmd(speed). The
brake is applied until the train stopped [13].

To focus on release speed monitoring, we consider only
release speed and distance to EOA in MAs. Since the MAs are
needed to update periodically, the default period is 60s [13],
we set one clock in OBU to issue a MARequest; and two
clocks in RBC to send MA to OBU and to get DLocation.
These clocks are reset when their events have occurred. For the
purpose of experimental evaluation of the approach, we consider
speed from 0 to 240 (km/h), location and distance
from 0 to 300 (km), EBcmd from 0 (no brake) to 1 (brake)
and clock from 0 to 60 (second).

Test Generation. A critical property of the ETCS to be tested
is the capability of the system of taking over control if the
driver appears to be going too fast. We need to consider a lot of
scenarios to test this property such as when a break command
is issued, when the current speed of the train passes over the
limited speed, the break is released only if the speed is less
than the limit speed, and so on. We present in the detail the
test case generation for a specific scenario that represents the
situation which caused the Spain train accident on 24 July 20133.
Considering that the train is in the indication state and is
travelling in an area of track at 190 km/h meanwhile the speed
limit is 80 km/h. At appropriate time-units, which are usually
very close to each other, the RBC controls the train, checking
the position, the speed and the acceleration. In this case of
too high-speed, the OBU has to generate a brake command
to reduce the speed, thus the accident would not happened
because the driver cannot accelerate the train at 190 km/h. The
test objective is formulated as the following, in which {OBU}0
and {RBC}0 are used to identify respectively the first instance
of the OBU and RBC processes in the IF description:

2 The complete IF description of the case study is available at
https://github.com/openETCS/validation/tree/master/VnVUserStories/
VnVUserStoryMinesTelecom/05-Work/IF%20models

3El Pais Journal, Saturday 27th of July 2013.

TABLE I. SCALABILITY OF TESTGEN-IFX

Depth #Global Test Cases Time(s) Coverage of Variables
v l x

1 301 0.47 X
2 90,601 172.12 X X
3 90,601 183.74 X X
4 162,058 262.83 X X
5 1,273,563 3803.81 X X
6 65,913,084 90698.15 X X X

tp1 := “process : instance = {OBU}0” ∧“variable : m.speed = 80”
∧“state : source = INDICATION” ∧“variable : v = 190”

A global test case tc1 being delivered by the TestGen-IFx
tool is as the following:

?; e; ELocation{100}; {OBU}0
!; {OBU}0; MARequest{100}; {RBC}0
?; e; DLocation{103}; {RBC}0
delay 2
?; {RBC}0; MA{{30,80}}; {OBU}0
!; {OBU}0; DMIcmd{80}; e
?; e; ESpeed{190}; {OBU}0
!; {OBU}0; EBcmd{1}; e

The global test case is projected to obtain local test cases:

−− T e s t c a s e f o r OBU
!; e; ELocation{100}; {OBU}0
!; {OBU}0; MARequest{100}; {RBC}0
delay 2
?; {RBC}0; MA{{30,80}}; {OBU}0
?; {OBU}0; DMIcmd{80}; e
!; e; ESpeed{190}; {OBU}0
?; {OBU}0; EBcmd{1}; e
−− T e s t c a s e f o r RBC
!; e; DLocation{103}; {RBC}0
delay 2
?; {OBU}0; MARequest{100}; {RBC}0
!; {RBC}0; MA{{3,80}}; {OBU}0

Table I shows some metrics of test generations using Depth-
First Search (DFS) exhaustive strategy to evaluate the scalability
of TestGen-IFx. The experiments have been performed on a
laptop with 2.2GHz Intel Core i7 processor and 16GB of RAM.
The first column presents the depths explored. The second one
relates to numbers of generated global test cases. The next
one relates to the processing times in seconds. The three last
columns represent the coverages of the variables in the models:
train speed (v), train location (l), and danger point location (x).
The rows corresponds to the results of different exploration
depths. When the depth is 1, only one transition is fired, thus
its events are executed: ?ELocation(l), !MARequest(l).
Since we consider data domain of variable l from 0 to 300,
there are 301 possibilities of executions of the transition
corresponding to 301 global test cases. These test cases cover
(X) the data domain of the variable location l using in the IF
model of OBU. The number of test cases grows very quickly
when the depth is 6. We obtain at this level a set of test cases
that cover all possible values of the variables used in the models.
Intuitively, we cannot execute all of these test cases against the
SUT. We need to select the best test cases to be firstly executed.

Test Prioritization. After generating Java simulators repre-
senting the IF model of the ETCS system using IF2Java, we
generated mutants by injecting faults that violate the safety
properties of the ETCS. We use the Major [14] framework to
generate the mutants. It allows us to create Java source code
of mutants by injecting faults into some specific methods of a
class. We inserted the 6 following types of faults:

https://github.com/openETCS/validation/tree/master/VnVUserStories/VnVUserStoryMinesTelecom/05-Work/IF%20models
https://github.com/openETCS/validation/tree/master/VnVUserStories/VnVUserStoryMinesTelecom/05-Work/IF%20models


Fig. 2. Mutation Score and Mutant Coverage by Generated Test Cases

1) incorrectly implemented destinations of transitions,
2) incorrectly got inputs,
3) incorrectly sent outputs,
4) incorrectly evaluated guards of transitions,
5) incorrectly updated internal variables,
6) incorrectly updated clocks.

We obtain totally 246 mutants and it takes about 17 seconds.
The fault Type 5 generates the highest number of mutants (108:
62 for OBU and 46 for RBC). We then evaluate the generated
mutants on 5 test cases, tc1, . . . , tc5, which are generated from
5 scenarios to test the monitoring process of release speed4:

1) the current speed is 190 while the limit speed is 80,
2) the limit speed is 80 and the current speed of the train is

81, this just overs the limit speed,
3) the current speed is equal to the limit speed, 80,
4) when the break is hold,
5) when the break is released,

Figure 2 presents a cloud of mutants being killed by the test
cases. Ox axis represents the mutants which are grouped by
fault types, from 1 to 6, and by components which are either
OBU or RBC. Oy axis represents the mutants killed by the 5
test cases. Average time of an execution process (compiling,
executing and parsing results) of a test case on the 246 mutants
takes about 240 seconds. Each mutant being killed by a test
case is represented by a dot on the figure. For example, test
case tc1 kills 6 of 15 mutants, which are numbered 1,2,4,6,7,8
of fault Type 1 of OBU. It kills in total 62 of the 246 mutants,
thus its mutation score is 25%. Test cases tc1 and tc2 kill the
same set of mutants, thus they have the same score. Test case
tc4 has the highest mutant score, 38%, then tc5 with 33%.

After having the mutation scores, we prioritize the generated
test cases with the goal of fast fault detection. Figure 3
represents the evolution of the Average Percentage of Faults
Detected (APFD) [15] over the life of the execution of 2 test
suites consisting of the 5 test cases on two prioritization ways.
The values of APFD range from 0 to 100. A higher APFD
number means faster (better) fault detection. Although the figure
does not directly measure the fault detection ability of the two
test suites, e.g., they are always 54%, it allows us to compare
the different prioritization orders to create faster detecting
through the ordering of test cases. In particular, suppose we

4The complete formal description of the test objectives and their data can
be found at https://github.com/nhnghia/if2dot/tree/2java/example

place the test cases in order tc1, tc2, tc3, tc4, tc5 to form a
prioritized test suite T1. Figure 3(a) shows the percentage of
detected faults versus the percentage of executed test cases of
T1. After executing tc1, 62 of 246 faults are detected; thus
25% of the faults have been detected after executing 1 of the 5
test cases, hence 20%, in T1. No more new faults are detected
after running test case tc2, thus 25% of the faults have been
detected after 40% of T1 has been used. The curve in the figure
represents the cumulative percentage of faults detected. The
gray area under the curve represents the APFD of the test suite
T1, with 32%.

Figure 3(b) represents what happens when the order of test
cases is changed to tc4, tc5, tc1, tc3, tc2. It detects faults
more quickly with APFD raising to 44%. It achieves the fault
detection ability of T1, 54%, by using only 3 of 5 test cases, i.e.,
the two other test cases detect the faults that were detected by
the 3 previous test cases. Testers may not need to execute the
two last test cases. Thus it can save 40% of test execution effort.

Discussion. Mutation scores of the generated test cases are
low. Generally, this testing approach considers the SUT as a
black-box. It does not know how the SUT works in back end.
It focuses on the user perspective, i.e., the inputs and outputs of
the SUT. Consequently, it is not possible to guarantee that all
mutations of the code in the SUT are covered as the test cases
are generated without knowledge of the implementation of the
SUT. This is known as a NP-hard problem [16]. Particularly, the
test cases generated above tend to test a particular functionality
of the ETCS system. Consequently, they are not able to detect
violations of the other behaviors of the system.

The generation of mutants gives an overview of a distribution
of fault types in a SUT as the number of generated mutants
depends highly on the fault types being injected. Figure 4(a)
presents a distribution of the 6 fault Types on the ETCS.
The fault Type 5 has the highest possibility of occurrence,
with 44%. This is understandable because almost computation
of the system is internal calculation. The fault Type 6 has the
second highest possibility of occurrence, that is 20%. It shows
an important impact of correctly implementing the operations
of clocks, such as update, reset, etc. in a timed composite
system. Figure 4(b) presents the fault detection abilities of the
5 generated test cases on the 6 fault Types. It is clear that the
fault Types 1, 2, 3, and 4 can be detected more easily than the
others because they influence directly the outputs of the system.

https://github.com/nhnghia/if2dot/tree/2java/example


(a) Test Case Order: tc1, tc2, tc3, tc4, tc5 (b) Test Case Order: tc4, tc5, tc1, tc3, tc2

Fig. 3. Average Percentage of Faults Detected for Non-Prioritized (a) and Prioritized Test Cases (b)

(a) (b)

Fig. 4. Fault Types Distribution of the ETCS (a) and Detection Ability of the Generated Test Cases (b)

IV. CONCLUSION & FUTURE WORK

We have presented a framework for prioritization distributed
testing of timed composite systems. The model of a SUT is
composed of models of components described as TIOTSs. The
testing system is established by several testers. Each tester
tests one component of the SUT and there is no need of
communications among them. Test cases are generated from
the model of the SUT to cover some behaviors to be tested.
We have performed an experimental validation of the approach
on the ETCS case study. We also illustrated an example to how
prioritize the generated test cases for faster detecting faults in
the ETCS. The initial result shows that we can save 40% of
test execution effort of the generated test cases. An open-source
tool chain1 has been implemented to automate the generation
and evaluation processes of the test cases.

In future work, we firstly intend to improve the expressiveness
of the test objective description to be able to specify more
complex test scenarios. We also plan to consider the framework
in case of unobservable communications among components
of the SUT and in the case of clocks drifting.

REFERENCES

[1] L. Cacciari and O. Rafiq, “Controllability and Observability in Dis-
tributed Testing,” Information and Software technology, vol. 41, pp.
767–780, 1999.

[2] R. Singh, “Test Case Generation for Object-Oriented Systems: A Review,”
in Proc. of CSNT, 2014, pp. 981–989.

[3] R. M. Hierons, M. G. Merayo, and M. Núñez, “Implementation Relations
and Test Generation for Systems with Distributed Interfaces,” Distributed
Computing, vol. 25, no. 1, pp. 35–62, Nov. 2011.

[4] C. Gaston, R. M. Hierons, and P. L. Gall, “An Implementation Relation
and Test Framework for Timed Distributed Systems,” in Proc. of ICTSS,
2013, pp. 82–97.

[5] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of
Test Set Minimization on Fault Detection Effectiveness,” in Proc. of
ICSE, 1995, pp. 41–50.

[6] N. Yevtushenko, A. Cavalli, and J. Lima, Luiz, “Test Suite Minimization
for Testing in Context,” in Proc. of IWTCS, 1998, pp. 127–145.

[7] N. Asoudeh and Y. Labiche, “Multi-Objective Construction of an Entire
Adequate Test Suite for an EFSM,” in Proc. of ISSRE, 2014, pp. 288–299.

[8] H. N. Nguyen, F. Zaidi, and A. Cavalli, “A Framework for Distributed
Testing of Timed Composite Systems,” in Proc. of APSEC, 2014, pp.
47–54.

[9] S. Ghosh, “Fault Injection Testing for Distributed Object Systems,” in
Proc. of TOOLS, 2001, pp. 276–285.

[10] R. DeMillo, R. Lipton, and F. Sayward, “Hints on Test Data Selection:
Help for the Practicing Programmer,” Computer, vol. 11, no. 4, pp.
34–41, 1978.

[11] R. Just, D. Jalali, L. Inozemtseva, M. Ernst, R. Holmes, and G. Fraser,
“Are Mutants a Valid Substitute for Real Faults in Software Testing?”
in Proc. of FSE, 2014, pp. 654–665.

[12] M. Bozga, S. Graf, I. Ober, and J. Sifakis, “The IF toolset,” in Formal
Methods for the Design of Real-Time Systems, 2004, pp. 237–267.

[13] UNISIG, “SUBSET-026 – System Requirements Specification,” ERA,
SRS 3.3.0, Mar. 2012.

[14] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using Non-redundant
Mutation Operators and Test Suite Prioritization to Achieve Efficient
and Scalable Mutation Analysis,” in Proc. of ISSRE, 2012, pp. 11–20.

[15] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test Case
Prioritization: An Empirical Study,” in Proc. of ICSM, 1999, pp. 1–10.

[16] K. Chatterjee, Luca Alfaro, and R. Majumdar, “The Complexity of
Covrage,” in Proc. of APLAS, 2008, pp. 91 – 106.


	Introduction
	Proposed Approach
	Experimental Validation
	Conclusion & Future Work
	References

