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Abstract

Software engineers usually have to face a large space
of choices during the development process, including li-
braries/APIs, frameworks and UML models, which under-
mines their ability in finding the ones that best fit their
needs. Recommender Systems appear as a solution to this
problem since they have been applied successfully in other
domains that suffer from similar issues. In this paper we
propose to recommend UML Sequence Diagrams, a popu-
lar software artifact in many development processes, as an
attempt to mitigate this problem. Our approach consists of:
(i) a suitable representation of the users’ information needs
and sequence diagrams’ content; and (ii) two content-based
recommendation algorithms to recommend sequence dia-
grams that match the users’ preferences. We performed a
study with computer science subjects, where we generated
recommendations with (ii) and measured the users’ satis-
faction upon these recommendations. Our preliminary re-
sults show that both algorithms are able to provide accurate
recommendations.

1. Introduction

Created by OMG (Object Management Group) [1], the
Unified Modeling Language (UML) describes a set of di-
agram types for describing different systems from various
perspectives. Unfortunately, support for discovering and
reusing diagrams is currently limited. From the many differ-
ent types of media that can be retrieved through Web search
engines (e.g. Google), software artifacts are not among
them. For example, there is no easy way for a user ex-
press that she is searching for examples of real world UML
Sequence Diagrams that use combined fragments and that
asynchronous messages.

We propose to mitigate this kind of problem through rec-
ommender systems. Recommender Systems (RS) are great
tools for filtering out and helping users to find relevant con-

tent. In some cases, they try to mimic the situation where
the information needs of users are fulfilled by recommen-
dations of like-minded or expert users [2]. Recommender
Systems for Software Engineering (RSSEs), in particular,
are software tools that can assist users in the activity of
finding software artifacts. Moogle [3] is a search engine
that uses metadata of software models for retrieving soft-
ware artifacts. Our work is similar to this in the sense that
we also exploit metadata information of software models
(in this case UML Sequence Diagrams) to help users find-
ing software artifacts of interest, but we do this by providing
personalized recommendations based on the declared infor-
mation needs of users.

RSSEs is a scarce area of research that has the poten-
tial to increase the quality and agility of software develop-
ment [4]. While most of the related works in this area focus
on source code recommendation (cf. Section 5), we investi-
gate the recommendation of UML sequence diagrams, a yet
unexplored problem in this field of research. This kind of
recommendation has an important educational benefit for
students and teachers since it allows one to find good ex-
amples of real world diagrams containing the features they
want to learn/review.

Our approach consists in (i) a content-based recom-
mender system’s representation for sequence diagrams’ fea-
tures and (ii) the application of two classic content-based
algorithms: a bag-of-words model borrowed from infor-
mation retrieval [5], and another one based on our pro-
posed representation [2]. We compare and evaluate both
algorithms by means of a field experiment with computer
science subjects well acquainted with UML diagrams and
show that both approaches present reasonably accurate rec-
ommendations.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a brief background on RS and UML se-
quence diagrams. Section 3 introduces our approach. Sec-
tion 4 presents the evaluation methodology and results. Sec-
tion 5 presents related works and Section 6 concludes the
paper with some final remarks.
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2. Background

In this section, we present a brief summary of the main
concepts related to this work: Recommender Systems, Bag
of Words, and UML Sequence Diagrams.

2.1. Recommender Systems

RS are applications that aim to support users on their de-
cision making process while interacting with large amounts
of information. RS usually follow four main paradigms [6]:
(i) Collaborative-filtering: The assumption is that users
that shared similar interests in the past tend to share simi-
lar interests in the future. Collaborative-filtering algorithms
usually rely on the historical data of users; (ii) Content-
based: This type of recommendation is based on the content
of the items being recommended; (iii) Knowledge-based:
In this modality, the recommender algorithms exploit back-
ground knowledge about the recommendable items; (iv)
Hybrid: Since each of the aforementioned approaches has
advantages and disadvantages, a good combination of them
would take advantage of the strengths and eliminate the
weaknesses of each one.

2.2. Bag-of-Words

Many information retrieval systems represent queries
and textual documents as a multiset of words [5]. This mul-
tiset, B, can be described as B = {(wi, f(wi))|1 ≤ i ≤ j},
where j is the amount of words of B, and f is a function
that returns the number of occurrences for the word wi in
the current document. As an example, if we get a document
composed by the sentence “sequence diagrams are UML di-
agrams“, we could represent B as

B = {(sequence, 1), (diagrams, 2), (are, 1), (UML, 1)}

This representation does not store the semantics, since
there is only the number of occurrences for each word and
the order it occurs does not matter for the model. For ex-
ample, the text fragments sequence diagrams are UML di-
agrams and UML diagrams are sequence diagrams have
very different semantic meanings, but have the same bag-
of-words representation [7].

2.3. UML Sequence Diagram

The UML enables software developers to represent sys-
tem models through different views. Each one of these
views is modelled with abstractions called UML diagrams,
which can represent structural and behavioural characteris-
tics of the object-oriented paradigm. UML defines thirteen

diagrams [1], where each one is responsible for represent-
ing one or more features of the software being built. In or-
der to represent the system behaviour, interaction diagrams
allow the specification steps of interaction between objects
and actors of the system. Below we describe some impor-
tant elements that may compose a sequence diagram: (i)
Lifeline: Represents system objects that participate in the
exchange of messages. Figure 1 depicts two lifelines: Web
Customer and Bookshop; (ii) Message: Represents the ex-
change of information between entities of an OO system.
Figure 1 shows asynchronous and return messages. The
message 1:search inventory, sent from Web Customer and
received by Bookshop, is an asynchronous message where a
line is drawn with a stick arrowhead; (iii) Combined Frag-
ments: In its 2.0 version, combined fragments were added
to sequence diagrams, i.e. new elements capable of chang-
ing the normal flow of execution. The combined fragments
have 12 types (operators) and each one of them has a dif-
ferent meaning. Figure 1 shows the loop and opt combined
fragments, where opt is nested with loop. While opt de-
fines a fragment that must be executed only if the analy-
sis of the expression on the guard returns a true value, the
loop describes behaviours that need to execute the same se-
quence of commands iteratively; (iv) Interaction Use: Al-
lows reusing other sequence diagrams. In Figure 1 the in-
teraction use is represented by ref.

Figure 1 shows two objects that interact by means of
messages to perform a purchase of books online. While
the customer is buying, the interactive combined fragment
loop is being executed. Within the interaction, the client
may optionally view the description of the chosen book and
purchase a book. When a customer completes a purchase, it
must end the session according to the behavior specified in
the sequence diagram checkout.

3. Our Approach

Our approach consists of: (i) suitable representations for
the sequence diagrams and the users (Section 3.1); and (ii)
algorithms that operate under the representation defined in
(i) (Section 3.2). As a proof of concept, we compared two
of such algorithms: Bag-of-Words (BoW) model borrowed
from the information retrieval field and a Content-Based
(CB) filtering algorithm. The reason for choosing recom-
mendation algorithms that relay on the content of sequence
diagrams instead of, e.g. collaborative filtering, is due to the
fact that we did not find any publicly available repository of
interaction data between users and sequence diagrams.

3.1. Sequence Diagram Features

Before generating recommendations, we need to choose
a suitable representation for users’ and items’ profiles. To



Figure 1: Example of a Sequence Diagram

this end, we have chosen to represent users and items
as vectors in a space of features extracted from sequence
diagrams. Below we describe the features we used for
representing them. Follows the established representa-
tion: Presence of Lifelines (NL): We divided the num-
ber of lifelines into three groups, namely: small (from 1
to 3 lifelines), medium (from 4 to 6 lifelines) and large
(over 6 lifelines) diagrams. Presence of Messages: Asyn-
chronous(PAM); Return (PRM); Create (PCM); Delete
(PDM); Presence of Combined Fragment: Conditional
(PCoCF); Iterative (PItCF); Break (PBCF); Concurrent
(PCuCF); Weak (PWCF); Strict (PSCF); Negation (PNCF);
Critical (PCrCF); Ignore (PIgCF); Consider (PCsCF); As-
sertion (PACF); Presence of Interaction Use (PIU); Pres-
ence of Actors (PAc); Presence of State Invariant (PSI).

In the CB approach the user and item profiles are defined
by binary vectors, as described above, of the form

~p = (NL,PAM,PRM, . . . ,PACF,PIU,PAc,PSI)

In the BoW model, users and items are represented as
vectors of strings extracted from the sequence diagrams
XMI file. Each string represents a sequence diagram fea-
ture, e.g. “uml:Lifeline” and “uml:Actor”, as can be seen in
column ”BoW” shown in Table 1. Each string is weighted
with the well known tf-idf (term frequency - inverse doc-
ument frequency) scheme where the string weights are di-
rectly proportional to their frequency in the sequence di-
agram and inversely proportional to their appearance over
all sequence diagrams in the repository. In information re-

trieval terms, the user is the query and the sequence dia-
grams are the documents.

3.2. Recommender Algorithm

CB algorithm: A RS can be formally described as a
function where U and I are the set of users and items (se-
quence diagrams in our case), and s is a function that esti-
mates the utility of i ∈ I to u ∈ U .

s : U × I → R (1)

The recommendation list is computed in two steps. First
the similarities between the target user and the item profiles
are calculated. Next, the n nearest sequence diagrams are
recommended (aka top-n recommendation) to the user, ac-
cording to Section 3.1. For the similarity computation we
have used the well known and widely used cosine similar-
ity measure. The cosine similarity receives two vectors as
input and returns 1 if they have maximum similarity and 0
otherwise. More formally, for two m-dimensional profile
vectors ~x and ~y the cosine similarity is computed by

sim(~x, ~y) =

∑m
i=1

xi · yi√∑m
i=1

x2
i ·

√∑m
i=1

y2i

(2)

where xi and yi are the i-th component of vectors ~x and ~y
respectively. Now, the top-n items for the target user u ∈ U
are computed as follows:

top-n(u) :=
n

argmax
i∈I

sim(~u,~i) (3)

BoW algorithm: A BoW can be formally described as a
set of documents C = {D1, . . . , Dl}, where l is the amount
of documents, and each document Dp ∈ C is represented
as a multiset Dp = {(wpq

, f(wpq
))|1 ≤ q ≤ m}, where m

is the amount of words of Dp and f(wpq
) is a function that

returns the number of occurrences for the word wpq
. Each

word wpq is extracted from the text file representation for
Dp. Considering the diagrams at XMI format as text files
(since the format is XML-based), base in an information
retrieval algorithm [7].

Each user Yr is represented as a set Yr = {t1, . . . , tw}
of search terms. For each user, the algorithm calculates an
score (Equation 4) for every document Dp ∈ C.

score(Yr, Dp) =
∑
s∈Yr

tf-idfs,Dp (4)

Lastly, the top-n items for the user Yr ∈ V are computed
as follows (Equation 5):

top-n(Yr) :=
n

argmax
z∈C

score(Yr, z) (5)



4. Evaluation

In this section we present the experimental protocol
used, results and threats to validity. In order to establish a
proof of concept to the proposed profiles and also discover
which algorithm makes the best recommendations, we have
performed an experiment for comparing the proposed UML
Sequence Diagrams recommenders.

4.1. Planning:

For evaluating the recommendations, the user and item
profiles are created according to the preferences indicated
by participants and the diagrams parsed by the system, re-
spectively. Next, for each recommendation algorithm, the
recommendations are generated and displayed to the par-
ticipants that in turn must accept or not the recommended
sequence diagrams displayed in a top-5 list. Finally, before
the end of the experiment, the participants must judge the
experiment as good suggestions or not, using the following
levels of satisfaction: {Very Satisfied, Satisfied, Indifferent,
Dissatisfied, Very Dissatisfied} (aka likert scale). [8].

4.2. Collecting and Formatting Data:

Given that we did not find any publicly available reposi-
tory of sequence diagrams, we decided to construct our own
experimental database. For that, we used the Magic Draw
tool1 to reverse engineer source code from the FindBugs2

project. This tool also allowed us to recover and parse the
XMI file generated from sequence diagrams. By parsing
the XMI file, we identified all elements composing the se-
quence diagram. From this process, we were able to build
24 diagrams. Additionally, we generated 20 diagrams man-
ually. These diagrams were generated because some fea-
tures (e.g. PBCF, PWCF) were missing in the diagrams
generated by Magic Draw. They were based on examples
of literature, totaling 20 examples. For formatting the user
profiles, each subject from the experiment must answer the
questionnaire described in Table 1, column ”Are you inter-
ested in viewing...”. Each question relates to a specific fea-
tures vector and the user should inform which features are
of his/her interest. After constructing the user profiles, we
calculated the cosine similarity between the target user and
the item profiles vector and computed top-5 recommenda-
tion lists for BoW and CB approach.

Table 1 contains some examples about the user profiles.

1http://www.nomagic.com/products/magicdraw.html
2http://findbugs.sourceforge.net

Table 1: The example form of interest: Content-based map-
ping (CB), Bag-of-words mapping (BoW)

Id Are you interested in... CB BoW
1 diagrams of which size? (Small

or Medium or Large)
NL “uml:Lifeline”

messages...
2 ↪→creation message? (Yes or No) PCM “uml:Message”,

“message-
Sort=createMessage”

combined fragment...
3 ↪→combined fragments of type

assertion?? (Yes or No)
PACF “uml:CombinedFragment”,

“interactionOpera-
tor=assert”

sequence diagrams with...
4 ↪→interactions of use (”req”)?

(Yes or No)
PIU “uml:InteractionUse”

5 ↪→actors (”actor”)? (Yes or No) PAc “uml:Actor”

6 ↪→invariant state? (Yes or No) PSI “uml:StateInvariant”

4.3. Selection of Subjects:

The experiments were conducted with volunteer stu-
dents the software design discipline in the computer science
course from the Federal University of Campina Grande.
The experiment included 26 participants. The approach was
presented to the group in a workshop where instructions for
using the tool were explained.

4.4. Experimental Design:

We had an unpaired comparative experiment where, for
each participant, we randomly selected the recommenda-
tion algorithm, being transparent to the user which method
was used. Thus, half of the subjects received recommenda-
tions from the BoW model and the other half from the CB
approach. The effectiveness of the system is related to its
ability to perform good recommendations. Thus, the cen-
tral question of this research was to investigate the accuracy
and the level of satisfaction of the users considering the rec-
ommendations of the two approaches investigated. As eval-
uation metrics we used precision (Equation 6) which is a
well known and widely adopted metric in the information
retrieval and recommender systems literature [9]. The pre-
cision for a given user u ∈ U is defined as follows:

precision =
|{relevant items} ∩ {recov. items}|

|{recov. items}|
(6)

4.5. Questions and Hypothesis Formulation:

Our experiment addresses the research questions, using
the null hypotheses respectively. RQ1: Given the same user
profile, does the content-based and bag-of-words differ in



precision? and H1-0: The precision of the two approaches
is equal. RQ2: From the point of view of user satisfaction,
which of the two approaches is better? and H2-0: The satis-
faction for both approaches is the same.

4.6. Results

We used the Wilcoxon-test on the precision values com-
puted for each subject, which reached a p-value of 0.3543,
indicating that there is no statistical difference between the
CB and BoW approaches. Thus, it was not possible to re-
fute H1-0 presented in Section 4.5. As a reinforcement, we
calculated the Cohen d value. Cohen [10] suggests a scale
able to identify the impact of the intended effect that, in this
experiment, is the difference of the precision between the
algorithms. On this scale, a value of up to 0.2 is considered
of small effect, from this one up to 0.5 is a medium effect,
0.8 and above represents a large effect. Our results for this
calculation is 0.4303, which represents almost no effect.

From the evaluation results, the answer to RQ1: Given
the same user profile, the content-based and bag-of-words
differ in precision? No. Figure 2 shows the boxplot of
the precision for both approaches. The CB approach has
the highest precision in terms of the median, and this re-
sult may provide a positive evidence of the relevance of this
algorithm, that will be further analyzed.
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Figure 2: Boxplot - Comparison of Approaches

From a total of 44 sequence diagrams from the database,
the experiment recommended 24 sequence diagrams from
the total of 26 searches. Figure 3 shows the distribution
of responses by recommended and accepted, summarizing
the number of recommendations and sequence diagrams ac-
cepted for each of the approaches analyzed. This result

demonstrates that the acceptance of the approaches is rel-
evant and that users accepted more sequence diagrams rec-
ommended by the CB algorithm.

Figure 3: Recommendations Accepted by Approaches

Considering the sequence diagram characteristics dis-
played in Table 1, we can see that some characteristics were
searched, selected and recommended more often than others
by the users, such as asynchronous and return, in addition
to combined fragment of the conditional (opt and alt) and
iterative (loop) type. The most frequently chosen charac-
teristics are also the most frequently recommended ones by
the approaches, as we can see in Figure 4. One possible in-
terpretation of this result is that both approaches are recom-
mending sequence diagrams that match the characteristics
requested by the users, but also that the subjects had a bias
towards features they are already familiar with.

Regarding the answer to RQ2: From the point of view
of user satisfaction, which of the two approaches is better?
Two approaches achieve equal performance. The Kruskal-
Wallis chi-squared indicates that there is a no statistical dif-
ference between the CB and BoW as concerning satisfac-
tion, because p-value of 0.2987 and Vargha-Delaney A mea-
sure return A measure exactly 0.5.

4.7. Threats to Validity

In this section we describe the main threats to the validity
of this work. Internal Validity: We had a low number of
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Figure 4: Item Profile Characteristics

sequence diagrams, which may result in cases where there
is no sequence diagram covering the features of interest of
the users. To address this threat, we manually created se-
quence diagrams to increase the number of characteristics
available. External Validity: We have a low number of
participants, which may lead to problems related to the sta-
tistical significance of the results.

5. Related Work

Most works aim to increase the reusability, providing
ease of maintenance, improving productivity and making
suggestions according to the preferences of the developer.
Cubranic et al. [11] exploits recommender systems for bug
fixes. Ye et al. [12], Lozano et al. [13], and McCarey [14]
propose to recommend classes and methods based on the
current class being used by the developer. Other works
go beyond recommendation methods and indicate artifacts
based on the bug fix process or recommend design pat-
terns. The aforementioned works are important and repre-
sent an emerging area where information retrieval and rec-
ommender system techniques are used for searching and
recommending software engineering artifacts. This paper
complements these works by being one of the first research
efforts (according to the reviewed literature) on using se-
quence diagrams recommendations.

6. Conclusion and Future Work

In this paper we proposed content-based recommender
systems for recommending sequence diagrams. We have
compared two recommendation models: a bag-of-words
model borrowed from the information retrieval field and a
classic CB algorithm. We conducted an experiment where
we did not find statistical difference between the approaches
considered. However, users accepted more sequence di-
agrams recommended by the CB algorithm. It is impor-

tant to emphasize that when filling the user profile by the
users the most frequently chosen characteristics are also
the most frequently features present in the diagrams rec-
ommended by the approaches. Hence, our study can serve
as basis for future works aimed at identifying the main be-
havioral features of interest to developers when specifying
UML design. As an ongoing work, we are currently in-
vestigating several other recommendation algorithms to be
incorporated in our approach. In order to address current
threats and reach more precise results, we intend to design
and perform a new experiment with a larger database of user
profiles and sequence diagrams.
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