
Embedded Emotion-based Classification of Stack
Overflow Questions Towards the Question Quality

Prediction
Amit Kumar Mondal Mohammad Masudur Rahman Chanchal K. Roy

University of Saskatchewan, Canada
{amit.mondal, masud.rahman, chanchal.roy}@usask.ca

Abstract—Software developers often ask questions in Stack
Overflow Q & A site, and their posted questions sometimes
do not meet the standard guidelines. As a consequence, some
of the questions are edited by expert users, some of them are
down-voted, or some are even deleted permanently. Besides, the
users (i.e., developers) might not get the expected solutions for
their problems. In this paper, we study up-voted and down-voted
questions from Stack Overflow, and analyze the relationship of
embedded emotions with question quality. We use Sentiment140
API for identifying embedded emotions in the question texts,
and then apply Feed-Forward Multilayer Perceptron (MLP)
and Support Vector Machine (SVM) on the emotion data for
developing a quality prediction model. Experiments using 38,920
Stack Overflow questions suggest about 70% precision and about
74% recall for our model with 10-fold cross-validation, and these
findings clearly reveal the impact of human emotions upon the
quality of a question.
Keywords – Sentiment analysis; question quality; machine

learning; StackOverflow

I. INTRODUCTION

Software developers often search for solutions in the web
for their encountered problems. Programming Q & A sites host
millions of programming related questions that are answered by
expert individuals from the community. Stack Overflow (hereby
SO) is one of the most widely used programming Q & A sites
that helps the developers harvest knowledge on programming
problems and solutions. It contains millions of questions and
answers, and has a median response time of 11 minutes [18].
However, due to poor quality in the question content, the users
(i.e., developers) might not get the appropriate answers, and the
questions might need to be edited by the experts, or it could
be down-voted or even deleted by moderators. Asaduzzaman
et al. [3] suggest that unanswered questions are increasing
rapidly. They report about 299K questions that were posted
during 2008 to 2012 and still are unanswered. Rahman and
Roy [18] report that up to February, 2015, about 27% of
StackOverflow questions were unresolved. Correa and Sureka
[6] identify about 293K questions that were posted during 2009
to 2013 and were later deleted due to off-topic or low quality
content. Thus, question quality is a major concern for Stack
Overflow. The site also attempts to ensure the content quality
standard and minimize the noise by setting up a clear guideline1

1http://stackoverflow.com/help/how-to-ask

for asking questions. However, the volume of the question is
rapidly increasing, and manual checking and assurance of the
questions’ quality is prohibitively costly and highly challenging.
One way to handle this challenge is to employ an automatic
technique that can predict the quality of a question reliably
during its submission. Based on our preliminary observation
on 1000 question samples, we believe that human emotions or
sentiments embedded in the texts of a question might affect
the perception about the quality of the question. Too much
negative words (i.e., pessimistic views) in the text of a question
might increase the possibility of getting the question down-
voted or deleted permanently or at least the question needs to
be edited by the experts. This leads us to consider a special
aspect, the embedded emotions or sentiments of an about-to-
post question’s text for predicting its quality. We thus attempt
to answer the following two research questions in this paper:

• RQ1: Is quality of a question affected by its author’s
emotions/sentiments embedded in the texts?

• RQ2: Can a predictive model effectively predict the
quality of the question based on the sentiment metrics?

Existing studies focus on different dimensions for classifi-
cation or efficient management of SO questions and answers.
For classification or post quality prediction, textual features of
a question [2, 16], characteristics of a code segment [8], social
and emotional factors [14], and various key-terms [20] are
analyzed. Serva et al. [20] mine negative code examples from
Stack Overflow using sentiment analysis where they use a set
of key-terms as negativity indicators. However, such indicators
might not be sufficient enough to classify a programming
related question given that the question generally contains both
texts and code segments. Thus, we leverage the human emotions
embedded in the text of a question for predicting its quality
from Stack Overflow. In this paper, we report an empirical study
using 38,920 questions from Stack Overflow, and propose a
sentiment metric based machine learning model for identifying
low-quality and high-quality questions. For question quality
prediction, we combine two categories of features– TF-IDF
[19] of the key-terms and sentiment polarity of the sentences
in the text from a question. In particular, we consider the
frequencies of three types of sentences –positive, negative and
neutral from the question texts as sentiment metrics detected
by Sentiment140 API.DOI reference number: 10.18293/SEKE2016-146

Fig. 1. Schematic diagram of our study

Our proposed classifier model(s) can classify questions with
about 70% precision and 74.2% recall. These are 8% and 2.72%
improvements respectively over baseline performance [20]. We
also note that sentiment-metrics alone can classify the question
from Stack Overflow with about 68.50% precision and about
73.80% recall. Such findings validate our problem statement
that human emotions/sentiment embedded in the question text
can be a potential indicator of its quality. Thus, we make the
following contributions in this paper:

• An exploratory study on how embedded emotions in the
text of a question can affect the perception of its overall
quality using 38,920 questions from Stack Overflow.

• A question quality prediction model by employing novel
sentiment based metrics.

II. METHODOLOGY

Salient feature extraction from the raw data for item classifi-
cation is a challenging task. In Stack Overflow, each question
generally has natural language texts and code segment(s) or
code-like elements. Since we focus on embedded emotions
in the question texts, we extract the items related to human
emotions or sentiments carefully from the questions. Our
research methodology comprises of three main steps–(1)
Dataset preparation, (2) Exploratory analysis, and (3) Question
quality model design. Fig. 1 shows the schematic diagram of
these steps. In the following section we describe each of these
steps in details.

A. Dataset Preparation

In this research, we wanted to study recent questions from
Stack Overflow. We thus collect questions submitted between
January, 2014 and January, 2015. We first collect 50K questions
using Stack Exchange Data Explorer1. We found 3,239 down-
voted questions, among them only 163 have vote-value less than
- 4. In order to increase the down-voted samples in our dataset,
we collect another 7,235 questions that were posted between
January, 2013 and January, 2014, and they have vote value
< −4. We discard the questions with 0 vote or having #words
< 5 in the text body from the collected questions. Thus we have
a collection of 38,920 questions, 73% of them are up-voted
(i.e., score > 0) whereas the rest 10,474 (27%) are down-
voted (i.e., score < 0). Given that concept of quality might be
subjective, we consider that a question is of low quality if it is
down-voted by the technical crowd of Stack Overflow and vice
versa as was also considered by [2, 8, 16, 20]. We then label
the low quality and high quality questions using ‘-1’ and ‘+1’

1http://data.stackexchange.com/stackoverflow/query/new

Fig. 2. Base term histograms for low quality and high quality questions
from Stack Overflow (the graph is for 76 terms while the diagram producing
systems hide most of the terms)

respectively which gives two classes convenient for our SVM
and MLP classifier models. The texts from each Stack Overflow
question contain various HTML tags including <code> tags.
These <code> tags generally contain code segments or code
like elements [18]. Since we focus on natural language texts
from a question, we separate the rest content from <code>
tags, and consider them as the content of interest from the
question.

B. Exploratory Study

In order to answer RQ1, we randomly select 1,000 questions
from our dataset containing 500 up-voted questions and 500
down-voted questions. We first perform natural language
preprocessing such as stop words (i.e., I, we, to, and, Java...etc.)
removal, word splitting and stemming [18], and then determine
the term frequency to derive meaningful insights. Fig. 2, and
3 summarize our comparative analysis between different types
of questions.

We collect and investigate frequent terms from down-voted
questions where we consider a heuristic term frequency of 20
(i.e., to limit the list to the words with greater significance).
Since existing studies [20] analyze such questions to extract
negative code examples, we select those questions as a starting
point for our analysis. This step provides us a collection of
76 terms which we call as base terms. We then determine
frequencies of the base terms in up-voted questions. Fig. 2
shows the histograms of base terms from the two sets of
questions. We note that up-voted questions have relatively
greater frequencies compared to the down-voted questions. For
example, we see the base terms–‘below’, ‘differ’, and ‘use’ for
up-voted questions have the greater frequencies. Mann Whitney
U-tests (for up-voted and down-voted questions, the p− value
are 0.000060 and 0.00016 which are less than threshold 0.05)
also show significant differences in their frequencies. All
these findings suggest that there might exist a significant and
meaningful difference in the term distribution between up-voted
and down-voted questions from Stack Overflow.

We also qualitatively investigate the base terms (i.e., highly
frequent words), and notice that some of them reflect human
emotions, and are also considered by existing sentiment-based
studies [20]. Due to this, it is not enough to apply indicators
words for sentiment for the posts.

Fig. 3. Histograms of indicator terms from low quality and high quality
questions (words are stemmed)

TABLE I
INDICATOR TERMS (TAKEN FROM [20]) AND TOP RANKED NEGATIVE

SYNSETS (TAKEN FROM[4])

Indicator Terms Negative Synsets
error expect abject unfortunate

wrong doing distressing dispossessed
except remove pitiful tawdry

null fine sad hapless
work syntax sorry miserable

something try bad misfortunate
compile empty unfit pathetic

argue trouble unsound piteous
throw trying scrimy pitiable

unfortunate getting shoddy poor

1) Key Term Analysis: Serva et al. [20] propose a list of
indicator terms (also called key terms) for extracting low-quality
code examples from programming questions and answers of SO.
The left column of Table I shows some of their indicator terms.
In order to investigate if such key terms can be a distinguishing
feature between high quality and low quality questions, we
determine their frequencies from our sample questions. Fig. 3
shows the key term histograms for the two sets of our sampled
questions. Although the diagrams show moderate frequency
differences for the key terms between up-voted and down-coted
questions, they are not significant. In particular, Mann-Whitney
U tests confirm that the differences are not significant (i.e.,
U = 127, p− value = 0.258 > 0.05). The findings show that
while key terms might be effective for negative code example
extraction, they are not sufficient enough to separate low quality
questions from high quality questions. Despite this, as the test
is for 1000 samples and key-terms have moderate histogram
differences we consider these terms for further verification
in the classification model. In fact, as several studies [4, 21]
suggest, human emotions are often captured in sentences or
phrases rather than in isolated words.

2) Sentiment Analysis: Sentiment analysis identifies the
emotions embedded within the texts. Emotions are annotated
as- positive, negative and neutral. Over the past years sentiment
analysis has been widely adopted, and a popular lexical resource
SentiWordNet [4] is used in many research works [21]. In
our exploratory study, we first make use of SentiWordNet to
contrast between high quality and low quality questions from
SO. We collect top-ranked negative synsets from SentiWordNet,
and the right column of Table I shows the negative words [4].
We then determine the frequency of these terms in our sampled
questions. Fig. 4 shows the histograms for our sampled up-

Fig. 4. Histogram of top negative terms (taken from [4]) from 2,000 sampled
questions of Stack Overflow

TABLE II
POLARITY OF EXAMPLE QUESTIONS USING Sentiment140 API

ID Part of Question Text (with vote) Polarity
1 19393251 This started happening lately, every I

use a piece of code it counts [...] I have
due in a month because of this stupid
problem. {-10}

Negative

2 896532 That aside, I’ve managed to add Captcha
to my comments, and I’ve learned that
customizing the form is a terrible idea
[...]. {-3}

Negative

3 8908508 [...] So I will have to separate all this
in packages, [...] Is this separation a
good thing in your opinion or is this a
complete overload? {7}

Neutral

4 8908224 I do not mind keeping the executable
but [...] I would love it if the library
works just like MySQLdb does. {3}

Positive

voted and down-voted questions. It should be noted that we
consider only a tiny fraction (top 10 from the origin list [4])
of the 1,105 synsets as they are well defined by Baccianella et
al.[4]. However, the histogram suggests a moderate distribution
for those terms. Furthermore, we note that negative words are
more frequent in the down-voted (i.e., low quality) questions
than the up-voted (i.e., high quality) questions. Existing studies
[5, 15] are also found to be aligned with our finding. Bazelli
et al. [5] analyze personality traits of the authors from SO
questions, and report that the authors of high-voted artifacts
(questions, comments, and answers) often express less negative
emotions than the authors of down-voted artifacts.

We determine the sentiment polarity of each of the sentences
from the example questions using Sentiment140 API. From
Table II, we see that the API provides correct polarities
for examples 1, 2 and 4. Unfortunately, the API produced
Neutral polarity for sample 3, which should have been Positive.
We also perform emotion extraction from the sampled 2000
questions (1000 down-voted and 1000 up-voted), and determine
correlation among different attributes (Section II-C1) of the
questions to better understand the impact of human emotions.
From Table III, we note that positivity in the question is
correlated with TF-IDF (term-frequency and inverse-document-
frequency) and with overall score of the question. According to
our base term analysis, high quality (i.e., up-voted) questions
are richer in content, i.e., have greater TF-IDF than low
quality (i.e., down-voted) questions. Thus, positive sentiment is

TABLE III
CORRELATION BETWEEN SENTIMENT POLARITY AND QUESTION QUALITY

NP (Negative) PP (Positive) OP (Neutral)
TF-IDF 0.12 0.54 0.35
Question score 0.08 0.15 0.10

positively correlated with question quality as well. On the other
hand, we see from Table III that negativity in the question
is helpful neither for scoring votes from the crowd nor for
improving the content quality of the question.

From the above empirical study, overall, we notice interesting
differences between the two types of questions. First, high
quality questions are more positive sentimentally than low
quality questions, and this positivity also helps them score votes.
Second, low quality questions are affected with negativity, and
they are also poor in the textual content, i.e., less TF-IDF.
Thus, to answer RQ1, the quality of a question is moderately
affected by its author’s emotions or sentiments embedded in
its natural language texts.

C. The Proposed Question Model

Our exploratory study suggests that high quality and low
quality questions from Stack Overflow significantly differ in
terms of TF-IDF [19] and human emotions embedded within
the texts. That means, such features can be exploited to separate
low quality questions from high quality questions. We thus
incorporate those features in a question quality model based
on machine learning. In this section, we discuss the detailed
design of our model, and also attempt to answer RQ2.

1) Feature Calculation: Based on the findings from the
exploratory study, we select four features for our model–
(1) TF-IDF of key/indicator terms (Table I) in the question
texts, (2) negative sentence count, (3) positive sentence count
and (4) neutral sentence count from a question. Since term
distribution differs between high quality and low quality
questions according to our exploratory analysis, we determine
TF-IDF of a question using the indicator list of [20]. While
the TF-IDF is based on the lexical aspect of a question, the
remaining three counts are based on emotional signatures within
the texts.

Sentiment Polarity Counts: We determine the counts of
three types of sentences from a question d, and call them nega-
tive sentence count (NPd), positive sentence count (PPd) and
neutral sentence count (OPd). In order to determine sentiment
polarity, we use Sentiment140 API1, an implementation of Go
et al. [9]. We first isolate each of the sentences (S) from the
question texts, determine their polarities using the API, and
then accumulate them to generate the three sentence counts:

Negative Sentence Count,NPd =
∑
s∈S

I(Pols = Neg)

Positive Sentence Count, PPd =
∑
s∈S

I(Pols = Pos)

Neutral Sentence Count,OPd =
∑
s∈S

I(Pols = Obj)

Here, Pols is the polarity indicator of each sentence s, and
the identity function I(Pols = Neg) returns 1 only when

1https://cran.r-project.org/src/contrib/Archive/sentiment/

the polarity Pols of s is negative. Neg represents negative
polarity, Pos means positive polarity, and Obj means neutral
polarity. Investigation shows that the up-voted (i.e., high quality)
question not only contains meaningful textual content (i.e.,
higher TF-IDF) but also its content is enriched with positive
emotions. On the other hand, the down-voted (i.e., low quality)
question not only contains less meaningful content but also
the content is affected by negative human emotions.

2) Question Classification: Since our dataset contains clearly
labeled question samples, we apply supervised learning to
our classification task. For classification, we use two machine
learning algorithms– Multilayer Perceptron (MLP) and Support
Vector Machine (SVM). We train our algorithms using 38,920
question samples from the dataset, and then evaluate the
classifiers using 10-fold cross-validation.

Multilayer Perceptron: Multilayer feed forward neural
networks are universal approximators and are used to extract
patterns or detect trends that are too complex to be noticed [12].
We develop our MLP model using one input layer containing
4 nodes, one hidden layer with 4 nodes and one output layers
with 2 nodes. Nodes in the input and output layers are based
on the extracted features (i.e., 4) and the labeled classes (i.e.,
2). There is no strict rule for selecting the number of nodes
in the hidden layer. However, as a rule2 of thumb, we use the
following formula, and choose four nodes in the hidden layer.

#hidden nodes = (#input nodes+#output nodes)× 2

3

Although we explored other values, finally we set learning
rate=0.1 and number of iterations=500 for the best outcome of
our experiments. Since our data might not be linearly separable,
we use a logistic function based activation.

Support Vector Machine: Support Vector Machine is often
used for detecting binary classes from nonlinear data space.
SVM defines support vectors for separating hyperplanes [7].
Since our data might not be linearly separated, we choose
Gaussian Radial Basis function [7] as our kernel function for
producing non-linear hyperplanes. The value of regularization
parameter λ can be arbitrarily adjusted, and through iterative
investigations we found that the value 0.05 produces the best
result. We run our experiments on WEKA3, and verify our
experimental findings for different configurations.

III. EXPERIMENT AND DISCUSSION

We run both classifier models–MLP and SVM– on 38,920
labeled samples where each sample is represented as a vector
of four numeric feature values and a class label (i.e., either
‘+1’ or ‘-1’). We apply 10-fold cross-validation for testing
the performance of our developed models. For evaluation and
validation, we use two classical performance metrics– precision
and recall. Table IV and VI summarize our experimental results
using those metrics.

Table IV shows how our models perform with different sets
of features considered with noisy data. We first run experiments

2http://stackoverflow.com/questions/10565868
3http://www.cs.waikato.ac.nz/ml/weka/

TABLE IV
EXPERIMENTAL RESULTS (WITH NOISE)

SVM MLP Serva et al. [20]
Features Precision Recall Precision Recall Precision Recall

Baseline Method {S(t)} – – – – 61.61% 71.48%

Proposed Method
{TF − IDF,NP, PP,OP} 63.40 % 72.00% 69.60% 74.20 % – –
{TF − IDF,NP, PP} 63.10 % 72.30 % 69.40% 74.10% – –
{NP,PP} 67.60 % 73.80% 68.50% 73.80% – –

TABLE V
RESULTS FOR BALANCED DATASET(WITH NOISE)

SVM MLP Serva et al. [20]
Features Precision Recall Precision Recall Precision Recall

Baseline Method {S(t)} – – – – 66.44% 74.21%

Proposed Method
{TF − IDF,NP, PP,OP} 82.7 % 82.3% 82.6% 82.1% – –
{NP,PP,OP} 82.2 % 82.00% 82.8% 82.6% – –

TABLE VI
EXPERIMENTAL RESULTS FOR 700 RANDOM QUESTIONS (WITHOUT NOISE)

SVM MLP
Features Precision Recall Precision Recall
{TF-IDF, NP,
PP, OP }

67.00 % 66.10% 69.00 % 68.90 %

{ NP, PP } 66.50 % 65.40 % 68.50 % 68.80%

with indicator term based technique of Serva et al. on our
dataset, and found 61.61% precision and 71.48% recall. We
consider them as the baseline performance.

Then we perform experiments with our MLP and SVM mod-
els, and found MLP performing better than SVM. They show
about 8% improvement in the precision and 3% improvement in
the recall over the baseline performance. Since we are interested
to investigate how emotional components (i.e., sentiments) in
the texts affect the quality of a question, we filter out additional
features gradually and collect the results. We first discard the
neutral sentence count (OP), and notice very trivial change in
the performance. This suggests that this feature has a very low
predictability power for question quality. We then discard TF-
IDF from our models, and notice that the performance is still
almost the same. For example, with the two sentiment based
features–negative sentence count (NP) and positive sentence
count (PP), our MLP classifier provides a 68.50% precision
and 73.80% recall which are promising. Although the accuracy
is not too high, these findings clearly pose the sentiment based
metrics as promising candidate features for quality prediction
of Stack Overflow questions.

As our dataset contained unexpected noise that might be
affecting our findings, we choose a random subset of 1,000
questions from the dataset, and discard the questions containing
items other than pure texts–equation, email address, code
segment, hyper-links, and configuration information. This leads
us to a collection of 700 samples containing 400 up-voted
questions and 300 down-voted questions, and our classifier
provides 69.00% precision and 68.50% recall (Table VI) with
these questions (and same configuration of the model). These
are very close to our previously reported findings in Table IV.

Finally, we prepare balanced dataset (51 : 49) by separating
11,000 top up-voted questions and 10,474 down-voted ques-

tions, and employ our model on this. In this case, the outcome
is significantly improved; precision rates for MLP and SVM
are 82.6 % and 82.2 % respectively with the sentiment features
only (Table V). Thus, to answer RQ2, machine learning model
can effectively predict the quality and classify the questions
based on sentiment metrics. Such findings also strengthen our
RQ1 that embedded human emotions in the question texts can
really affect the quality of a question.

IV. RELATED WORK

Mining of programming Q & A sites containing millions of
technical questions, answers and comments are becoming more
and more popular among the research community. Arai and
Handayani [2] present a general model to predict quality of
information from Yahoo! answers by using answer features (AF)
as metrics (i.e., non-textual information). They use only 815
training samples and 302 test samples. Most of the metrics they
use are calculated during post-submission phase of a question,
and are heavily dependent on the time spent. Ponzanelli et
al. [16] use SO metrics, Readability metrics, and Popularity
metrics for predicting the quality of technical questions where
they employ decision tree (DT) as the predictive model. SO
metrics and Popularity metrics are post-submission metrics, and
are dependent on questions age. Ponzanelli et al and colleagues
[17] also suggest a linear quality function (QF) to submit the
low quality questions into review queue. In a recent study, Duijn
et al. [8] focus on code only information for classification of
posts. One of the features they selected is the length of the
code segment. However, from the manual investigation of posts
it is observed that there exist numerous code segments which
are positive but have fewer lines of code, even in some cases
one line of code. Moreover, many questions do not contain
code-segment, thus the quality is only dependent on the text
of those questions.

Several studies are available to detect human emotions
[1, 9, 21] in the informal texts from social networking website.
However, corpora of Q & A sites mainly contain unstructured
technical texts and mining them is challenging due to emoticons,
slang, misspelled words, hash-tags, links, e-mail, equation,
and even code-segments within a sentence [15]. Recently,

Novielli et al. [15] conduct an empirical study on 400 top
scored SO posts (questions, answers, and comments) using
SentiStrength tool, and identify several challenges of sentiment
analysis in technology domain. Despite limitations of affect
(i.e., human emotion) extraction, several researchers focus
on software developers emotions and behavior in software
artifacts [5, 11, 13]. Murgia et al. [13] investigate emotional
information of the developers in the software development.
They analyze issue reports from issue trackers (Apache Jira),
and categorize the found emotions into six groups. Bazelli
et al. [5] study SO questions and answers to explore the
personality traits of the authors, and report that authors of
high-voted posts reveal notably less negative emotions than the
authors of down-voted posts. Serva et al. [20] investigate 240
posts, and extract key-terms having negative impact on question
quality. Although, these terms are claimed to be negative, our
study suggests their little power in distinguishing lower quality
questions from higher quality questions (Section II-B). In a
related work, Novielli et al. [14] argue about the impact of
emotions upon the quality of SO posts. However, their exists no
implementation of their work yet. In addition, there are other
sentiment extraction related studies [10, 22] which motivate
us to dig down more deeply about the problem. To summarize,
most of the SO question’s quality analysis use features (SO
metrics and popularity metrics) which are based on the age of
the questions along with textual metrics whereas our proposed
models do not depend on them. We consider the sentiment
polarity of each of the sentences from the question text as
features for designing the model. Thus, our proposed approach
is more feasible for quality prediction during question posting.
Moreover, our experiment is also a feasibility evaluation of
Sentiment140 API to the detection of human emotions from
technical discussion text.

V. THREATS TO VALIDITY

Although we conduct our study and analyze our results
carefully, there exist several threats to the validity of our
findings. First, programming questions contain various items
beyond natural language texts such as equations, emails,
symbols, hyper-links and code-segments which can pose as
noise, and the reported results might be affected. In order
to handle that threat, we experiment with 700 randomly
selected questions after removing noise, and collect the results.
Interestingly, we note that the results do not vary significantly
from our original performance.

Second, our dataset is inherently skewed since there is a
bit imbalance in the categories of questions (73% up-voted vs
27% down-voted). We did our experiment with what we get
randomly. Thus the classifiers also do not perform equally for
both types of questions. However, experiment with balanced
dataset (51% up-voted and 49% down-voted), shows better
performance (Table V) for our model, and thus that was not
really a threat.

Third, we consider positive-scored questions as of high
quality and negative-scored questions as of low quality as
suggested by relevant literature [2, 8, 16, 20]. That means, we

exploit crowd-sourced knowledge to develop the oracle for our
classifiers, and still we cannot guarantee that all positive-scored
questions contain high quality content.

VI. CONCLUSION AND FUTURE WORK

Programming questions in Stack Overflow are rapidly
increasing, and maintaining their content quality is a major
concern. In this paper, we report an exploratory study and
experimental outcome of a proposed model using 38,920
questions from Stack Overflow where we investigate the impact
of author’s emotions on the quality of a question. We select
four features including three sentiment based features for sep-
arating low quality questions from high quality questions, and
perform the classification using two popular machine learning
algorithms–MLP and SVM. Our best model, MLP provides
a precision of 70% and a recall of 74% which are promising
according to relevant literature. We also clearly demonstrate that
human emotions embedded in the question texts have significant
impact on the quality of the questions. In future, we plan to
explore the scope of sentiment aspects in various classification,
filtration and management of StackOverflow questions.

REFERENCES
[1] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau. Sentiment analysis

of twitter data. In Proc. LSM, pages 30–38, 2011.
[2] K. Arai and A. N. Handayani. Predicting quality of answer in collaborative q and

a community. Intl. J. of Adv. Research in AI, pages 21–25, 2013.
[3] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider. Answering

questions about unanswered questions of stack overflow. In Proc. MSR, pages
97–100, 2013.

[4] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining. In Proc. LREC, pages 2200–
2204, 2010.

[5] B. Bazelli, A. Hindle, and E. Stroulia. On the personality traits of stackoverflow
users. In Proc. ICSM, pages 460–463, 2013.

[6] D. Correa and A. Sureka. Chaff from the wheat: Characterization and modeling
of deleted questions on stack overflow. In Proc. WWW, pages 631–642, 2014.

[7] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, pages 273
– 297, 1995.

[8] M. Duijn, A. Kucera, and A. Bacchelli. Quality questions need quality code:
classifying code fragments on stackoverflow. In Proc. MSR, pages 410–413, 2015.

[9] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant
supervision. Stanford University, Tech. Rep, 2009.

[10] E. Guzman, D. Azócar, and Y. Li. Sentiment analysis of commit comments in
github: An empirical study. In Proc. MSR, pages 352–355, 2014.

[11] E. Guzman and B. Bruegge. Towards emotional awareness in software development
teams. In Proc. FSE, pages 671–674, 2013.

[12] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Netw., pages 359–366, 1989.

[13] A. Murgia, P. Tourani, B. Adams, and M. Ortu. Do developers feel emotions?
an exploratory analysis of emotions in software artifacts. In Proc. MSR, pages
262–271, 2014.

[14] N. Novielli, F. Calefato, and F. Lanubile. Towards discovering the role of emotions
in stackoverflow. In Proc. SSE, pages 33–36, 2014.

[15] N. Novielli, F. Calefato, and F. Lanubile. The challenges of sentiment detection in
the social programmer ecosystem. In Proc. SSE, pages 33–40, 2015.

[16] L. Ponzanelli, A. Mocci, A. Bacchelli, and M. Lanza. Understanding and classifying
the quality of technical forum. In Proc. QSIC, pages 343–352, 2014.

[17] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton. Improving low
quality stack overflow post detection. In Proc. ICSME, pages 541–544, 2014.

[18] M. M. Rahman and C. K. Roy. An insight into the unresolved questions at stack
overflow. In Proc. MSR, pages 426–429, 2015.

[19] S. Robertson. Understanding inverse document frequency: On theoretical arguments
for idf. Journal of Documentation, 60, 2004.

[20] R. Serva, Z. Senzer, L. Pollock, and k Vijay-Shanker. Automatically mining
negative code examples from software developer Q & A forums. In Proc. SoftMine
ASE, pages 410–413, 2015.

[21] C. Strapparava and R. Mihalcea. Learning to identify emotions in text. In Proc.
ACM Applied computing, pages 1556–1560, 2008.

[22] Y. Zhang and D. Hou. Extracting problematic api features from forum discussions.
In Proc. ICPC, pages 142 – 151, 2013.

	Introduction
	Methodology
	Dataset Preparation
	Exploratory Study
	Key Term Analysis
	Sentiment Analysis

	The Proposed Question Model
	Feature Calculation
	Question Classification

	Experiment and Discussion
	Related Work
	Threats to Validity
	Conclusion and Future Work

