
DFIPS: Toward Distributed Flexible Intrusion
Prevention System in Software Defined Network

Xuesong Jia∗, Danni Ren∗, Yitao Yang∗†, Huakang Li∗†, Guozi Sun∗†,
∗College of Computer, †Institute of Computer Technology

Nanjing University of Posts and Telecommunications
Nanjing, China

1214043025@njupt.edu.cn, 1141909032@qq.com, {youngyt, huakanglee, sun}@njupt.edu.cn

Abstract—With the evolution of the innovative software defined
network (SDN), security issues have been taken into considera-
tion. Intrusion prevention system (IPS) has widely deployed as
a crucial measure in traditional network architecture to protect
network from malignity. In spite of good capability of protection,
IPS is still complained in many aspects, such as fixed deployment,
single-point-detection and low utilization rate. In this paper, we
propose a distributed flexible intrusion prevention system in
software defined network (DFIPS). Our proposed DFIPS has
three main modules: a classifier, a detector pool and a control
agent. The classifier is in charge of slicing traffic. The detector
pool then generates several detector nodes for detecting. The
control agent interacts with the classifier and the detector pool, as
well as higher level SDN controller APPs and OpenFlow switches.
DFIPS integrating with SDN controller can easily achieve good
load balancing among DFIPSs without repetitive deployment.
We evaluate the two forms of DFIPS interaction and latency to
show the advantage of DFIPS. In future, we would implement
a more comprehensive DFIPS emulation to prove feasibility. We
believe that the proposed DFIPS will be adapted in real networks
eventually.

Keywords—Intrusion prevention system (IPS); Software
defined network (SDN); OpenFlow

I. INTRODUCTION

Software defined network (SDN) is an innovative tech-
nology that enables a drastic change in network design and
management [1]. By separating the control plane from the
data plane and consolidating the control plane, SDN realizes
a logically centralized and physically distributed network
framework. OpenFlow [2], the most successful application
program interface (API) designed for SDN, embraces the
paradigm of highly programmable switch infrastructures. It
enables an optimal network routing that traffic forwarding is no
longer restricted to particular command on individual network
devices. A global view of network makes control more flexible
and centralized [3].

With the evolution of this new technology, security issues
in traditional network still exist in SDN, such as suffering
from Distributed Denial of Service (DDoS) attack. Besides,
the logical centralization of control logic makes it easier for
attackers to paralyze the whole network once they infect the
controllers in SDN. So, how to protect SDN from abnormal
or unpermitted flow must been taken into consideration.

Traditionally, intrusion prevention system (IPS) [4] which
usually deployed at the edge of the trusted internal net-
work, serves as the vital gate in detecting and responding
to anomalies. Despite its popularity and advantage, IPS is
criticized in many aspects [5], such as local concern, single-
point-detection, sub-optimal utilization rate and unbalanced
computing resource consuming.

In light of the problems above, we explore a different
design. Instead of a inflexible deployment, we propose a
distributed flexible framework of IPS in software defined
network. We call it DFIPS. DFIPS is embedded in SDN
controllers as an application so that it can be deployed flexibly
and can have a global view of network that is convenient to
supervising. DFIPS has three main modules: a classifier, a
detector pool and a control agent. The proposed DFIPS also
supports load balancing to achieve a global optimal utilization
rate. We use network slicing and coordination work among
DFIPSs to enable distributed fine-grained intrusion detection
and prevention.

To summarize, the contributions of this paper are shown as
follows:

• We present the detailed architecture of our proposed
DFIPS (Section II) which involves: (i) three main mod-
ules presentation (the classifier, the detector pool and
the control agent), (ii) load balancing and distributed
processing. Besides, we also present the work procedure
and give some assumptions.

• We present the initial evaluation of our design in an
emulated SDN environment. We present the two forms
of DFIPS interaction and latency to show the superiority
of our design (Section III).

• We present a variety of outstanding related work on IPS
among different areas (Section IV), before concluding in
Section V.

II. DESIGN AND ARCHITECTURE

In traditional network architecture, IPS runs as a stand-
alone device and is interference in traffic forwarding. To have
a global view of anomalous traffic and lower delay without
decrease detecting capacity, we present IPS in this paper as an
application running on the centralized controller. This means
that DFIPS has access to the network: all the communication
between SDN controller and switches would pass through

DOI reference number: 10.18293/SEKE2016-139



DFIPS; and DFIPS could inspect all data wanting to pass
through switches.

Now, we present the detailed description of each portion
in DFIPS. The structure of DFIPS is shown in Figure 1. Our
proposed DFIPS has two three portions: a classifier, a detector
pool and a control agent.

Fig. 1: The structure of DFIPS.

A. Main Modules

1) Classifier: The classifier is in charge of slicing traffic
to improve resource allocation and realize a fine-grained
distributed detection. We propose a modified FlowVisor [6]
serving as a transparent proxy between switches and detector
pool to implement network slicing. In our demonstration,
a slice can be defined as (switch port, IP protocol, src/dst
UDP/TCP port). Each slice is routed to the corresponding
detector node independently.

2) Detection Pool: The detector pool generates a several
detector nodes according to the number of slices from the
classifier that each detector node has three submodule: collec-
tion submodule, analysis submodule and decision submodule.
The detector node would be discarded when the slice is no
longer exist.

Collection submodule keeps a record of messages that
switches send to the controller. For further analyzing and
queries, these records will be stored in the local database.
Analysis submodule is for data analysis to find if flows
are malicious, suspicious or normal via detection methods.
Decision submodule has the authority to generate appropriate
strategies to switches according to the analysis above. It sends
information feedback to the control agent.

We propose a local database to store logs of every detection
process and a remote database to share the feature library of
abnormity collected from each single DFIPS in an associated
region. In future, we can do date mining with semantic based
algorithm [7]. Particularly, we tend to use R-trees [8] to access
the feature library in remote shared database to make queries
efficiently.

3) Control Agent: The control agent interacts with the
classifier and the detector pool, as well as higher level SDN
controller APPs and OpenFlow switches [9]. The control agent

also monitors and controls the running state of the classifier
and the detector pool.

B. Load Balancing and Distributed Processing

There are two cases of load balancing and distributed
processing as follow:

One DFIPS faces multi-switches. A single detector in
DFIPS cannot deal with massive traffic from different switches
in a very short period of time. Splitting traffic into several
slices can enhance the parallel processing capabilities [10].
Each slice has a unified feature, such as a particular protocol,
a common port, source/destination addresses. After slicing, a
number n of slices are generated and then transmitted into the
detector pool where spawns a number n of detector nodes.
Besides, DFIPS will analyze the relevance of suspicious traffic
among different switches to achieve better intrusion prevention
performance.

Multi-DFIPSs face one switch. After a switch registering
to several controllers, a master controller will be chosen.
Others will be slave controllers. The DFIPS running on a
master controller is the master DFIPS and in active mode.
The rest of DFIPSs connecting to the same switch will be
in standby mode. Once the master controller is down or
congestion occurs in DFIPS, slave controller will take charge
and DFIPS on it will be active. Furthermore, the DFIPSs in
different locations exchange their detection result to update
their local feature library of suspicious traffic in order to
respond to a similar attack quickly.

C. Work Procedure

When traffic arrives at border switches, DFIPS control agent
modifies the flow entries to make sure that every suspicious
packet is forwarded to the detector pool for inspecting. The
DFIPS control agent orchestrates actions of the detector pool
and the command of upper level controller APPs. A detailed
process of DFIPS is shown as follow (assuming the switches
have been registered to SDN controllers):

1) Firstly, slicing the traffic into several slices and for-
warding the slices to detector pool in where generates
corresponding number of detector nodes.

2) Collection submodule in the detector node would store
the digested information of each slice.

3) Then after the slice of traffic reach the analysis submod-
ule, the analysis submodule would inspect it with several
methods, such as high speed deep packet inspection
(DPI) [11] and flow level detection [12].

4) Then the decision submodule would give suggestions
responding to analysis results. If an abnormity is not
detected, the DFIPS control agent would control the
packet forwarding to upper level controller platform
for normal process. Further, if detecting an abnormity
and concluding that the packet is malicious, the DFIPS
control agent would send drop command of malicious
packet to the related OpenFlow switches; if not, a count
of this packet would be recorded as suspicious traffic and
increase at a time. DFIPS control agent would modify



the flow entries to make sure that all these suspicious
traffic would be forwarded to DFIPS. While the count is
higher than a given threshold value, decision submodule
would suggest DFIPS control agent to do an appropriate
QoS (e.g. rate limitation) when forwarding the packet;
otherwise, the packet would be forwarded to upper level
controller platform just like normal traffic.

5) DFIPS records the detection process into the local
database and updates the shared remote database for
future analyzing.

To prevent conflicting rules caused by misconfiguration,
some security strategies must be taken. We tend to use
FlowChecker [13] to accomplish this mission.

D. Assumptions

The proposed DFIPS is running as an application on cen-
tralized controllers. We assume that controllers are absolutely
safe and unoccupied. In our architecture, DFIPS possesses
the highest priority to conduct traffic control. It is easy to
implement owing to abundant priorities (32768) available in
OpenFlow. We also assume the packet loss rate and random
noise are very low that can ignore.

III. EVALUATION

We build a test-bed (shown in Figure 2) using POX con-
troller [14] and Mininet [15]. In our test-bed, a modified snort
[16] is utilized to simulate a detector node and IPS. In this
topology, OFS 1 and OFS 2 are OpenFlow-enabled switches.

(a) Traffic interference simulation.

(b) Traffic monitoring simulation.

Fig. 2: Simulation diagram.

We first evaluate the two forms of DFIPS interaction to
demonstrate the advantage of embedding DFIPS into SDN
controller. In this simulation, we use ping to simulate the
access request from the Internet to the internal network.

We ping twice (from Host 1 to Host 2) for each form of
DFIPS interaction. The flow rules are not pre-configured. In
traffic interference framework (Figure 2.(a)), the first ping time
is 11.04ms, while the second ping time is 6.54ms. In traffic

monitoring framework (Figure 2.(b)), the first ping time is
10.86ms, while the second ping time is 0.862ms.

After the first ping, a flow rule is created and stored in the
OpenFlow switch. This implies the second ping time does not
have flow rules setup time. So the second ping time reduces
largely. The second ping time in traffic monitoring framework
is much smaller than in traffic interference framework implies
that integrating DFIPS into SDN controllers has lower inter-
ference to normal communications.

Then, we evaluate the latency of slicing in DFIPS with
topology Figure 2.(b). In this simulation, we examine the
average new flow rules setup time on two situations: with
slicing and without slicing.

The simulation shows that the average latency of new flow
rules setup time with slicing (4.13ms) is more small than
without slicing (7.25ms). It demonstrates that slicing traffic
into several detector nodes has better performance.

IV. RELATED WORK

Now, we present some related work in intrusion prevention
domain as below.

Recently, many proposed schemes have argued the novel
IPS toward traditional network and software defined network.
An SDN-based IPS deployment is proposed to support an uni-
fied scheduling of security applications in the whole network
and load balancing among IPSs [17]. In this deployment, SDN
controller manipulates IPSs in headquarters and branches to
realize thread detection and load balancing between idle and
busy IPSs. Different to DFIPS, this scheme cannot realize the
flexible deployment.

Some work have shown the global, cooperative and dis-
tributed approaches of intrusion detection and prevention [18].
A cooperative IDS framework is addressed in [19] for cloud
computing networks. In [20], an algorithm for combining
observations from multiple vantage points is proposed. In
[21], [22], a number of architectures that IPS/IDS works as
a cluster are proposed. Take [21] as example, it proposes a
general IDS architecture with splitting responsibility to other
nodes by on-path distribution, replicating traffic to off-path
nodes (e.g. IDS clusters) and aggregating result to split costly
IDS processing. A plenty of previous work has focused on
distributed security deployment. DEIDtect [23] is an elastic
distributed intrusion detection framework that decouples the
location of the protected network from IDS/IPS in the cloud
and enterprise network. [24] shows the cooperation of active
network management software and extensible hardware to stop
an attack.

These proposed methods regard security facilities as middle-
boxes [25]. And they seek to promote system performance on
the basis of the original security hardware. On the contrary, our
proposed DFIPS gets rid of the hardware security device and
embeds into SDN controllers. This implies that our DFIPS can
easily enable flexible deployment, global view and cooperation
with other DFIPSs.

A SDN-based framework MalwareMonitor [26] is proposed
to realize a comprehensive, distributed malware detection for



networks by tapping into outgoing traffic and detecting it with
a number of detector nodes. Contrary to focusing on outgoing
traffic, we concern incoming traffic from distrustful Internet
to internal network. Besides, our proposed DFIPS is more
flexible particularly in deployment.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a distributed flexible intrusion
prevention system in software defined network. The DFIPS
we proposed decouples the location of security devices and
protected points by integrating DFIPS into SDN controllers.
DFIPS exploits the deployment of software defined network.
One DFIPS can easily monitor several switches without
repetitive deployment. This flexibility could reduce expenses
largely on deployment. Further, DFIPSs in a certain region
could commodiously achieve an optimal utilization rate by
cooperating with each other. Slicing and virtualization enable
the fine-grained detection and distributed processing.

We present the detailed description of design and imple-
mentation of each portion in the DFIPS. We evaluate the two
forms of DFIPS interaction and the latency of slicing. The
simulation result shows that DFIPS has lower delay and lower
interference to normal communications.

In future, we would implement a more comprehensive
emulation to solve other technical difficulties in DFIPS. For
example, how to realize automatic network slicing and flexible
detection nodes generation is a knotty problem. We also need
to design a more accurate detection algorithm and a gentle
controller coordination method. How to improve the perfor-
mance of DFIPS is importance as well. Our ultimate goal is
to get DFIPS widely deployed in real network environment.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
detailed reviews and constructive comments. This work is
supported by the National Natural Science Foundation of Chi-
na (No. 61502247, No.61502243, No.11501302), the Natural
Science Fund of province (BK20140895) and the Ministry
of public security key experimental open project fund (No.
2015DSJSYS001).

REFERENCES

[1] N. Feamster, J. Rexford and E. Zegura, “The Road to SDN: An
intellectual history of programmable networks,” In ACM SIGCOMM
Computer Communication Review vol. 44, no. 2, pp. 87-98, 2014.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” In ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69-74, 2008.

[3] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, 2015.

[4] S. Vasanthi and S. Chandrasekar, “A study on network intrusion de-
tection and prevention system current status and challenging issues,”
Advances in Recent Technologies in Communication and Computing
(ARTCom 2011),3rd International Conference on, pp. 181-183, 2011.

[5] D. Stiawan, A. H. Abdullah and M. Y. Idris, “The trends of Intru-
sion Prevention System network,” Education Technology and Computer
(ICETC), 2010 2nd International Conference on, vol. 4, pp. 217-221,
2010.

[6] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman,
D. Underhill, T. Yabe, K. Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller,
R. Johari, N. McKeown and G. Parulkar, “Carving research slices out
of your production networks with OpenFlow,” In ACM SIGCOMM
Computer Communication Review, vol. 40, no. 1, pp. 129-130, 2010.

[7] Zheng Xu et al. Knowle: a Semantic Link Network based System
for Organizing Large Scale Online News Events. Future Generation
Computer Systems, 43-44, 40-50, 2015.

[8] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
In Proceedings of the 1984 ACM SIGMOD international conference on
Management of data,pp. 47-57, 1984.

[9] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica and M. Horowitz, “Forwarding metamorphosis: fast
programmable match-action processing in hardware for SDN,” In Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pp.
99-110, 2013.

[10] S. Gutz, A. Story, C. Schlesinger and N. Foster, “Splendid isolation: A
slice abstraction for software-defined networks,” In Proceedings of the
first workshop on Hot topics in software defined networks, pp. 79-84,
2012.

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matching for deep
packet inspection,” In SIGCOMM ’06 Proceedings of the 2006 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, pp. 339-350, 2006.

[12] Y. Gao, Z. Li and Y. Chen, “A DoS resilient flow-level intrusion
detection approach for high-speed networks,” In Proceedings of the 26th
IEEE International Conference on Distributed Computing Systems, pp.
39, 2006.

[13] A. Ehab and A. Saeed, “FlowChecker: configuration analysis and
verification of federated OpenFlow infrastructures,” In Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
pp. 37-44, 2010.

[14] http://www.noxrepo.org/.
[15] http://mininet.org/
[16] https://www.snort.org/.
[17] L. Zhang, G. Shou, Y. Hu and Z. Guo, “Deployment of intrusion preven-

tion system based on software defined networking,” In Communication
Technology (ICCT), 2013 15th IEEE International Conference on, pp.
26-31, 2013.

[18] V. Sekar, R. Krishnaswamy, A. Gupta and M. K. Reiter, “Network-
wide deployment of intrusion detection and prevention systems,” In
Proceedings of the 6th International Conference (Co-NEXT), Article
No. 18, 2010.

[19] C. Lo, C. Huang and J. Ku, “A cooperative intrusion detection system
framework for cloud computing networks,” In Parallel Processing Work-
shops (ICPPW), 2010 39th International Conference on, pp. 280-284,
2010.

[20] A. Lakhina, M. Crovella and C. Diot, “Diagnosing network-wide traffic
anomalies,” ACM SIGCOMM Computer Communication Review, vol
34, no. 4, pp. 219-230, 2004.

[21] V. Heorhiadi, M. K. Reiter and V. Sekar, “New opportunities for load
balancing in network-wide intrusion detection systems,” In Proceedings
of the 8th international conference on Emerging networking experiments
and technologies (CoNEXT), pp. 361-372, 2012.

[22] F. Gadaud, “NIDS architecture for clusters,” In Collaborative Tech-
nologies and Systems, 2005. Proceedings of the 2005 International
Symposium on, pp. 78-83, 2005.

[23] P. K. Shanmugam, N. D. Subramanyam, J. Breen, C. Roach and J. V.
d. Merwe, “DEIDtect: Towards distributed elastic intrusion detection,”
In Proceedings of the 2014 ACM SIGCOMM workshop on Distributed
cloud computing (DCC), pp. 17-24, 2014.

[24] T. Sproull and J. Lockwood, “Distributed intrusion prevention in active
and extensible networks,” Proceedings of the 6th IFIP TC6 international
working conference on Active networks, pp. 54-65, Springer-Verlag
Berlin, Heidelberg 2007.

[25] A. Gember, R. Grandl, J. Khalid and A. Akella, “Design and implemen-
tation of a framework for software-defined middlebox networking,” In
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pp. 467-468, 2013.

[26] Z. Abaid, M. Rezvani and S. Jha, “MalwareMonitor: An SDN-based
framework for securing,” In Proceedings of the 2014 CoNEXT on
Student Workshop (CoNEXT Student Workshop), pp. 40-42, 2014.


