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Abstract—Absence of test oracles is the grand challenge for 
testing complex scientific software. Metamorphic testing is the 
novel technique for developing test oracles on metamorphic 
relations. Although it is easy to find metamorphic relations 
based on general guidelines and domain knowledge, the ones 
that can adequately test the software are difficult to be 
developed. This paper introduces a machine learning 
approach for iteratively developing metamorphic relations. 
The approach develops initial metamorphic relations and tests 
first, and then the relations and tests are refined through 
mining the initial test execution and evaluation results with 
machine learning algorithms. The approach and its 
effectiveness are illustrated through testing an open source 
discrete dipole approximation program. 

Keywords-metamorphic testing, metamorphic relation, test 
oracle, scientific software, machine learning. 

I.  INTRODUCTION 
Scientific software is the software that includes 

computational components for supporting scientific 
investigation and decision making [8]. The examples of 
scientific software include simulation software of nuclear 
reactions, software for predicting and tracking hurricanes, 
and software for analyzing medical images. Testing 
scientific software faces many challenges. Many of them are 
“non-testable” due to the absence of test oracles [2]. Oracle 
problems are key to solve for adequately testing scientific 
software [8]. Metamorphic testing [2] as a novel software 
testing technique is a promising approach for solving oracle 
problems. It creates tests according to metamorphic 
relationship (MR) and verifies the predictable relations 
among the actual outputs of the related tests. It was first 
proposed by Chen [2] for addressing oracle problems, and it 
has been applied to several domains such as bioinformatics 
systems, machine learning systems, compilers, and scientific 
software [16]. However, the application of metamorphic 
testing to large scale of scientific software is rare because of 
the difficulty of the identification of MRs.  

Existing testing approaches normally check the 
correctness of each individual execution, but not the relation 
among outputs of multiple executions. The success of 
metamorphic testing tells us that checking the relation 
among multiple test outputs is necessary for testing 
scientific software that is hard to find a test oracle. 
However, the quality of metamorphic testing is highly 
depended on MRs. Due to the grand challenge to develop 

strong MRs, many MRs used for testing a complex software 
system are relatively too weak to ensure the testing quality. 
It is important to define a set of criteria for evaluating the 
adequacy of MRs. Then the test execution and evaluation 
results shall be used for guiding the generation of adequate 
MRs [4]. The approach introduced in this paper includes a 
framework for the development of MRs and tests, and a 
strategy for refining the relations and tests though mining 
the test execution and evaluation results with machine 
learning algorithms. The test evaluation consists of test 
coverage evaluation and mutation testing. The mutation 
testing includes two steps: the first one is applied to the 
mutated metamorphic relations, and the second one is 
applied to the mutated program. The proposed approach is 
an enhancement of metamorphic testing in the development 
of test oracles for testing “non-testable” scientific software. 
A case study of testing an open source discrete dipole 
approximation (DDA) program called ADDA[19][21] is 
conducted to explain the approach and to demonstrate its 
effectiveness. 

ADDA is a fairly complex scientific software system 
with many characteristics that cause the testing challenges 
that were described by Kanewala and Bieman [8].  The most 
challenge issue for testing ADDA is the absence of test 
oracles since a test input of ADDA may include thousands 
of parameters and it is impossible to know the correctness of 
the output for an arbitrary input. ADDA as open source 
software, its source code, manual, and other documents are 
available online. Anyone who is interested in the technique 
discussed in this paper has the opportunity to reproduce the 
experiment. The experience from testing ADDA can be 
easily shared in the software testing community. The 
iterative metamorphic testing for developing test oracles 
with machine learning for adequately testing ADDA can be 
easily extended for testing other scientific software. 

The rest of this paper is organized as follows: Section 2 
describes the general idea of the proposed approach. Section 
3 discusses iteratively developing test oracles for testing 
ADDA. Section 4 describes related work, and section 5 
concludes this paper. 

II. ITERATIVE METAMORPHIC TESTING 
In iterative metamorphic testing, MRs serve as test 

oracles, and test coverage evaluation and mutation testing 
are used for evaluating the test adequacy and iteratively 
producing adequate MRs for testing the Software Under 
Test (SUT). 
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A. The Approach 
The iterative metamorphic testing consists of three 

major steps: development of initial MRs and tests, test 
evaluation, and refinement of MRs. (1) Development of 
initial MRs and tests. Based on domain knowledge of the 
SUT and general framework of metamorphic testing [13], 
one develops a set of MRs. Based on general test 
generation strategies such as combinatorial technque, 
category-based or random approach to produce tests for 
each MR. (2) Test evaluation. As soon as the SUT passes 
all tests, tests created for mutations of MRs are used for 
checking the quality of MRs. A mutation test is a set of 
valid tests whose outputs violate an MR. The purpose of 
testing SUT with mutation tests is to ensure the relation can 
differentiate positive tests from negative ones. The 
effectiveness of the test is then evaluated with selected test 
coverage criteria and mutation testing. A mutant should be 
killed by an MR or weakly killed by a test. A mutant is 
weakly killed when the output of the mutated program is 
different to the predicted one based on refined MRs. (3). 
Refinement of MRs. It is the process for creating test 
oracles, which can be developed through refining current 
MRs or defining new MRs. Machine learning algorithms 
could be used for processing existing test execution data 
and test evaluation results to find patterns for severing 
MRs. 

B. A Running Example 
This section describes the proposed approach with a 

running example: testing a program that is used for 
calculating the contrast of an image, which is 101 pixels * 
101 pixels in gray scale with 8-bit resolution like those 
shown in Fig. 1. We define the contrast based on the 
average intensities of a concentric ring area and a circle 
area in an image. The intensity of each pixel is the pixel 
value such as 125 or 24 of an 8-bit resolution image. The 
contrast C of an image is defined as follows: 

C =
Rc − Rp

Rc + Rp

                                            (1) 

where R c is the image intensity averaged over a circle area 
of 18 pixels diameter centered at the origin and R p is the 
intensity averaged over a concentric ring area in the region 
with 30 and 66 pixels as the inner and outer diameters, 
respectively. There is no easy way to decide the correctness 
of the calculated contrast of an image, which is exactly the 
purpose of building the program. Iterative metamorphic 
testing can be used for testing the program.  

  
(a)                               (b)                             (c) 

Figure 1:  (a) The test outputs (the red dots in the ring) form a closed 
circle; (b) the test outputs (the red dots within the ring) form a half circle 
within the concentric ring, which violates circle relation MR1. (c) The 
tests cannot detect the error in the program. 

1) Devloping Initial MRs and Tests.  
Based on formula (1), it is easy to define an MR like 

increase/decrease as follows: 
MR1 (Increase/Decrease): Given an image, increase 

the intensity of any pixel in the circle area will increase the 
contrast of the image, and increase the intensity of any 
pixel in the concentric ring area will decrease the contrast 
of the image.  

Although MR1 is useful for testing the program, it isn’t 
good enough. For example, MR1 cannot verify whether a 
pixel is correctly calculated for the concentric ring or the 
circle area. If the concentric ring or the circle area is 
incorrectly implemented, it is difficult to detect the defect 
using the tests based on MR1 since only very few special 
tests will violate the MR. For example, if the program 
calculates the circle area using diameter 17 instead of 18, 
then only tests that are located on the boundary of diameter 
18 may detect the error. If the origin position of the circle is 
set to position <50, 51> instead of <50, 50>, it is almost 
impossible to find a test to detect the error without 
checking the relation among outputs of multiple tests. 
Therefore, it is necessary to add new MRs for checking the 
implementation of the concentric ring area and the circle 
area in the program, the relations for checking the 
concentric ring area and the circle area are used for guiding 
the selection of tests and checking the testing results. We 
know the center of the image is at position at <50, 50>, and 
then the test oracles for deciding whether a pixel <x, y> is 
within the circle area or within the concentric ring area are 
defined as follows: 

Test oracle 1 (a pixel is within a circle): pixel <x,y> is 
within the circle if	 (𝑥 − 50)2 + (𝑦 − 50)2 < 	18/2. 

Test oracle 2 (a pixel is within the concentric ring): 
pixel <x, y> is within the concentric ring area if (30/2)2 
< (𝑥 − 50)/ + (𝑦 − 50)/ < 	66/2.  

A test for checking the implementation of the areas is a 
pixel <x, y> in an image, and it is marked with a special 
color when the pixel is counted for an area during testing. 
Each MR1 test is a candidate for creating new tests based 
on new MRs for metamorphic testing. The relation among 
the outputs, which are colored pixels, can be visually 
verified. MR2 is defined as follows:  

MR2 (circle): Given a set of test inputs t1 = {<xi, yi>| 
(𝑥1 − 50)/ + (𝑦1 − 50)/=32}, the outputs shall form a circle 

that is within the concentric ring area and has the same 
origin as the ring. Given a set of test inputs t2 = {<xi, yi>| 
(𝑥1 − 50)/ + (𝑦1 − 50)/=8}, the outputs shall form a circle 

that is within the circle area and has the same origin as the 
circle. 

t1 and t2 form a circle in the circle area and a circle in 
the concentric ring area, respectively, and their outputs 
should form a colored circle in the circle area and one in 
the concentric ring area. 

2) Test Evaluation 
As soon as the program passes all tests, it is further 

tested with mutation tests. Testing with mutation tests is a 
type of negative testing to determine the response of the 



system with unexpected test inputs. The purpose of testing 
with mutation tests in this research is to check the quality 
of MRs and mitigate the problem that a relation is so weak 
that can be satisfied by any tests. A mutation test is a set of 
valid tests whose outputs don’t satisfy an MR. A mutation 
test t’1 of MR2 is defined as follows: 

Mutation test t’1:{<xi, yi>|((xi – 50)/40)2+((yi – 50)/20)2=1} 
The outputs of test set t’1 don’t satisfy relation MR2 

since they form an oval instead of a circle, which shows 
relation circle is a carefully selected relation and only 
satisfied by a carefully selected test sets. Using the same 
idea, one can create a mutation test for MR1. The test 
includes pixels outside of the areas, and changing of the 
intensity of the pixels would not affect the contrast.  

Test adequacy is evaluated through measuring selected 
test coverage criteria such as function coverage, condition 
coverage and mutations [7]. It is infeasible to kill all 
mutants, and it is even more challenge to kill mutants when 
testing "non-testable” programs. Many mutants such as one 
systematically shifts the real values cannot be killed by 
simple MRs, which is also a reason of checking MRs with 
mutation tests. If the correctness of an individual output can 
be checked, then regular mutation testing [7] can used for 
testing the program. Otherwise, we expect each mutant will 
be at least weakly killed.  A good MR needs kill some 
mutants. If a mutant was not killed or weakly killed by any 
test, then new tests or new MRs should be developed until 
the mutant is killed or a conclusion of the infeasibility of 
killing the mutant is made. If all mutants are killed or 
weakly killed, it is necessary to check whether these 
mutants are killed uniformly by the MRs. 

3) Refining MRs 
When a pixel <x, y> in test t1 or t2 is tested, the program 

marks the pixel with a different color. As soon as all pixels 
are tested, it is easy to observe whether the outputs of t1 or 
t2 form a circle within the expected area. For example, if 
the concentric ring is implemented shifted from the center 
origin <50, 50> to <55, 50>, then we can find some colored 
pixels are shifted from the center of the concentric ring area, 
and the colored pixels form an incomplete circle within the 
concentric ring area, as shown in Fig. 1 (b). If the test was 
created without considering the relation, such as those 
shown in Fig. 1 (c), the shifting error would not be detected 
since each individual output is correct. For the same reason, 
relation circle is also useful to detect the problem in test 
oracles. For example, if test oracle 2 incorrectly uses 
position <55, 50> as the origin of the image, the problem 
can be easily detected by either test inputs t1 or t2. 

In this research, the initial relations are revised and 
refined during test process and in turn the updated MRs are 
used for producing more tests.  Let’s use MR increase as an 
example to explain the refinement process. We select one 
image and change the intensity of some pixels in the 
concentric ring or circle areas of the image to create a new 
image. In the beginning, no one knows the exact difference 
of the contrast between the original image and the modified 
one except relation MR1 of the contrasts between the two 
images. But as soon as the program calculates the exact 
numbers of pixels and their intensities in the concentric 

ring and circle areas, it is easy to calculate the exact 
difference between the contrasts of two images that have 
different intensity for exact one pixel so that MR increase 
is refined from a general relation to a precise one. For 
example, if a pixel’s intensity in the circle area is increased 
from 64 to 128, and we know there are n pixels with total 
intensity Ic in the circle area based on previous execution, 
one can use new 𝑅3 = (𝐼3 + 64)/𝑛	to calculate the exact 
contrast of the new image using formula 1. The MR 
increase is refined with exact values. The refined relations 
are used for creating more tests for testing the program, and 
each individual output can be precisely verified. In order to 
develop MRs for complex scientific software, machine 
learning of the test execution data and evaluation results 
should be used. 

III. TESTING ADDA USING METAMORPHIC TESTING 
In this section, we discuss testing ADDA using the 

iterative metamorphic testing, especially on refinement and 
development of MRs using machine learning approaches. 

A. Testing ADDA  
DDA is a method to simulate light scattering from 

particles through calculating scattering and absorption of 
electromagnetic waves by particles of arbitrary geometry 
[19]. The particle as a dielectric scatterer are divided into 
many small volumes called dipoles. The dipoles make up a 
small cubic lattices of spacing within a fraction of 
wavelength of the incident of light and they are each 
exposed to the incident field and the field due to all other 
dipoles. The interactions of dipoles are approximated based 
on equations of the electric field [19]. DDA has been 
widely used for light scattering simulations [19]. ADDA is 
an open source implementation of DDA written in C99 
with routines in Fortran and C++ [21]. The general input 
parameters of ADDA define the optical and geometry 
properties of a scatterer/particle including the shape, size, 
diploes, refractive index of each dipole, orientation of the 
scatterer, definition of incident beam, and many others. 
ADDA produce different outputs for different applications 
such as Muller matrix at different scattering angles used for 
producing diffraction images. It is unknown the correctness 
of an ADDA simulation with an arbitrary heterogeneous 
scatterer with an arbitrary shape in advance. The authors of 
ADDA have conducted extensive testing of ADDA for 
special cases, but more general tests of ADDA is still 
necessary.  Here we discussed how to test ADDA using 
iterative metamorphic testing, particularly on developing 
MR using a machine learning approach.  

B. Development of Initial MRs and Tests 
ADDA has been extensively tested with special cases 

[14][21], which serve as the initial tests for creating tests 
using MRs. Since an output of ADDA may include 
thousands items and its input may include lots of 
parameters, it is very difficult to find an MR directly on its 
inputs and outputs. We define MRs on the textual property 
of the the diffraction image generated from an ADDA 
output. The textual patterns of diffraction images can be 
visually observed or quantitatively characterized with Grey 
Level Co-occurrence Matrix (GLCM) features [6]. GLCM 



calculates computable textural features based on grey-tone 
spatial dependencies. It defines how often different 
combinations of gray level pixels occur in an image for a 
given distance d in a particular angle θ [6]. We define 
initial MRs based on the shape, size, orientation, and 
refractive index of a scatterer. Each MR checks the 
correlation between a parameter and the textual pattern of 
the ADDA calculated diffraction image of a scatterer. 

MR3 (Difference): When the size, shape, orientation, 
refractive index value of a scatterer is changed, its textual 
pattern of the diffraction image is changed. Only one 
parameter is changed at each time, and the change of the 
orientation doesn’t affect the textual pattern of a sphere 
scatterer. 

Since the ADDA simulation results of sphere scatterers 
have been compared to the results calculated from Mie 
theory with many different configurations [14]. We assume 
the calculation of ADDA on sphere scatterers is correct. 
For testing each MR, we first compare the result to a sphere 
scatterer result. Fig. 2 shows the comparison of the textual 
patters of three scatterers in different shapes, and the result 
satisfies MR3. 

We use combinatorial technique to create tests to cover 
more scenarios. For example, the four input parameters are 
the scatterer size, shape, refractive index, and orientation. 
Then select the possible values for each parameter guided 
by techniques such as category based technique, random, or 
boundary values. The base tests can be created using 
combinatorial techniques such as pairwise, and then the 
MRs are used for producing tests based on the base tests.  
For example, the possible values of size are {3µm, 5µm,  
…, 16µm} for the ADDA study, shapes are {sphere, 
ellipsoid, bi-sphere, prism, egg, cylinder, capsule, box, 
coated, cell1, cell2, …}, orientations are {<0, 0, 0>, <10, 
90, 0>, <270, 0, 0> , …}, and refractive index values are 
{1.0, … 1.5}. Using pairwise, one can create many base 
tests, and then select the valid tests as the first tests to 
create MR tests for MR3. Fig. 3 shows a comparison of the 
textual patters of diffraction images of a cell with different 
refractive index values in nuclear. The result satisfies MR3.  

Although MR3 can offer some preliminary testing for 
ADDA for heterogeneous scatterers including real cells, the 
relation is still too weak to adequately test ADDA. MR3 
should be refined and probably new MRs should be created 
for testing the program.  

 

     
                   (a)                           (b)                            (c) 
Figure 2. The comparison of the textual patterns of diffraction images of 
scatterers in different shapes (a) sphere, (b) ellipsoid, and (c) bi-sphere. 

   
Figure 3. The comparison of the textual patterns of diffraction images of a 
cell with different refractive index values in nuclear. 

C. Evaluation of MRs and Tests 
The initial tests created using 

MR3 covered 100% statements and 
close to 100% of conditions. Partial 
mutation testing was conducted to 
check the effectiveness of the 
metamorphic testing. The mutation 
testing was applied only to one 
module of ADDA program. Several 
mutants were instrumented to the 
code manually and their results were manually inspected.  

Mutation testing of “non-testable” programs like 
ADDA is difficult since many MRs are not sensitive to 
mutants. In this case, one can check the consistency 
between the outputs of the mutated program and the 
original one. A mutant is killed if it causes a violation of 
any MR, and a mutant is weakly killed if the output of a 
test of the mutated program is different to the original one. 
Absolute Value Insertion (ABS) and Relational Operator 
Replacement (ROR) were used for creating mutants. 
Among total all 20 mutants (10 ABS mutants, and 10 ROR 
mutants) we created for testing ADDA, 17 of them were 
killed by crashing of the program or exception handing. 
The other 3 mutants were killed by the MRs since the 
outputs didn’t generate any textual pattern as shown in Fig. 
4. We found mutants are easily killed by simple tests in 
scientific software probably due to the complexity of the 
software. A slight change of the program can cause a 
catastrophic error in the calculation. The mutant that 
instrumented to ADDA program produced the diffraction 
image shown in Fig. 4 is easily to be killed since the two 
different scatterers produced the diffraction images with the 
same textual patterns. The results show that MR3 can test 
ADDA in some degree. 

However, it is very difficult to create a mutation test for 
MR3 that would produce two diffraction images with the 
same textual patterns by changing the input parameters. 
MR3 is so weak that many wrong results can satisfy it.  

D. Refinement of MRs 
According to the results discussed in Section III. B, C, 

it is easy to see the intuitive relation between the textual 
pattern of a diffraction image and its 3D morphology. We 
need refine the relation for understanding how the change 
of 3D morphology parameters including the shape, size, 
refractive index and orientation are precisely related to the 
textual pattern. We investigate the problem via an 
experimental study. First, we took many diffraction images 
of different types of cells using a diffraction image based 
flow cytometer called p-DIFC. These images are called 
measured diffraction images to compare the calculated 
diffraction images produced from ADDA. Second, process 
these measured images for GLCM, and check how the 
GLCM features are related to cell types. Select optimal 
GLCM features for cell classification, build a feature vector 
including labeled cell type for each image, and construct a 
feature vector matrix with the images that are belonged to 
the same type of cells for training a SVM. Third, use the 
trained SVM to classify diffraction images for cell types 
based GLCM feature values. If the cells can be successfully  

Figure 4. An error 
diffraction image. 
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Figure 5. GLCM features of 6 types of diffraction images 

classified by the GLCM features, then we need test whether 
the calculated diffraction images can be also used for 
classifying the cell type. If it does, the cell classification 
based on diffraction images will serve as a test oracle for 
testing ADDA. 

We took 100 diffraction images for each type of cells 
for total 6 different types of cells using p-DIFC. Fig. 5 is 
the experimental result of selected GLCM features among 
600 cells. From the two diagrams, it is not difficult to see 
that the correlation between some GLCM features and the 
cell types. However, the cell classification cannot be 
completed just based on one feature, instead multiple 
features have to be used. In this study, feature selected was 
conducted, and 8 GLCM features were selected for the 
SVM based classification  [17]. Fig. 5 should be able to 
serve as a test oracle for testing ADDA since we expect the 
ADDA calculated diffraction images of the same type of 
cells in Fig. 5 should also have the same feature patterns as 
those shown in Fig. 5. However, the real reflective index 
value of each cell organelle is unknown but a guessed one, 
the feature patterns between the measured images and 
calculated images should be similar but not identical, and 
the precise relation between them cannot be defined. Fig. 5 
can serve as a reference for testing ADDA, but it is not 
enough. 

The SVM based classifier is built on Weka with SVM 
library LIBSVM. Stratified 10-Fold Cross Validation 
(10FCV) was used for checking the accuracy of the SVM 
classification. In this study, specifically 90 images per each 
type of cells were used for training the SVM and remaining 
10 images were used for testing the classifier. We 
experimented the classification using different sets of 
GLCM features and different distance and grey level for 
calculating GLCM. The best performance of the SVM 
classification is configured with 8 selected GLCM features, 
and the GLCM calculation was configured with distance as 
2 and grey level as 64. The average accuracy of the 
classification of the 6 types of cells with total 600  

 

       
                (a)                                     (b)                               (c) 
Figure 6. Confocal images (a), 3D structure (b) and diffraction images (c). 
 
diffraction images is 91.16% [17]. Based on the 
experimental result, we expected the calculated diffraction 
images should have the same property as the measured 
images, which can classify cell types based on the GLCM 
features. However, we cannot use the SVM classifier 
trained with the measured diffraction images for classifying 
the calculated images, which has to be trained using the 
calculated diffraction images.  

In order to calculate a diffraction image of a cell using 
ADDA, we need to construct the 3D structure of the cell 
and then assign the refractive index values for each voxel 
of the cell. A stack of confocal image sections are taken 
using a confocal microscope, and then each image section 
is processed to segment the cell components such as 
nuclear and mitochondria. The 3D structure of the cell is 
built based on the processed image sections, and a 
refractive index value is assigned to each voxel in the 
structure. The 3D structure then is imported to ADDA for 
the simulation, and a diffraction image is generated from 
the simulation result. Since orientation is one of the input 
parameters to ADDA, but cell type doesn’t have any 
relation to the orientation. Therefore, we use ADDA to 
calculate diffraction images in many different orientations 
for each cell. Fig. 6 shows 4 of total 48 confocal image 
sections of a cell, its 3D structure and calculated diffraction 
images in two different orientations. 

We took confocal image for 30 cells each type of cells, 
and 4 types of cells were used in the experiment. The 3D 
structure of each cell was simulated for 25 different 
orientations in ADDA. Therefore, we calculated 750 
diffraction images for each type of cells. The images are 
processed for GLCM features with distance 2 and grey 
level 64, and a feature vector matrix including the feature 
values and labeled cell type is built for the same type of 
images. Finally, the feature vector matrix is used for 
training the SVM and 10FCV is used for checking the 
accuracy of the classification. Our preliminary result has 
shown the cells can be classified with the accuracy as high 
as the measured diffraction images. However, we haven’t 
completed the experiment for all 4 type cells. Based on the 
experimental result, a new MR is developed: 

MR4 (Cell classification): A calculated diffraction 
image of a cell can be correctly classified into a 
classification by a SVM classifier. If two calculated 
diffraction images produced from two different types of 
cells, an SVM classifier can classify each into the correct 
classification. 
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should be both dark images without any signal to ensure the completeness of the acquisition 

along the z-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4-1 Confocal image stack acquired from a PC3 cell 

 

Fig.4-2 Confocal image stack acquired from a PCS cell 
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5.1.2 Morphology study of the normal and cancerous prostate epithelial cells 

  To extend our morphology study to the epithelial cells, we have selected the normal and 

cancerous prostate cells of PCS and PC3 cells for confocal imaging and 3D reconstruction. In 

Fig. 5-3, we present the perspective views of the 3D structures of the prostate cells. Three 

parameters at the bottom of each cell are cell volume Vc, volume ratio of nucleus-to-cell Vrnc, 

and volume ratio of mitochondria-to-cell Vrmc. It can be observed directly from the image 

data that the major differences between PC3 and PCS cells are in the cell volume. The PC3 

cells are almost two times bigger than PCS in the cell volume, while the PCS cells have a 

larger volume ratio of mitochondria-to-cell than PC3.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-3  Perspective views of reconstructed 3D structures of three PC3 

(A) and PCS (B) cells. Three parameters at the bottoms for 

each cell are cell volume Vc, volume ratio of nucleus-to-cell 

Vrnc, and volume ratio of mitochondria-to-cell Vrmc.  
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the feature vectors with the training data and obtain an optimized model for accurate cell 

classification.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-9   Selected pairs of polarization-resolved diffraction images acquired from Jurkat and Ramos cells,    

and PC3 and PCS cells. Each image is labeled with the cell type, polarization direction of incident 

beam, polarization direction of scattered light, maximum, average, and minimum pixel intensities of 

the 12-bit diffraction image. 

 

  

 



The new MR built based SVM classifier can test the 
program using existing data. The data size used for this 
study is very limited, it is still not clear whether the 
approach can be extended to all different types of cells or 
even different scatterers. However, the approach should be 
very useful in general for developing test oracles for testing 
scientific software that is absent of test oracles.     

IV. RELATED WORK 
One of the greatest challenges for testing scientific 

software is due to the oracle problem [8][1]. Metamorphic 
testing is the technique for addressing the oracle problem 
though developing them with MRs [2][16]. It has been 
applied to several domains such as bioinformatics systems, 
machine learning systems, and online service systems [10] 
[11][20]. Murphy et al. classified six types of MRs for 
testing machine-learning systems [15], which are useful for 
creating initial MRs. Xie et al. investigated some specific 
MRs that were extended from general MRs for testing 
machine learning applications [18]. Guderlei and Mayer 
proposed a statistical metamorphic testing in [5], where two 
or more output sequences were generated and compared 
according to the statistical MRs. The similar idea is used in 
this paper for developing test oracles based on cell 
classification. Metamorphic testing has been also used for 
testing scientific software. For example, Mayer and 
Guderlei developed a group of MRs for testing image 
process programs [13]. Chen, Fend and Tse have applied 
metamorphic testing for testing partial differential 
equations [3]. However, the program they tested were much 
smaller and simpler than ADDA. Knewala, Bieman and 
Ben-Hur recently reported a result on the development of 
MRs for scientific software using machine learning 
approach integrated with data flow and control flow 
information [9]. However, whether the result can be 
extended for testing large scientific software is unclear.  

V. SUMMARY 
In this paper, we introduced an iterative metamorphic 

testing technique for testing scientific software, where MRs 
are iteratively developed based on analyzing test execution 
and evaluation results. We illustrated the approach and its 
effectiveness through testing ADDA, the widely used open 
source scientific software. A new MR was developed 
through analyzing experimental data using machine 
learning algorithm SVM. The approach could be useful for 
testing similar scientific software as well as other software 
systems that are absent of test oracles.  
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