
A Machine Learning Approach for Developing Test
Oracles for Testing Scientific Software

Junhua Ding

Department of Computer Science
East Carolina University

Greenville, NC, USA
dingj@ecu.edu

Dongmei Zhang

School of Computer Science
China University of Geosciences

Wuhan, China
jjilee@163.com

Abstract—Absence of test oracles is the grand challenge for
testing complex scientific software. Metamorphic testing is the
novel technique for developing test oracles on metamorphic
relations. Although it is easy to find metamorphic relations
based on general guidelines and domain knowledge, the ones
that can adequately test the software are difficult to be
developed. This paper introduces a machine learning
approach for iteratively developing metamorphic relations.
The approach develops initial metamorphic relations and tests
first, and then the relations and tests are refined through
mining the initial test execution and evaluation results with
machine learning algorithms. The approach and its
effectiveness are illustrated through testing an open source
discrete dipole approximation program.

Keywords-metamorphic testing, metamorphic relation, test
oracle, scientific software, machine learning.

I. INTRODUCTION
Scientific software is the software that includes

computational components for supporting scientific
investigation and decision making [8]. The examples of
scientific software include simulation software of nuclear
reactions, software for predicting and tracking hurricanes,
and software for analyzing medical images. Testing
scientific software faces many challenges. Many of them are
“non-testable” due to the absence of test oracles [2]. Oracle
problems are key to solve for adequately testing scientific
software [8]. Metamorphic testing [2] as a novel software
testing technique is a promising approach for solving oracle
problems. It creates tests according to metamorphic
relationship (MR) and verifies the predictable relations
among the actual outputs of the related tests. It was first
proposed by Chen [2] for addressing oracle problems, and it
has been applied to several domains such as bioinformatics
systems, machine learning systems, compilers, and scientific
software [16]. However, the application of metamorphic
testing to large scale of scientific software is rare because of
the difficulty of the identification of MRs.

Existing testing approaches normally check the
correctness of each individual execution, but not the relation
among outputs of multiple executions. The success of
metamorphic testing tells us that checking the relation
among multiple test outputs is necessary for testing
scientific software that is hard to find a test oracle.
However, the quality of metamorphic testing is highly
depended on MRs. Due to the grand challenge to develop

strong MRs, many MRs used for testing a complex software
system are relatively too weak to ensure the testing quality.
It is important to define a set of criteria for evaluating the
adequacy of MRs. Then the test execution and evaluation
results shall be used for guiding the generation of adequate
MRs [4]. The approach introduced in this paper includes a
framework for the development of MRs and tests, and a
strategy for refining the relations and tests though mining
the test execution and evaluation results with machine
learning algorithms. The test evaluation consists of test
coverage evaluation and mutation testing. The mutation
testing includes two steps: the first one is applied to the
mutated metamorphic relations, and the second one is
applied to the mutated program. The proposed approach is
an enhancement of metamorphic testing in the development
of test oracles for testing “non-testable” scientific software.
A case study of testing an open source discrete dipole
approximation (DDA) program called ADDA[19][21] is
conducted to explain the approach and to demonstrate its
effectiveness.

ADDA is a fairly complex scientific software system
with many characteristics that cause the testing challenges
that were described by Kanewala and Bieman [8]. The most
challenge issue for testing ADDA is the absence of test
oracles since a test input of ADDA may include thousands
of parameters and it is impossible to know the correctness of
the output for an arbitrary input. ADDA as open source
software, its source code, manual, and other documents are
available online. Anyone who is interested in the technique
discussed in this paper has the opportunity to reproduce the
experiment. The experience from testing ADDA can be
easily shared in the software testing community. The
iterative metamorphic testing for developing test oracles
with machine learning for adequately testing ADDA can be
easily extended for testing other scientific software.

The rest of this paper is organized as follows: Section 2
describes the general idea of the proposed approach. Section
3 discusses iteratively developing test oracles for testing
ADDA. Section 4 describes related work, and section 5
concludes this paper.

II. ITERATIVE METAMORPHIC TESTING
In iterative metamorphic testing, MRs serve as test

oracles, and test coverage evaluation and mutation testing
are used for evaluating the test adequacy and iteratively
producing adequate MRs for testing the Software Under
Test (SUT).

DOI reference number: 10.18293/SEKE2016-137

A. The Approach
The iterative metamorphic testing consists of three

major steps: development of initial MRs and tests, test
evaluation, and refinement of MRs. (1) Development of
initial MRs and tests. Based on domain knowledge of the
SUT and general framework of metamorphic testing [13],
one develops a set of MRs. Based on general test
generation strategies such as combinatorial technque,
category-based or random approach to produce tests for
each MR. (2) Test evaluation. As soon as the SUT passes
all tests, tests created for mutations of MRs are used for
checking the quality of MRs. A mutation test is a set of
valid tests whose outputs violate an MR. The purpose of
testing SUT with mutation tests is to ensure the relation can
differentiate positive tests from negative ones. The
effectiveness of the test is then evaluated with selected test
coverage criteria and mutation testing. A mutant should be
killed by an MR or weakly killed by a test. A mutant is
weakly killed when the output of the mutated program is
different to the predicted one based on refined MRs. (3).
Refinement of MRs. It is the process for creating test
oracles, which can be developed through refining current
MRs or defining new MRs. Machine learning algorithms
could be used for processing existing test execution data
and test evaluation results to find patterns for severing
MRs.

B. A Running Example
This section describes the proposed approach with a

running example: testing a program that is used for
calculating the contrast of an image, which is 101 pixels *
101 pixels in gray scale with 8-bit resolution like those
shown in Fig. 1. We define the contrast based on the
average intensities of a concentric ring area and a circle
area in an image. The intensity of each pixel is the pixel
value such as 125 or 24 of an 8-bit resolution image. The
contrast C of an image is defined as follows:

C =
Rc − Rp

Rc + Rp

 (1)

where R c is the image intensity averaged over a circle area
of 18 pixels diameter centered at the origin and R p is the
intensity averaged over a concentric ring area in the region
with 30 and 66 pixels as the inner and outer diameters,
respectively. There is no easy way to decide the correctness
of the calculated contrast of an image, which is exactly the
purpose of building the program. Iterative metamorphic
testing can be used for testing the program.

(a) (b) (c)

Figure 1: (a) The test outputs (the red dots in the ring) form a closed
circle; (b) the test outputs (the red dots within the ring) form a half circle
within the concentric ring, which violates circle relation MR1. (c) The
tests cannot detect the error in the program.

1) Devloping Initial MRs and Tests.
Based on formula (1), it is easy to define an MR like

increase/decrease as follows:
MR1 (Increase/Decrease): Given an image, increase

the intensity of any pixel in the circle area will increase the
contrast of the image, and increase the intensity of any
pixel in the concentric ring area will decrease the contrast
of the image.

Although MR1 is useful for testing the program, it isn’t
good enough. For example, MR1 cannot verify whether a
pixel is correctly calculated for the concentric ring or the
circle area. If the concentric ring or the circle area is
incorrectly implemented, it is difficult to detect the defect
using the tests based on MR1 since only very few special
tests will violate the MR. For example, if the program
calculates the circle area using diameter 17 instead of 18,
then only tests that are located on the boundary of diameter
18 may detect the error. If the origin position of the circle is
set to position <50, 51> instead of <50, 50>, it is almost
impossible to find a test to detect the error without
checking the relation among outputs of multiple tests.
Therefore, it is necessary to add new MRs for checking the
implementation of the concentric ring area and the circle
area in the program, the relations for checking the
concentric ring area and the circle area are used for guiding
the selection of tests and checking the testing results. We
know the center of the image is at position at <50, 50>, and
then the test oracles for deciding whether a pixel <x, y> is
within the circle area or within the concentric ring area are
defined as follows:

Test oracle 1 (a pixel is within a circle): pixel <x,y> is
within the circle if	 (𝑥 − 50)2 + (𝑦 − 50)2 < 	18/2.

Test oracle 2 (a pixel is within the concentric ring):
pixel <x, y> is within the concentric ring area if (30/2)2
< (𝑥 − 50)/ + (𝑦 − 50)/ < 	66/2.

A test for checking the implementation of the areas is a
pixel <x, y> in an image, and it is marked with a special
color when the pixel is counted for an area during testing.
Each MR1 test is a candidate for creating new tests based
on new MRs for metamorphic testing. The relation among
the outputs, which are colored pixels, can be visually
verified. MR2 is defined as follows:

MR2 (circle): Given a set of test inputs t1 = {<xi, yi>|
(𝑥1 − 50)/ + (𝑦1 − 50)/=32}, the outputs shall form a circle

that is within the concentric ring area and has the same
origin as the ring. Given a set of test inputs t2 = {<xi, yi>|
(𝑥1 − 50)/ + (𝑦1 − 50)/=8}, the outputs shall form a circle

that is within the circle area and has the same origin as the
circle.

t1 and t2 form a circle in the circle area and a circle in
the concentric ring area, respectively, and their outputs
should form a colored circle in the circle area and one in
the concentric ring area.

2) Test Evaluation
As soon as the program passes all tests, it is further

tested with mutation tests. Testing with mutation tests is a
type of negative testing to determine the response of the

system with unexpected test inputs. The purpose of testing
with mutation tests in this research is to check the quality
of MRs and mitigate the problem that a relation is so weak
that can be satisfied by any tests. A mutation test is a set of
valid tests whose outputs don’t satisfy an MR. A mutation
test t’1 of MR2 is defined as follows:

Mutation test t’1:{<xi, yi>|((xi – 50)/40)2+((yi – 50)/20)2=1}
The outputs of test set t’1 don’t satisfy relation MR2

since they form an oval instead of a circle, which shows
relation circle is a carefully selected relation and only
satisfied by a carefully selected test sets. Using the same
idea, one can create a mutation test for MR1. The test
includes pixels outside of the areas, and changing of the
intensity of the pixels would not affect the contrast.

Test adequacy is evaluated through measuring selected
test coverage criteria such as function coverage, condition
coverage and mutations [7]. It is infeasible to kill all
mutants, and it is even more challenge to kill mutants when
testing "non-testable” programs. Many mutants such as one
systematically shifts the real values cannot be killed by
simple MRs, which is also a reason of checking MRs with
mutation tests. If the correctness of an individual output can
be checked, then regular mutation testing [7] can used for
testing the program. Otherwise, we expect each mutant will
be at least weakly killed. A good MR needs kill some
mutants. If a mutant was not killed or weakly killed by any
test, then new tests or new MRs should be developed until
the mutant is killed or a conclusion of the infeasibility of
killing the mutant is made. If all mutants are killed or
weakly killed, it is necessary to check whether these
mutants are killed uniformly by the MRs.

3) Refining MRs
When a pixel <x, y> in test t1 or t2 is tested, the program

marks the pixel with a different color. As soon as all pixels
are tested, it is easy to observe whether the outputs of t1 or
t2 form a circle within the expected area. For example, if
the concentric ring is implemented shifted from the center
origin <50, 50> to <55, 50>, then we can find some colored
pixels are shifted from the center of the concentric ring area,
and the colored pixels form an incomplete circle within the
concentric ring area, as shown in Fig. 1 (b). If the test was
created without considering the relation, such as those
shown in Fig. 1 (c), the shifting error would not be detected
since each individual output is correct. For the same reason,
relation circle is also useful to detect the problem in test
oracles. For example, if test oracle 2 incorrectly uses
position <55, 50> as the origin of the image, the problem
can be easily detected by either test inputs t1 or t2.

In this research, the initial relations are revised and
refined during test process and in turn the updated MRs are
used for producing more tests. Let’s use MR increase as an
example to explain the refinement process. We select one
image and change the intensity of some pixels in the
concentric ring or circle areas of the image to create a new
image. In the beginning, no one knows the exact difference
of the contrast between the original image and the modified
one except relation MR1 of the contrasts between the two
images. But as soon as the program calculates the exact
numbers of pixels and their intensities in the concentric

ring and circle areas, it is easy to calculate the exact
difference between the contrasts of two images that have
different intensity for exact one pixel so that MR increase
is refined from a general relation to a precise one. For
example, if a pixel’s intensity in the circle area is increased
from 64 to 128, and we know there are n pixels with total
intensity Ic in the circle area based on previous execution,
one can use new 𝑅3 = (𝐼3 + 64)/𝑛	to calculate the exact
contrast of the new image using formula 1. The MR
increase is refined with exact values. The refined relations
are used for creating more tests for testing the program, and
each individual output can be precisely verified. In order to
develop MRs for complex scientific software, machine
learning of the test execution data and evaluation results
should be used.

III. TESTING ADDA USING METAMORPHIC TESTING
In this section, we discuss testing ADDA using the

iterative metamorphic testing, especially on refinement and
development of MRs using machine learning approaches.

A. Testing ADDA
DDA is a method to simulate light scattering from

particles through calculating scattering and absorption of
electromagnetic waves by particles of arbitrary geometry
[19]. The particle as a dielectric scatterer are divided into
many small volumes called dipoles. The dipoles make up a
small cubic lattices of spacing within a fraction of
wavelength of the incident of light and they are each
exposed to the incident field and the field due to all other
dipoles. The interactions of dipoles are approximated based
on equations of the electric field [19]. DDA has been
widely used for light scattering simulations [19]. ADDA is
an open source implementation of DDA written in C99
with routines in Fortran and C++ [21]. The general input
parameters of ADDA define the optical and geometry
properties of a scatterer/particle including the shape, size,
diploes, refractive index of each dipole, orientation of the
scatterer, definition of incident beam, and many others.
ADDA produce different outputs for different applications
such as Muller matrix at different scattering angles used for
producing diffraction images. It is unknown the correctness
of an ADDA simulation with an arbitrary heterogeneous
scatterer with an arbitrary shape in advance. The authors of
ADDA have conducted extensive testing of ADDA for
special cases, but more general tests of ADDA is still
necessary. Here we discussed how to test ADDA using
iterative metamorphic testing, particularly on developing
MR using a machine learning approach.

B. Development of Initial MRs and Tests
ADDA has been extensively tested with special cases

[14][21], which serve as the initial tests for creating tests
using MRs. Since an output of ADDA may include
thousands items and its input may include lots of
parameters, it is very difficult to find an MR directly on its
inputs and outputs. We define MRs on the textual property
of the the diffraction image generated from an ADDA
output. The textual patterns of diffraction images can be
visually observed or quantitatively characterized with Grey
Level Co-occurrence Matrix (GLCM) features [6]. GLCM

calculates computable textural features based on grey-tone
spatial dependencies. It defines how often different
combinations of gray level pixels occur in an image for a
given distance d in a particular angle θ [6]. We define
initial MRs based on the shape, size, orientation, and
refractive index of a scatterer. Each MR checks the
correlation between a parameter and the textual pattern of
the ADDA calculated diffraction image of a scatterer.

MR3 (Difference): When the size, shape, orientation,
refractive index value of a scatterer is changed, its textual
pattern of the diffraction image is changed. Only one
parameter is changed at each time, and the change of the
orientation doesn’t affect the textual pattern of a sphere
scatterer.

Since the ADDA simulation results of sphere scatterers
have been compared to the results calculated from Mie
theory with many different configurations [14]. We assume
the calculation of ADDA on sphere scatterers is correct.
For testing each MR, we first compare the result to a sphere
scatterer result. Fig. 2 shows the comparison of the textual
patters of three scatterers in different shapes, and the result
satisfies MR3.

We use combinatorial technique to create tests to cover
more scenarios. For example, the four input parameters are
the scatterer size, shape, refractive index, and orientation.
Then select the possible values for each parameter guided
by techniques such as category based technique, random, or
boundary values. The base tests can be created using
combinatorial techniques such as pairwise, and then the
MRs are used for producing tests based on the base tests.
For example, the possible values of size are {3µm, 5µm,
…, 16µm} for the ADDA study, shapes are {sphere,
ellipsoid, bi-sphere, prism, egg, cylinder, capsule, box,
coated, cell1, cell2, …}, orientations are {<0, 0, 0>, <10,
90, 0>, <270, 0, 0> , …}, and refractive index values are
{1.0, … 1.5}. Using pairwise, one can create many base
tests, and then select the valid tests as the first tests to
create MR tests for MR3. Fig. 3 shows a comparison of the
textual patters of diffraction images of a cell with different
refractive index values in nuclear. The result satisfies MR3.

Although MR3 can offer some preliminary testing for
ADDA for heterogeneous scatterers including real cells, the
relation is still too weak to adequately test ADDA. MR3
should be refined and probably new MRs should be created
for testing the program.

 (a) (b) (c)
Figure 2. The comparison of the textual patterns of diffraction images of
scatterers in different shapes (a) sphere, (b) ellipsoid, and (c) bi-sphere.

Figure 3. The comparison of the textual patterns of diffraction images of a
cell with different refractive index values in nuclear.

C. Evaluation of MRs and Tests
The initial tests created using

MR3 covered 100% statements and
close to 100% of conditions. Partial
mutation testing was conducted to
check the effectiveness of the
metamorphic testing. The mutation
testing was applied only to one
module of ADDA program. Several
mutants were instrumented to the
code manually and their results were manually inspected.

Mutation testing of “non-testable” programs like
ADDA is difficult since many MRs are not sensitive to
mutants. In this case, one can check the consistency
between the outputs of the mutated program and the
original one. A mutant is killed if it causes a violation of
any MR, and a mutant is weakly killed if the output of a
test of the mutated program is different to the original one.
Absolute Value Insertion (ABS) and Relational Operator
Replacement (ROR) were used for creating mutants.
Among total all 20 mutants (10 ABS mutants, and 10 ROR
mutants) we created for testing ADDA, 17 of them were
killed by crashing of the program or exception handing.
The other 3 mutants were killed by the MRs since the
outputs didn’t generate any textual pattern as shown in Fig.
4. We found mutants are easily killed by simple tests in
scientific software probably due to the complexity of the
software. A slight change of the program can cause a
catastrophic error in the calculation. The mutant that
instrumented to ADDA program produced the diffraction
image shown in Fig. 4 is easily to be killed since the two
different scatterers produced the diffraction images with the
same textual patterns. The results show that MR3 can test
ADDA in some degree.

However, it is very difficult to create a mutation test for
MR3 that would produce two diffraction images with the
same textual patterns by changing the input parameters.
MR3 is so weak that many wrong results can satisfy it.

D. Refinement of MRs
According to the results discussed in Section III. B, C,

it is easy to see the intuitive relation between the textual
pattern of a diffraction image and its 3D morphology. We
need refine the relation for understanding how the change
of 3D morphology parameters including the shape, size,
refractive index and orientation are precisely related to the
textual pattern. We investigate the problem via an
experimental study. First, we took many diffraction images
of different types of cells using a diffraction image based
flow cytometer called p-DIFC. These images are called
measured diffraction images to compare the calculated
diffraction images produced from ADDA. Second, process
these measured images for GLCM, and check how the
GLCM features are related to cell types. Select optimal
GLCM features for cell classification, build a feature vector
including labeled cell type for each image, and construct a
feature vector matrix with the images that are belonged to
the same type of cells for training a SVM. Third, use the
trained SVM to classify diffraction images for cell types
based GLCM feature values. If the cells can be successfully

Figure 4. An error
diffraction image.

Group 2

Number of Images

0 100 200 300 400 500 600

No
rm

ali
ze

d
Fe

at
ur

e
Va

lue
s

0.0

0.2

0.4

0.6

0.8

1.0

MAX
ENE
ENT
SENT
DENT
CP
CS

X- AXIS
0 - 100 : HL_60
100 - 200 : JURKAT
200 - 300 : PC3
300 - 400 : PCS
400 - 500 : RAMOS
500 - 600 : WBC

Group 3

Number of Images

0 100 200 300 400 500 600

No
rm

al
ize

d
Fe

at
ur

e
Va

lue
s

0.0

0.2

0.4

0.6

0.8

1.0

COR
IMC1
IMC2
AC
SA

X- AXIS
0 - 100 : HL_60
100 - 200 : JURKAT
200 - 300 : PC3
300 - 400 : PCS
400 - 500 : RAMOS
500 - 600 : WBC

Figure 5. GLCM features of 6 types of diffraction images

classified by the GLCM features, then we need test whether
the calculated diffraction images can be also used for
classifying the cell type. If it does, the cell classification
based on diffraction images will serve as a test oracle for
testing ADDA.

We took 100 diffraction images for each type of cells
for total 6 different types of cells using p-DIFC. Fig. 5 is
the experimental result of selected GLCM features among
600 cells. From the two diagrams, it is not difficult to see
that the correlation between some GLCM features and the
cell types. However, the cell classification cannot be
completed just based on one feature, instead multiple
features have to be used. In this study, feature selected was
conducted, and 8 GLCM features were selected for the
SVM based classification [17]. Fig. 5 should be able to
serve as a test oracle for testing ADDA since we expect the
ADDA calculated diffraction images of the same type of
cells in Fig. 5 should also have the same feature patterns as
those shown in Fig. 5. However, the real reflective index
value of each cell organelle is unknown but a guessed one,
the feature patterns between the measured images and
calculated images should be similar but not identical, and
the precise relation between them cannot be defined. Fig. 5
can serve as a reference for testing ADDA, but it is not
enough.

The SVM based classifier is built on Weka with SVM
library LIBSVM. Stratified 10-Fold Cross Validation
(10FCV) was used for checking the accuracy of the SVM
classification. In this study, specifically 90 images per each
type of cells were used for training the SVM and remaining
10 images were used for testing the classifier. We
experimented the classification using different sets of
GLCM features and different distance and grey level for
calculating GLCM. The best performance of the SVM
classification is configured with 8 selected GLCM features,
and the GLCM calculation was configured with distance as
2 and grey level as 64. The average accuracy of the
classification of the 6 types of cells with total 600

 (a) (b) (c)
Figure 6. Confocal images (a), 3D structure (b) and diffraction images (c).

diffraction images is 91.16% [17]. Based on the
experimental result, we expected the calculated diffraction
images should have the same property as the measured
images, which can classify cell types based on the GLCM
features. However, we cannot use the SVM classifier
trained with the measured diffraction images for classifying
the calculated images, which has to be trained using the
calculated diffraction images.

In order to calculate a diffraction image of a cell using
ADDA, we need to construct the 3D structure of the cell
and then assign the refractive index values for each voxel
of the cell. A stack of confocal image sections are taken
using a confocal microscope, and then each image section
is processed to segment the cell components such as
nuclear and mitochondria. The 3D structure of the cell is
built based on the processed image sections, and a
refractive index value is assigned to each voxel in the
structure. The 3D structure then is imported to ADDA for
the simulation, and a diffraction image is generated from
the simulation result. Since orientation is one of the input
parameters to ADDA, but cell type doesn’t have any
relation to the orientation. Therefore, we use ADDA to
calculate diffraction images in many different orientations
for each cell. Fig. 6 shows 4 of total 48 confocal image
sections of a cell, its 3D structure and calculated diffraction
images in two different orientations.

We took confocal image for 30 cells each type of cells,
and 4 types of cells were used in the experiment. The 3D
structure of each cell was simulated for 25 different
orientations in ADDA. Therefore, we calculated 750
diffraction images for each type of cells. The images are
processed for GLCM features with distance 2 and grey
level 64, and a feature vector matrix including the feature
values and labeled cell type is built for the same type of
images. Finally, the feature vector matrix is used for
training the SVM and 10FCV is used for checking the
accuracy of the classification. Our preliminary result has
shown the cells can be classified with the accuracy as high
as the measured diffraction images. However, we haven’t
completed the experiment for all 4 type cells. Based on the
experimental result, a new MR is developed:

MR4 (Cell classification): A calculated diffraction
image of a cell can be correctly classified into a
classification by a SVM classifier. If two calculated
diffraction images produced from two different types of
cells, an SVM classifier can classify each into the correct
classification.

38

should be both dark images without any signal to ensure the completeness of the acquisition

along the z-axis.

Fig.4-1 Confocal image stack acquired from a PC3 cell

Fig.4-2 Confocal image stack acquired from a PCS cell

58

5.1.2 Morphology study of the normal and cancerous prostate epithelial cells

 To extend our morphology study to the epithelial cells, we have selected the normal and

cancerous prostate cells of PCS and PC3 cells for confocal imaging and 3D reconstruction. In

Fig. 5-3, we present the perspective views of the 3D structures of the prostate cells. Three

parameters at the bottom of each cell are cell volume Vc, volume ratio of nucleus-to-cell Vrnc,

and volume ratio of mitochondria-to-cell Vrmc. It can be observed directly from the image

data that the major differences between PC3 and PCS cells are in the cell volume. The PC3

cells are almost two times bigger than PCS in the cell volume, while the PCS cells have a

larger volume ratio of mitochondria-to-cell than PC3.

Fig. 5-3 Perspective views of reconstructed 3D structures of three PC3

(A) and PCS (B) cells. Three parameters at the bottoms for

each cell are cell volume Vc, volume ratio of nucleus-to-cell

Vrnc, and volume ratio of mitochondria-to-cell Vrmc.

67

the feature vectors with the training data and obtain an optimized model for accurate cell

classification.

Fig. 5-9 Selected pairs of polarization-resolved diffraction images acquired from Jurkat and Ramos cells,

and PC3 and PCS cells. Each image is labeled with the cell type, polarization direction of incident

beam, polarization direction of scattered light, maximum, average, and minimum pixel intensities of

the 12-bit diffraction image.

The new MR built based SVM classifier can test the
program using existing data. The data size used for this
study is very limited, it is still not clear whether the
approach can be extended to all different types of cells or
even different scatterers. However, the approach should be
very useful in general for developing test oracles for testing
scientific software that is absent of test oracles.

IV. RELATED WORK
One of the greatest challenges for testing scientific

software is due to the oracle problem [8][1]. Metamorphic
testing is the technique for addressing the oracle problem
though developing them with MRs [2][16]. It has been
applied to several domains such as bioinformatics systems,
machine learning systems, and online service systems [10]
[11][20]. Murphy et al. classified six types of MRs for
testing machine-learning systems [15], which are useful for
creating initial MRs. Xie et al. investigated some specific
MRs that were extended from general MRs for testing
machine learning applications [18]. Guderlei and Mayer
proposed a statistical metamorphic testing in [5], where two
or more output sequences were generated and compared
according to the statistical MRs. The similar idea is used in
this paper for developing test oracles based on cell
classification. Metamorphic testing has been also used for
testing scientific software. For example, Mayer and
Guderlei developed a group of MRs for testing image
process programs [13]. Chen, Fend and Tse have applied
metamorphic testing for testing partial differential
equations [3]. However, the program they tested were much
smaller and simpler than ADDA. Knewala, Bieman and
Ben-Hur recently reported a result on the development of
MRs for scientific software using machine learning
approach integrated with data flow and control flow
information [9]. However, whether the result can be
extended for testing large scientific software is unclear.

V. SUMMARY
In this paper, we introduced an iterative metamorphic

testing technique for testing scientific software, where MRs
are iteratively developed based on analyzing test execution
and evaluation results. We illustrated the approach and its
effectiveness through testing ADDA, the widely used open
source scientific software. A new MR was developed
through analyzing experimental data using machine
learning algorithm SVM. The approach could be useful for
testing similar scientific software as well as other software
systems that are absent of test oracles.

ACKNOWLEDGMENT
The authors would thank Dr. Xin-Hua Hu, Eric King at

East Carolina University for assistances of the experiments.
This research is supported in part by grant CNS-1262933
and CNS-1560037 from the National Science Foundation.

REFERENCES
[1] E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, "The

Oracle Problem in Software Testing: A Survey," IEEE Trans. on
Software Engineering, , vol.41(5), pp.507-525, 2015.

[2] T. Y. Chen, S. C. Cheung, and S. Yiu, “Metamorphic testing: a new
approach for generating next test cases”, Tech. Rep. HKUST-CS98-
01, Dept. of Computer Science, Hong Kong Univ. of Science and
Technology, 1998.

[3] T. Y. Chen, J. Feng and T. H. Tse, "Metamorphic testing of
programs on partial differential equations: a case study," COMPSAC
2002. pp. 327-333.

[4] J. Ding, T. Wu, J. Q. Lu, X. Hu, “Self-Checked Metamorphic
Testing of an Image Processing Program,” 4th Intl. Conf. on Security
Software Integration and Reliability Improvement, Singapore, 2010.

[5] R. Guderlei, and J. Mayer, “Statistical metamorphic testing - testing
programs with random output by means of statistical hypothesis tests
and metamorphic testing”, in Proc. of the 7th ICQS. pp. 404-409,
2007.

[6] R. M. Haralick, K. Shanmugan, and I. H. Dinstein, "Textural
features for image classification", IEEE Trans. Syst., Man, Cybern.,
vol. SMC-3, pp.610 -621, 1973.

[7] Y. Jia; M. Harman, "An Analysis and Survey of the Development of
Mutation Testing," IEEE TSE, vol.37, no.5, pp.649-678, 2011.

[8] U. Kanewala, J. M. Bieman, “Testing scientific software: A
systematic literature review”, Information and Software Technology,
Vol. 56, Issue 10, Oct. 2014, pp. 1219-1232, 2014.

[9] U. Kanewala, J. M. Bieman, A. Ben-Hur, "Predicting Metamorphic
Relations for Testing Scientific Software: A Machine Learning
Approach Using Graph Kernels", Journal of Software Testing,
Verification and Reliability, Nov. 16, 2015, DOI: 10.1002/stvr.1594.

[10] V. Le, M. Afshari, and Z. Su. “Compiler validation via equivalence
modulo inputs”. In Proceedings of the 35th ACM SIGPLAN
Conference on PLDI '14. pp.216-226. 2014.

[11] M. Lindvall, D. Ganesan, R. Árdal, and R. E. Wiegand.
“Metamorphic model-based testing applied on NASA DAT: an
experience report”. Proc. of the 37th ICSE, Vol. 2. pp. 129-138.
2015.

[12] H. Liu, F. Kuo, D. Towey, T.Y. Chen, "How Effectively Does
Metamorphic Testing Alleviate the Oracle Problem?" IEEE Trans.
on Software Engineering, vol.40, no.1, pp.4,22, Jan. 2014.

[13] J. Mayer, and R. Guderlei, “An empirical study on the selection of
good metamorphic relations”, In proc of 30th COMPSAC, pp. 475-
484, 2006.

[14] M. Moran, “Correlating the morphological and light scattering
properties of biological cells”, PhD dissertation, department of
physics, East Carolina University, 2013.

[15] C. Murphy, G. Kaiser, L. Hu, and L. Wu. “Properties of machine
learning applications for use in metamorphic testing”. In Proc. of the
20th SEKE, pp. 867–872, 2008.

[16] S. Segura; G. Fraser; A. Sanchez; A. Ruiz-Cortes, "A Survey on
Metamorphic Testing," in IEEE Trans. on Software Engineering ,
vol.PP(no. 99), doi: 10.1109/TSE.2016.2532875. 2016.

[17] S. K. Thati, J. Ding, D. Zhang, and X. Hu, “Feature Selection and
Analysis of Diffraction Images”, the 4th IEEE Intl. Workshop on
Information Assurance, Vancouver, Canada, August 3-5, 2015.

[18] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Application of metamorphic testing to supervised classifiers”. 9th
Intl. QSIC ‘09, pp. 135 – 144, 2009.

[19] M.A. Yurkin and A.G. Hoekstra, “User manual for the discrete
dipole approximation code ADDA 1.3b4”, http://a-
dda.googlecode.com/svn/trunk/doc/manual.pdf (2014). Last accessed
on March 25, 2016.

[20] Z. Zhou, S. Xiang, T.Y. Chen, "Metamorphic Testing for Software
Quality Assessment: A Study of Search Engines", IEEE Trans. on
Software Engineering, doi:10.1109/TSE.2015.2478001, 2015.

[21] ADDA project, https://code.google.com/p/a-dda/, Last accessed on
March 12, 2016.

