
MyBatRecommender: Automated optimization of
energy consumption for Android smartphones in

software layer
Marcel Popolin de Araújo Cunha

UFSCar - campus Sorocaba
Sorocaba, São Paulo 18052-780

Email: mpopolin@gmail.com

Luciana Aparecida Martinez Zaina
UFSCar - campus Sorocaba

Sorocaba, São Paulo 18052-780
Email: zaina.luciana@gmail.com

Abstract—Nowadays smartphones are composed of a wide
range of sensors, components and resources such as GPS (Global
Positioning System), Bluetooth and Internet connection through
Wi-Fi, 3G, among others. Along with the smartphone’s increasing
popularity around the world, there is an increasing development
and popularity of power-hungry applications: applications that
take advantage from these resources and may reduce the energy
life time of smartphones to a few operation hours a day. The
article goal is to present a mechanism that is able to dynamically
manage the smartphone components states, for example turning
off unnecessary interfaces, at run time. For this the mechanism
collects and analyze data from the smartphone usage along
the days in order to predict when the components should
be managed. The experimental results show that up to 30%
of energy savings is achieved when comparing to the energy
dissipation of an smartphone without the proposed mechanism
installed.

Index Terms—Energy management, Energy optimization, Mo-
bile applications, Context sensitive applications.

I. INTRODUCTION

Nowadays smartphones have become extremely popular and
technologically evolved, being equipped with a wide range of
sensors, such as: GPS, light sensors, accelerometer, network
interfaces, CPUs (Central Processing Unit) and many others.
This scenario has allowed that a wide variety of applica-
tions for these smartphones have been developed. From e-
mails managers to navigation systems, they are interested in
providing a rich user experience, making intense use of the
components available on the device and therefore consuming
energy. For example, the context-sensitive applications, that
are able to adapt their operations without explicit intervention
of the users, providing information and services that are
relevant for users to perform their tasks using information
taken out of the interaction context [1]. For this, they collect
user’s contextual information, using sensors present on device.
An example are the navigation systems, that uses the GPS to
locate the user in a determinate map.

Basically, the amount of energy available on device is
the result between the difference of the energy provided by
the battery and the energy consumed by the sensors and
components. It is considered that the energy consumption
by the sensors and components is increasing and that the

technological evolution of the smartphone’s battery has not
followed the evolution of the other components of the device,
resulting in a frequent scenario where the smartphone is out
battery before the end of the day, as stated by [2]. Although
there is a crescent effort on studies that aim to evolute the
battery on hardware level, new ways to manage and optimize
the energy consumption are necessary. Due to this lack, many
researchers are concentrating their efforts to provide solutions
on software layer.

The researches on this area exist before the popularization
of smartphones, with some studies dated of 2004, when a
similar problem occurred on PDAs (Personal Digital Assistant)
[3]. However, the research on this area has increased with
the smartphone’s and its applications popularization, in 2011,
mainly to the Android based smartphone popularization, with
around 380 thousands applications and 10 billion downloads
[4]. Basically, the Android framework is organized in the
architectural layer represented in the Figure 1. The first layer is
the layer based on the kernel Linux, which handles the access
to the hardware level components via drivers. Above this layer
there are other two layers of libraries: one developed in C and
C++ programming languages and the other developed in the
Java programming language. This last one is the responsible
for providing the interface with the last layer, that is the layer
of Android applications, exposing the hardware controls (e.g.,
managing sensor states) through APIs (Application Program-
ming Interface) and wakelocks1 to developers [5], [6]. This
approach could lead to the development of energy inefficient
applications if the hardware components are not used correctly,
leading to a unnecessary energy waste [7].

Based on demand of reducing the energy consumption,
this paper has the main goal of presenting a solution in the
software layer to save energy on smartphones. This is done by
presenting a mechanism, MyBatRecommender, that manages
dynamically the state of the components of the smartphone.
The proposed mechanism efficiency is also measured using
experimental tests.

The remainder of this paper is organized as follow: the

1developer.android.com/reference/android/os/PowerManager.WakeLock.html

DOI reference number: 10.18293/SEKE2016-131



Fig. 1. Android architectural overview

Section II presents the main related works of the present study,
the Section III presents the MyBatRecommender mechanism
characteristics and implementation for the Android operational
system. The Section IV presents the conduction and results of
MyBatRecommender experimentation. Section V summarizes
the results of the present study, and concludes indicating
possible new directions for further works.

II. BACKGROUNDS AND RELATED WORKS

The researches with different approaches have increased in
this area and could also be observed also in a qualitative
way. Ones address the subject from analyzing the integration
of smartphones with Cloud Computing as discussed by [8]
and [9] that are focused in the Cloud offloading method, that
tries to offload the execution of part of the application to the
Cloud, to sensor’s optimizations as discussed by [10], that
tries to improve the energy efficiency of location components
and others that identify how the energy is consumed on the
device by its sensors and applications, as discussed by [11].
This last category of studies helps to identify new ways
which could be explored to save energy and is the base
for another category of studies that proposes solutions for
the management and optimization of energy consumption.
They are complete, complex and include most of sensors and
components available on a device, as the work presented by
[12] that shows how the components 3G, Wi-Fi and GPS
consume energy on different states such as idle, concluding
that, even in the idle state, when the components are turned on
but are not actively executing their tasks, they have an energy
consumption of around 25% of the overall system. Based on
these measurements the authors propose a technique that try
to avoid this unnecessary energy consumption.

Furthermore, recently, the company Google has shown its
interest in this research area presenting in its Android new
version, named Android Marshmallow, some features related
to energy savings [13].

III. MYBATRECOMMENDER

The energy consumption in smartphones varies according
to the user usage profile, that dictates how the components
are used along the days. These components are turned on
to provide the resources needed by the applications, but may

still turned on when they are not necessary any more, what
consequently increases the energy consumption. Considering
this, one possible approach to reduce the energy consumption
is to avoid that the components stay on unnecessary states,
turning them off when they are not being used. Based on
this, the current work proposes a mechanism, named My-
BatRecommender, which aims managing and optimizing the
energy usage in smartphones to reduce it. This mechanism
acts managing the states of the smartphone’s components,
using for this the user usage profile, that is created by the
analysis of the smartphone usage data, collected along the
days. The ”recommender” part of the mechanism name exists
considering that the MyBatRecommender, as will be further
detailed, adopts its operation depending on the user, managing
different sensor and components according to the user usage
profile.

Figure 2 shows an overview of MyBatRecommender, that is
composed by four main elements, MyBatLogger (1), MyBat-
Server (2), MyBatProfile (3) and MyBatSaver (4), which will
be detailed on the following sections. Also, the mechanism
works in a continuous way, once that each element is always
executing its role to keep improving the mechanism efficiency.
The mechanism is also automatic in the way that once it is
installed on the user’s smartphone it will automatically run and
execute its role without the need of user intervention, running
always in background, not interfering in the user experience
with the smartphone.

Fig. 2. MyBatRecommender overview

A. MyBatLogger

To understand how the components behave on users smart-
phones, data regarding the utilization of components should
be gathered to be further analyzed in order to create the user
usage profile. The element MyBatLogger is responsible for
collecting data regarding the components Bluetooth, Display,
Wi-Fi, Battery, Mobile Network, GPS, and sending to a remote
server.



Based on this, the element MyBatLogger was implemented
as an application for Android smartphones. This application is
composed by a main Service2 that is continuously running in
background since the smartphone boot. This Service is the
responsible for collecting the data of all above mentioned
components every minute or of a specific component when
there is some event regarding that component, for example,
when Wi-Fi is turned on or off. This operation is denominated
”generate log” where the log is the bundle of information rep-
resenting the data collected of a component. Each component
has specific data that is collected besides the id, unique for
each smartphone, the timestamp, representation of when the
log was generated and type, indicating the component that
the log represents. The specific data and its collecting method
depends on each component, but, in general, they represent
the state of that component (on or off) and the connection
state - if the component was connected, connecting, sending
or receiving data, among other possible states.

B. MyBatServer

The MyBatServer element is the remote server side of
the mechanism. It is the responsible for receiving requests
from the client side, represented by MyBatLogger and My-
BatSaver elements, and processing them according to three
main actions. The first action is ”Insert logs”, responsible
for receiving the collected logs from the MyBatLogger and
inserting them on the corresponding database. The second
action is ”Create MyBatProfile”, which analyses all the data
collected and stored in order to generate the MyBatProfile, that
represents the user usage profile. The MyBatProfile creation
process will be explained on Section III-C. The last action,
”Request MyBatProfile”, is the responsible for returning the
MyBatProfile created to the requesting part.

As the number of collected logs is huge, the MyBatServer
element has fundamental role in storing and processing this
data, once that if this task was done by the smartphone a non
negligible amount of memory and energy would be consumed,
decreasing the efficiency of the mechanism.

C. MyBatProfile

The element MyBatProfile represents the user usage profile,
indicating how the smartphone’s components are used along
the days by the user. It is created by the MyBatServer, when
the action ”Create MyBatProfile” is invoked, and it is also
the responsible for showing the MyBatSaver how it should
behave, displaying the components states over the periods and
days.

The MyBatRecommender’s idea is to delegate the creation
methods of MyBatProfile to the implementation itself, mean-
ing that different methods can be used in order to analyze the
data and generate MyBatProfile. Based on this, the current
implementation is based on the existence of a user’s daily
routine. For example, for a certain university student, this
routine could be the student going from his house to the

2developer.android.com/guide/components/services.html

university, watching the lessons and at the end of the lessons,
going back to his house. Then, through this daily routine
it is possible to obtain a smartphone usage daily routine,
because the smartphone usage depends on certain environment
variables such as availability of Wi-Fi networks.

Based on this, the present paper proposes the MyBatProfile
generation so it will determine the configuration of the smart-
phone components for each period in a day and for every day
in a week. To determine how many periods a day is composed
by, a questionnaire was applied to six different persons, asking
about how many different environments they visit along the
day, once that, as discussed above, the environments may
change directly the way the smartphone is used. The result
was an average of 5.4 periods. As this number must be an
integer, it was considered 6 as the number of periods. Each
period has a start and end time that, considering a twenty four
hours day, is four hours long.

To create the MyBatProfile, five main developed algorithms
are executed, resulting in the profile element created and
inserted in the MyBatServer local database. They are:

• separateByDays(): this is the first step executed in order
to create the MyBatProfile and is the responsible for
grouping the collected logs according to the week day
they were collected, using for this the attribute timestamp.

• separateByPeriods(): once the logs are grouped in days,
the second step runs and, for each day, groups the logs
in the six defined periods.

• createUserProfile(): having the logs grouped in days and
periods, they are ready to be analyzed to create the
MyBatProfile. So this step runs and, for each period, of
each day, executes the last method, analyzeType(), which
will be the responsible for determining the state of that
component for that specifc period.

• analyzeType(): this method analyzes the collected logs
of each period to determine the state of the components
for that period. The logs of each component are analyzed
individually, using for this the attribute type. For this, the
analysis considers, for each log, if it was used or not,
condition that varies for each component, explained on
Table I. Then, if the number of the logs considered used
is greater than the number of logs considered not used,
the state of that component, for that period, is set to be
on, otherwise it set to be off.

• insertProfile(): finally, with the MyBatProfile created,
the last step is the responsible for inserting it on the
MyBatServer database so it can be fetched later.

As mentioned in the beginning of this section, MyBatRec-
ommender is continuously executing, meaning that it is always
collecting new data from the user smartphone to be analyzed
and create or update the MyBatProfile. This approach tries
to improve the energy efficiency seen that it keeps track
of the user usage, so if user change his operating way the
MyBatProfile will be updated to reflect this new operating
way.

3developer.android.com/reference/android/os/BatteryManager.html



TABLE I
CONDITIONS TO CONSIDER COMPONENTS USED OR NOT

Component Condition
Battery The battery state must be different than

BATTERY STATUS CHARGING defined
by BatteryManager3

Bluetooth The Bluetooth state must be
equals to STATE ON and the
Bluetooth connection state must be
equal to STATE CONNECTED or
STATE CONNECTING, defined by
BluetoothAdapter4

GPS The GPS state must be equals
to GPS EVENT STARTED or
GPS EVENT SATELLITE STATUS
defined by GpsStatus5

Display The Display state must be ON, represented
by Intent.ACTION SCREEN ON, defined
by Intent6

Mobile networks The Mobile networks state must be
equals to DATA CONNECTING or
DATA CONNECTED and the connection
state must be one of DATA ACTIVITY IN,
DATA ACTIVITY OUT or
DATA ACTIVITY INOUT, defined
by PhoneStateListener7

Wi-Fi The Wi-Fi state must be
WIFI STATE ENABLED, defined by
WifiManager8 and the connection state
must be CONNECTED or CONNECTING,
defined by NetworkInfo.DetailedState9

D. MyBatSaver

The MyBatSaver is the element responsible to apply the
configuration defined by MyBatProfile. For this MyBatSaver
interacts with MyBatServer in order to retrieve the last MyBat-
Profile created, using the smartphone unique id as shown in
Section III-A. Once in possession of the profile, the element
schedules itself to run at the start of each period, using for
this the Android AlarmManager10. Then, when executed, the
element retrieves the configuration linked to that period and
acts changing the state of the components accordingly, turning
the components on or off. After this, MyBatSaver waits for the
next period to start, so it can repeat the steps and change the
smartphone components states again, reflecting the new period
configuration.

This operating way creates a dependence on the number of
periods, once that the MyBatSaver executes only at the start of
each period. Thus it is important to base the number of periods
chosen on the user behavior, as explained in the beginning of
this section. Also, other ways could be explored to change this
dependency, as stated in section V.

4developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
5developer.android.com/reference/android/location/GpsStatus.html
6developer.android.com/reference/android/content/Intent.html
7developer.android.com/reference/android/telephony/PhoneStateListener.html
8developer.android.com/reference/android/net/wifi/WifiManager.html
9developer.android.com/reference/android/net/NetworkInfo.DetailedState.html
10developer.android.com/reference/android/app/AlarmManager.html

IV. EXPERIMENTATION

In this work, the experimentation phase was carried out
by running two main experiments. The first one was the
measurement of the mechanism overhead and the second was
the measurement of the mechanism efficiency. To run both
experiments, two smartphones Sony Xperia Z211, with the
same configuration, were used and they will be referenced
as DUT 1 and DUT 2 in the remainder of this section, where
DUT are the initials of Device Under Test, indicating that these
smartphones were used to run the necessary tests.

A. MyBatRecommender overhead

The proposed mechanism, when implemented to the An-
droid operational system, requires the usage of some smart-
phone’s components and resources, what, consequently, incurs
in energy consumption. This energy consumption, necessary to
make the mechanism run, is considered the system overhead,
for the current work.

To measure the MyBatRecommender overhead, the present
work used the Keithley Source Measure Unit/Charge Simu-
lator12, an external equipment able to measure the electric
current in device and, with an auxiliary software, save this
data on computer for posterior analysis.

To run this experiment, the DUTs were configured in the
following way: the DUT 1 had no mechanism installed and
the DUT 2 had the MyBatRecommender installed. Also, both
DUTs ran the experiment with the screen turned off, the
airplane mode turned on and only with the component Wi-
Fi turned on and connected to a network. This was necessary
to avoid any energy consuming element besides the MyBa-
tRecommender execution, that needs the Wi-Fi connection to
send the collected data to the remote server. Considering this,
both DUTs were connected to the Keithley Source Measure
Unit during one hour to collect the data regarding the electric
current. As Keithley Source Measure Unit has a sample rate
of two second, the period of one hour resulted in a group of
one thousand and eight hundred samples collected for each
DUT, so only a sample is shown on Table II to demonstrate
the format of the data.

TABLE II
KEITHLEY SOURCE MEASURE UNIT COLLECTED DATA

Time (ms) Time Offset (ms) Current (mA)
1452099728914 15:02:08 531967 7
1452099730789 15:02:10 533842 7
1452099732664 15:02:12 535717 7
1452099734540 15:02:14 537593 7
1452099736415 15:02:16 539468 7

To analyze the data and compare the energy consumption of
both DUTs, initially, the electric current average (AVG) was
calculated for each DUT:

AV G =

∑
(electric current)

number of samples
(1)

11http://www.sonymobile.com/global-en/products/phones/xperia-z2/
12http://www.tek.com/sites/tek.com/files/media/media/resources/2308.pdf



After, considering the DUTs battery capacity, 3200 mAh, it
was calculated the representativity (REP), which indicates the
DUT energy consumption per hour, in percentage:

REP =
AV G ∗ 100

3200
(2)

Finally, the difference of REP for both DUTs represents the
overhead of the mechanism. The Table III show these values
for each DUT.

TABLE III
OVERHEAD DATA ANALYSIS RESULTS

DUT Start
time

End
time

MED (mA) REP (%)

1 13:45:15 14:45:15 9.212389381 0.2878
2 15:02:08 16:02:09 10.12324493 0.3163

Difference 0.0285

By the analysis of the data presented by the Table III,
there is a difference of energy consumption between the
DUTs of 0.0285% of energy per hour. Considering that the
configuration difference of these DUTs is the presence of the
MyBatRecommender on DUT 2, the conclusion is that the
proposed mechanism has an overhead of 0.0285% of energy
per hour. This value will be used on the posterior analysis to
remove the mechanism overhead from the calculations when
needed.

B. MyBatRecommender efficiency

The mechanism efficiency validation was driven by a pro-
posed scenario, responsible for determining which component
would be in which state for all periods in a day and all days
in a week.

To run this experiment, the DUTs were configured in the fol-
lowing way: the DUT 1 had the MyBatRecommender installed
and the DUT 2 had only the MyBatLogger element installed.
This was necessary because the element MyBatLogger, present
on both DUTs, was the responsible for collecting the informa-
tion regarding the battery level and uploading it to the remote
server, so it could be analyzed posteriorly. Considering this,
both DUTs ran the experiment over two weeks, following the
instructions presented by the proposed scenario. For DUT 1,
both weeks were used to collect information about the battery
level, but the first week was also the responsible for collecting
the data necessary to create the MyBatProfile, and the second
week was also the responsible for applying the energy saving
actions, defined by the generated MyBatProfile. For DUT 2,
as it had only the element MyBatLogger installed, both weeks
were responsible only for collecting information about the
battery level.

The data analysis was driven by a research question an
three main hypothesis, where one is accepted rejecting the
other two. The research question is: Is there difference of
energy consumption between both DUTs? and the hypothesis
are: the null hypothesis (H0), where there is no significant
(≥ 5%) difference of energy consumption between the DUTs,
the first alternative hypothesis (H1), where the DUT 1, with

the MyBatRecommender installed, has a smaller significant
difference of energy consumption than the DUT 2 and the
second alternative hypothesis (H2), where the DUT 2, without
the mechanism installed, has a smaller significant difference
of energy consumption than the DUT 1.

Based on this, to analyze and compare the energy consump-
tion of both DUTs, the consumption rate (µT) was calculated
for each DUT. The consumption rate is the percentage of
energy consumed in a period (φ) divided by the time, in hours,
of this period (τ ). For this only the discharging periods of the
experiment were considered. Discharging periods are periods
were the energy is being consumed. The Tables IV and V show
these values for the first and second weeks of the experiment,
respectively.

TABLE IV
DUT 1 AND DUT 2 FIRST WEEK DATA

τ φ µT
DUT 1 Period 1 66 94 1.4242

Period 2 27 26 0.9629
Period 3 54 45 0.8333

Average 1.0734
DUT 2 Period 1 66 83 1.2575

Period 2 27 29 1.0740
Period 3 56 33 0.5892

Average 0.9735

TABLE V
DUT 1 AND DUT 2 SECOND WEEK DATA

τ φ µT
DUT 1 Period 1 60 35 0.5833

Average 0.5833
DUT 2 Period 1 61 55 0.9016

Average 0.9016

By the Table IV analysis, it is noticeable that the average
of consumption rate for the first week is very similar for
both DUTs, what is expected, once that in this week the
MyBatRecommender was only collecting data in both devices.
This is not the same result shown by the Table V where
the DUT 1, with the MyBatRecommender installed, has a
considerable (0.3183%) smaller average of consumption rate
than the DUT 2. Discounting the overhead of the mechanism
for the DUT 2, that used it only for collecting data regarding
the battery level, the difference results in 0.2898%.

It is needed to validate, with some level of significance, if
it is possible to reject the null hypothesis over the acceptance
of one of the alternative hypothesis, considering the samples
collected of both DUTs for the second week. For this, initially,
the normal distribution was checked to define the statistical
method to be applied and compare both samples. Using the
Ryan-Joiner13 method through the auxiliary tool Minitab14,
it was obtained that both samples have the p-value < 0.01,
meaning that they do not have the normal distribution, as the
Figures 3 and 4 show.

13http://www.statsref.com/HTML/index.html?ryan-joiner.html
14http://www.minitab.com/



Fig. 3. Normally test for samples from the second week of DUT 1

Fig. 4. Normally test for samples from the second week of DUT 2

Based on the normality test result, the Mann-Whitney U-
Test15 was chosen. Considering a level of significance α=0.05,
it was obtained that the calculated p-value=0.0 is smaller than
0.05, rejecting the null hypothesis and confirming with a con-
fidence level of 95% that the difference of energy consumption
has statistical significance and it was probably caused by the
presence of the mechanism MyBatRecommender.

Finally, calculating the relative difference of energy con-
sumption between the DUTs, of 32%, the alternative hy-
pothesis H1 is accepted, rejecting the other hypothesis. This
result demonstrates that the proposed mechanism, MyBa-
tRecommender, has an efficiency of 32% of energy savings
when applied to the proposed scenario and compared to a
smartphone without any mechanism installed.

V. CONCLUSION

The contributions of this work are: (i) the proposal of
the MyBatRecommender, a mechanism for managing and
optimizing the energy consumption in smartphones; (ii) its
implementation for the Android operational system; (iii) its
validation through experimentation, demonstrating the energy

15https://statistics.laerd.com/minitab-tutorials/mann-whitney-u-test-using-
minitab.php

savings achieved when the mechanism is used in a controlled
scenario. As future works this study can be extended to
implement the proposed mechanism for other smartphone
operational systems, such as iOS16. It can also be improved
including new components to be analyzed such as NFC (Near
Field Communication) and using other algorithms to generate
the MyBatProfile than the proposed by the current work,
as including a learning module that defines the number and
duration of the periods dynamically instead of considering
them static. Finally new experiments could be elaborated and
applied, such as analyzing the energy saving by components,
in order to validate the outcomes.

REFERENCES

[1] Anind K. D. and Gregory D. A., Towards a Better Understanding of
Context and Context-Awareness, 1999.

[2] Robinson, Stuart, Cellphone energy gap: Desperately seeking solutions,
2009.

[3] Krintz, C. and Wen, Y. and Wolski, R.,Application-level prediction of
battery dissipation, 2004.

[4] Google Play Wiki Page, http://en.wikipedia.org/wiki/Google Play, 2013.
[5] Corral, L. and Georgiev, A.B. and Sillitti, A. and Succi, G., A method

for characterizing energy consumption in Android smartphones, 2013.
[6] Pathak, Abhinav and Jindal, Abhilash and Hu, Y. Charlie and Midkiff,

Samuel P., What is Keeping My Phone Awake?: Characterizing and
Detecting No-sleep Energy Bugs in Smartphone Apps, 2012.

[7] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, What is keeping
my phone awake? Characterizing and detecting no-sleep energy bugs in
smartphone apps, 2012.

[8] Marin, Radu-Corneliu and Dobre, Ciprian, Reaching for the Clouds:
Contextually Enhancing Smartphones for Energy Efficiency, 2013.

[9] Fekete, K. and Csorba, K. and Forstner, B. and Vajk, T. and Feher,
M. and Albert, I., Analyzing computation offloading energy-efficiency
measurements, 2013.

[10] Oshin, T.O. and Poslad, S. and Ma, A., Improving the Energy-Efficiency
of GPS Based Location Sensing Smartphone Applications, 2012.

[11] Vallina-Rodriguez, N. and Crowcroft, J., Energy Management Tech-
niques in Modern Mobile Handsets, 2013.

[12] Donohoo, B.K. and Ohlsen, C. and Pasricha, S. and Yi Xiang and
Anderson, C., Context-Aware Energy Enhancements for Smart Mobile
Devices, 2014.

[13] Google IO, https://www.android.com/intl/en/versions/marshmallow-6-0/,
2015.

16http://www.apple.com/ios/


