

A Multi-Source TrAdaBoost Approach for Cross-

Company Defect Prediction

Xiao Yu
1
, Jin Liu

1*
, Mandi Fu

2,3
, Chuanxiang Ma

2,3*
,Guoping Nie

4
, Xu Chen

1

1
State Key Lab. of Software Engineering, Computer School, Wuhan University, Wuhan, China
2
School of Computer Science and Information Engineering, HuBei University, Wuhan, China

3
Educational Informationalization Engineering Research Center of HuBei Province, Wuhan, China

4
School of Mathematics, Huazhong University of Science and Technology, Wuhan, China

*Corresponding author email: jinliu@whu.edu.cn,mxc838@hubu.com

Abstract—Cross-company defect prediction (CCDP) is a

practical way that trains a prediction model by exploiting one or

multiple projects of a source company and then applies the model

to target company. Unfortunately, larger irrelevant cross-

company (CC) data usually makes it difficult to build a

prediction model with high performance. On the other hand,

brute force leveraging of CC data poorly related to within-

company (WC) data may decrease the prediction model

performance. To address such issues, this paper introduces

Multi-Source TrAdaBoost algorithm, an effective transfer

learning approach to perform CCDP. The core idea of our

approach is that: 1) employ limited amount of labeled WC data

to weaken the impact of irrelevant CC data; 2) import knowledge

not from one but from multiple sources to avoid negative transfer.

The experimental results indicate that: 1) our proposed approach

achieves the best overall performance among all tested CCDP

approaches; 2) only 10% labeled WC data is enough to achieve

good performance of CCDP by using our proposed approach.

Keywords—software defect prediction;cross-company defect

prediction; transfer learning; Multi-Source TrAdaBoost

I. INTRODUCTION

Software defect prediction is one of the most important
software quality assurance techniques. It aims to detect the
defect proneness of new software modules via learning from
defect data. So far, many efficient software defect prediction
approaches [1-6] have been proposed, but they are usually
confined to within company defect prediction (WCDP). WCDP
works well if sufficient data is available to train a defect
prediction model. However, it is difficult for a new company
to perform WCDP if there is limited historical data. Cross-
company defect prediction (CCDP) is a practical approach to
solve the problem.

1
It trains a prediction model by exploiting

one or multiple projects of a source company and then applies
the model to target company [7].

Most existing CCDP approaches [7-14] focus on using only
cross-company (CC) data to build a proper prediction model.
Unfortunately, larger irrelevant CC data usually makes it
difficult to build a prediction model with high performance
[15]. In fact, if there is limited amount of labeled WC data, the
data is not enough to perform WCDP, but it may help a lot to
improve the performance of CCDP. Another scenario is that
companies may already have their defect prediction models in

DOI reference number: 10.18293/SEKE2016-120

place and making use of CC data may improve the
performance of models [16].

The challenges of performing CCDP with limited amount
of labeled WC data usually include:

1) How to weaken the impact of irrelevant CC data to
improve the performance of CCDP.

The ability to transfer knowledge from a source company to
a target company depends on how they are related. The
stronger the relationship, the more usable will be CC data. The
performance of CCDP is generally poor because of larger
irrelevant CC data. The irrelevant data has bad effects on the
prediction outcome [17].

2) How to avoid negative transfer when leveraging multiple
cross-companies data.

Brute force leveraging of CC data poorly related to WC
data may decrease the prediction model performance. Lin et al.
developed the double transfer boosting (DTB) approach [15]
for CCDP. DTB approach merges all CC data as a source,
relies on only the source, and therefore is intrinsically
vulnerable to negative transfer.

Considering the above challenges, this paper introduces
Multi-Source TrAdaBoost algorithm [17], an effective transfer
learning approach to perform CCDP. We call the proposed
approach for CCDP as MSTrA. The core insight of MSTrA is
that: 1) in order to narrow the distribution gap between CC data
and WC data, MSTrA firstly uses NN filter [10] to select the k
most similar CC data to each WC data and then use data
gravitation [18] for reweighting the whole distribution of CC
data to fit WC data; 2) MSTrA then trains and combines a set
of weak prediction models for building a stronger ensemble
defect prediction model using not only reweighted CC data but
also limited amount of WC data; 3) in each training round,
MSTrA transfers knowledge from multiple sources and reduces
the weights of irrelevant CC data continuously.

To assess the MSTrA approach, this paper explores the
following research questions.

RQ1: How effective is our proposed MSTrA approach
when comparing to other approaches for CCDP?

RQ2: How much labeled WC data is enough to help the
prediction model achieve better performance by using our
proposed MSTrA approach?

The remainder of this paper is organized as follows. Section
2 presents the related work. Section 3 describes the proposed
MSTrA approach for CCDP. Section 4 demonstrates the
experimental results. Finally, Section 5 addresses the
conclusion and points out the future work.

II. RELATED WORK

In this section, we briefly review the existing cross-
company and cross-project defect prediction approaches. These
approaches can be categorized into two main types: defect
prediction using only CC data [7-14], defect prediction using
not only CC data but also limited amount of labeled WC data
[15-16].

A. Defect prediction using only CC data

In order to solve the problem that the new companies have
too limited historical data to perform WCDP well, the cross-
project and cross-company defect prediction appeared.

Briand et al.[8] used logistic regression and MARS models
to learn a defect predictor, which is also the earliest work on
CCDP. Zimmermann et al. [9] studied CCDP models on 12
real-world applications datasets. Their results indicate that
CCDP is still a serious challenge. Turhan et al. [10]
investigated the applicability of CC data for building localized
defect predictors using 10 projects collected from two different
companies including NASA and SOFTLAB. And they have
proposed a nearest neighbor (NN) filter to select CC data. He
et al. [11] investigates defect predictions in the cross-project
context focusing on the selection of training data. Furthermore,
they proposed an approach to automatically select suitable
training data for projects without historical data so that the
results of their experiments are comparable with WCDP, which
indicated that some approach of CCDP can comparable to
WCDP. They noted that learning predictors using the data from
other projects can be a potential way to defect prediction
without any historical data. In order to find data for quality
prediction, Peters et al. [12] introduced the Peters filter to
select training data via the structure of other projects. They
compared the filter with two other approaches for quality
prediction to assess the performance of the Peters filter, and
found that 1) WCDP are weak for small data sets; 2) the Peters
filter + CCDP builds better and more useful predictors. Zhang
et al. [13] proposed sample-based methods for software defect
prediction. For a large software system, they could select and
test a small percentage of modules, and then built a defect
prediction model to predict defect-proneness of the rest of the
modules. They described three methods for selecting a sample
and proposed a novel active semi-supervised learning method
ACoForest to facilitate the active sampling. The results showed
that the proposed methods are effective and have potential to
be applied to industrial practice. Ma et al. [14] proposed a
novel algorithm called Transfer Naive Bayes (TNB) to transfer
cross-company data information into the weights of the training
data and then build the predictor based on re-weighted CC data.
The results indicated that TNB is more accurate in terms of

AUC, within less runtime than the state of the art methods and
can effectively achieve the CCDP task. The heterogeneous
CCDP (HCCDP) task is that the source and target company
data is heterogeneous. Jing et al. [7] provided an effective
solution for HCCDP. They proposed a unified metric
representation (UMR) for the data of source and target
companies and introduced canonical correlation analysis
(CCA), an effective transfer learning method, into CCDP to
make the data distributions of source and target companies
similar. Results showed that their approach significantly
outperforms state-of-the-art CCDP methods for HCCDP with
partially different metrics and for HCCDP with totally different
metrics, their approach is also effective.

The approaches above are focus on using only CC data to
build predictors. Considering there is limited amount of labeled
WC data, the data is not enough to perform with company
defect prediction, but it may help a lot to improve the
performance of CCDP.

B. Defect prediction with limited amount of labeled WC data

Turhan et al. [16] introduced a mixed model of within and
cross data for CCDP to investigate the merits of using mixed
project data for binary defect prediction. Results showed that
when there is limited project history, mixed model for CCDP
can achieve good performance which can be comparable to
WCDP. It provided a new idea to CCDP that the use of a small
amount of labeled WC data would be very valuable to improve
the performance of CCDP.

Lin et al. [15] introduced a novel approach named Double
Transfer Boosting (DTB) to narrow the gap of different
distributions between CC data and WC data and to improve the
performance of CCDP by reducing negative samples in CC
data. However, it merges all CC data as one source and the
result only relies on the single source so that it is prone to
negative transfer, which is exactly what we will solve in this
paper.

III. METHODOLOGY

In this section, we present our MSTrA approach for CCDP.
Its main steps are as follows: 1) in order to narrow the
distribution gap between CC data and WC data, MSTrA first
uses NN filter [10] to select the k most similar CC data to each
WC data and then uses data gravitation [18] for reweighting the
whole distribution of CC data to fit WC data; 2) MSTrA mixes
limited amount of labeled WC data with reweighted CC data to
build the prediction model by using Multi-Source TrAdaBoost
algorithm.

A. Data Preprocessing

Previous work [10] found that using raw CC data directly
would increase false alarm rates due to irrelevant instance in
CC data, so several data preprocessing works should be done
before building the prediction model. To decrease the negative
effect of the irrelevant instance in CC data for building the
prediction model, we employ NN filter proposed by Turhan et
al. [10] to form the training set. Based on the widely used
classification method KNN algorithm, NN filter can find out
the most similar K×N instances from CC data while N is the

number of WC instances and K is the parameter of the KNN
method. Note that duplicate instances may exist in this filtered
dataset, as some instances in WC data may have some common
neighbors in CC data. Thus, the final filtered CC training data
can be formed by using only unique ones.

Then we apply the data gravitation method [18] to change
the entire distribution of CC data. Suppose that an instance xi
can be described by xi={ai1,ai2,…,aik},where aij is the j-th
attribute value of the i-th instance and k is the number of the
attributes.

(1) We compute two vectors, Max= {max1, max2 ,…, maxk}
and Min= {min1, min2, …, mink} to represent the attribute
value distribution of WC data, where maxi is the maximum
value of the i-th attribute, mini is the minimal value of the i-th
attribute.

(2) For each instance xi in CC data, the degree si of
similarity to WC data is computed according to Eq.(1)

si=∑ ℎ(𝑎ij) 𝑘
𝑖=1 (1)

where aij is the j-th attribute value of the instance xi, h(aij) = 1,

if minj ≤ aij ≤ maxj; otherwise, h(aij) = 0.

(3) The weight wi of instance xi in CC data can be
calculated by Eq.(2) according to the formulation of data
gravitation [18].

wi=si/(k-si+1)
2
 (2)

where k is the number of the attributes.

According to this formula, the weight wi of instance xi
shows the similarity of xi to WC data, and the greatest wi will
be assigned when si = k.

Though the above steps, the entire distribution of CC data
is reweighted to be close to WC data.

B. Multi-Source TrAdaBoost Approach

Let D
SK

={(x1
S1

,c1
S1

),…,(xn
SK

,cn
SK

)} be the k-th cross-
company data, where n is the number of instances in the k-th

cross company data, ci
SK∈{true, false} is the class label of

instance xi
SK

. Let D
T
={(x1

T
,c1

T
),…,(xm

T
,cm

T
)} be limited amount

of labeled WC data, where m is the number of instances in
labeled WC data, ci

T
 is the class label of instance xi

T
. During

NN filter and data gravitation, filtered CC data DS1,…DSN and
labeled WC data DT are assigned different weight according
Eq.(2).

In each training round, combine the k-th cross-company
data and labeled WC data to train a candidate weak prediction
model. In our paper, we choose Naïve Bayes [19] as the base
prediction model due to its effectiveness in defects prediction
[20]. The final weak prediction model ft(x) in t-th iteration is
one of the candidate weak prediction models which has the
minimal prediction error on labeled WC data. In other words,
every weak prediction model is selected from CC data that
appears to be the most closely related to WC data. The
prediction error function is defined according Eq.(3).

εt=∑
𝑤𝑖

𝑡|𝒇𝒕(𝑥𝑖)−𝑐𝑖|

∑ 𝑤𝑖
𝑡𝑚

𝑖=1

𝑚
𝑖=1 (3)

Set βt =
1

2
 ln

1−𝜀𝑡

𝜀𝑡
 (4)

In this way, we import knowledge not from one but from
multiple sources, thus decreasing the risk for negative transfer.
At t-th iteration, the instances in WC data are given more
importance if the instances are misclassified. They are believed
to be the “most informative” for the next round, so the weight
of the misclassified instances are increased according Eq.(5).

wi
T
=wi

T
 𝑒𝛽𝑡|𝑓𝑡(𝑥𝑖

𝑇)−𝑐𝑖
𝑇| (5)

The instances in CC data are given less importance if the
instances are misclassified. They are believed to be the most
dissimilar to WC data, so the weight of the misclassified
instances are decreased according Eq.(6) in order to weaken
their impacts in the next round through multiplying the
Hedge(β) defined in Eq.(7).

wi
SK

=wi
SK

 𝑒−𝛽𝑠|𝑓𝑡(𝑥𝑖
𝑆𝐾−𝑐𝑖

𝑆𝐾)| (6)

βs=
1

2
 ln (1 + √2 𝑙𝑛

𝑛𝑠

𝑀
) (7)

After several iterations, the instances in CC data that fit
WC data will have larger training weights, while the instances
in CC data that are dissimilar to WC data will have lower
weights. The instances in CC data with larger training weights
intend to build a better prediction model. The final prediction
model F(x) can be expressed as follows:

F(x)=sign(∑ 𝛽𝑡𝒇𝒕(𝑥)𝑡) (8)

Algorithm 1 presents the pseudo-code of MSTrA approach
to perform CCDP.

Algorithm 1. MSTrA approach

Input: filtered CC data D
S1

,…, D
SN

, limited amount of
labeled WC data D

T
, and the maximum number of iterations

M

Output: a prediction model F(x)

1. Initialize a weight vector (w
S1

,…,w
SN

,w
T
) using Eq.(2)

2. for t=1,…,M do

3. Empty the set of candidate weak prediction models

4. Normalize to 1 the weight vector (w
S1

,…,w
SN

,w
T
)

5. for k=1,…,N do

6. Train the candidate weak prediction model ft
K
(x) over

the combined data D
SK

 ∪ D
T
, using weight (w

SK
,w

T
)

7. Compute the error of ft
K
(x) on D

T
 using Eq.(3)

8. end for

9. Find the weak prediction model ft(x) which has the
minimal error

10. Update weights vector (w
S1

,…,w
SN

,w
T
) for the next

round using Eq.(5) and Eq.(6)

11. end for

12. return F(x)=sign(∑ 𝛽𝑡𝒇𝒕(𝑥)𝑡)

IV. EXPERIMENTS

In this section, we evaluate our proposed MSTrA approach
to perform CCDP empirically. We first introduce the
experiment dataset and the performance measures. Then, in
order to investigate the performance of MSTrA, we perform
some empirical experiments to find answers to the research
questions mentioned above.

A. Data set

In this experiment, we employ 15 available and commonly
used datasets which can be obtained from PROMISE [21]. The
15 datasets have the same 20 attributes, so we can apply all
attribute information directly. Table 1tabulates the details about
the datasets.

TABLE I. DETAILS OF EXPERIMENT DATASET

Project Examples %Defective Description

ant 125 16 Open-source

arc 234 11.5 Academic

camel 339 3.8 Open-source

elearn 64 7.8 Academic

jedit 272 33.1 Open-source

log4j 135 25.2 Open-source

lucene 195 46.7 Open-source

poi 237 59.5 Open-source

prop 660 10 Proprietary

redaktor 176 15.3 Academic

synapse 157 10.2 Open-source

systemdata 65 13.8 Open-source

tomcat 858 9 Open-source

xalan 723 15.2 Open-source

xerces 162 47.5 Open-source

B. Performance measures

In the experiment, we employ three commonly used
performance measures including pd, pf and g-measure. They
are defined in Table 2 and summarized as follows.

TABLE II. PERFORMANCE MEASURES

 Actual

yes no

Predicted yes TP FP

no FN TN

pd 𝑻𝑷

𝑻𝑷 + 𝑭𝑵

pf 𝑭𝑷

𝑭𝑷 + 𝑻𝑵

g-measure 𝟐 ∗ 𝒑𝒅 ∗ (𝟏 − 𝒑𝒇)

𝒑𝒅 + (𝟏 − 𝒑𝒇)

● Probability of detection or pd is the measure of defective
modules that are correctly predicted within the defective class.
The higher the pd, the fewer the false negative results.

● Probability of false alarm or pf is the measure of non-
defective modules that are incorrectly predicted within the non-
defective class. Unlike pd, the lower the pf value, the better the
results.

● g-measure is a trade-off measure that balances the
performance between pd and pf. A good prediction model

should have high pd and low pf, and thus leading to a high g-
measure.

C. Results for Q1

In order to confirm whether the MSTrA approach can
perform better than other CCDP approaches, we compared our
approach with four state-of-the-art CCDP approaches. More
details are provided below:

● NN filter [10] is based on the widely used classification
method K-Nearest Neighbors (KNN) algorithm to filter
irrelevant CC data. It can find out the most similar K×N
instances from CC data while N is the number of instances in
WC data and K is the parameter of the KNN method. In our
experiment, we choose K as 10. After NN filter, Naïve Bayes
classifier is chosen as the basic prediction model.

● TNB [14] first reweights the CC data by the data
gravitation method, then builds a transfer Naïve Bayes
classifier on reweighted CC data.

● NN+WC (Nearest-Neighbor filter with WC data) [16]
mixes p% WC data with CC data which was processed by NN
filter as training data. In our experiment, we choose p as 10.
Then Naïve Bayes classifier is chosen as the basic prediction
model on the training data.

● DTB [15] first uses NN filter ,SMOTE [22] and data
gravitation to process CC data. Then limited amount of labeled
WC data and reweighted CC data are mixed to build prediction
model using the transfer boosting algorithm.

 In every experiment, one dataset is selected as WC data and
the rest are regarded as CC data to conduct the experiment. The
CC data is considered as basic training data which will be
adjusted in every experiment. WC data will be randomly
divided into two parts: 10% labeled WC data as training data
with CC data in our MSTrA approach, DTB approach and
NN+WC approach, and the remainder is taken as test data for
all CCDP approaches in order to be fair. Then the values of the
performance measures for our MSTrA approach, DTB
approach and NN+WC approach are calculated.

The comparison results are summarized in Table 3 with
three performance measures mentioned above. It shows that the
NN approach often achieves the best pd but the worst pf so that
it usually ends up with low g-measure value. The performance
of NN+WC approach seems sometimes have lower pf than the
NN approach but mostly have similar result with NN approach.
The effect of WC data seems not very obvious.

It’s very clear that the transfer learning models including
TNB, DTB and MSTrA have lower pf than the other two
models. In the aspect of pf value, the MSTrA approach reduces
the pf to a large extent. The pf results of 7 projects are better
than others. On more than half tests, MSTrA achieves higher g-
measure than other models.

 In total, the MSTrA approach has acceptable pd value and
can obtain better pf values in most experiments we conducted,
and it almost always achieve the higher g-measure value than
other models. In other words, the MSTrA approach
outperforms other CCDP approaches, therefore it can be an
effective approach for CCDP.

TABLE III. PD,PF AND G-MEASURE VALUES, THE REASULTS OF FIVE APPROACH

No. Test data MSTrA DTB TNB NN NN+WC

PD PF G PD PF G PD PF G PD PF G PD PF G

1 ant 0.823 0.313 0.749 0.811 0.370 0.709 0.819 0.524 0.602 0.371 0.270 0.492 0.399 0.275 0.099

2 arc 0.409 0.106 0.561 0.605 0.272 0.661 0.745 0.413 0.655 0.745 0.629 0.495 0.807 0.648 0.488

3 camel 0.417 0.066 0.576 0.487 0.300 0.574 0.564 0.290 0.629 0.784 0.709 0.424 0.784 0.710 0.423

4 elearn 0.75 0.283 0.733 0.675 0.243 0.713 1.000 0.393 0.756 0.900 0.383 0.724 0.900 0.383 0.724

5 jedit 0.646 0.181 0.722 0.568 0.237 0.651 0.475 0.168 0.605 0.932 0.616 0.544 0.932 0.628 0.532

6 log4j 0.576 0.247 0.652 0.611 0.234 0.679 0.635 0.134 0.733 0.936 0.706 0.444 0.936 0.709 0.444

7 lucene 0.722 0.474 0.608 0.581 0.382 0.598 0.580 0.221 0.665 0.762 0.554 0.563 0.750 0.548 0.564

8 poi 0.551 0.241 0.638 0.632 0.415 0.607 0.416 0.228 0.540 0.910 0.678 0.475 0.910 0.684 0.469

9 prop-6 0.655 0.299 0.678 0.670 0.331 0.669 0.529 0.336 0.589 0.860 0.635 0.512 0.860 0.628 0.519

10 redactor 0.591 0.336 0.625 0.616 0.679 0.422 0.634 0.513 0.550 1.000 0.899 0.184 1.000 0.891 0.196

11 synapse 0.786 0.285 0.748 0.871 0.490 0.643 0.775 0.422 0.662 0.935 0.777 0.360 0.935 0.781 0.355

12 system 0.75 0.490 0.607 0.717 0.340 0.687 0.563 0.260 0.640 0.817 0.341 0.730 0.817 0.341 0.730

13 tomcat 0.418 0.163 0.558 0.712 0.396 0.653 0.914 0.592 0.564 0.632 0.380 0.614 0.690 0.359 0.660

14 xalan 0.458 0.175 0.589 0.654 0.400 0.625 0.604 0.356 0.623 0.961 0.679 0.481 0.961 0.685 0.474

15 xerces 0.586 0.392 0.595 0.370 0.274 0.490 0.319 0.268 0.444 0.437 0.631 0.400 0.437 0.631 0.400

 Average 0.609 0.270 0.643 0.639 0.358 0.625 0.638 0.341 0.617 0.799 0.592 0.496 0.808 0.593 0.472

D. Results for Q2

 In order to confirm how much labeled WC data is enough
to help the prediction model achieve better performance by
using our proposed MSTrA approach, we randomly select p%
(10%,15%,20%,25%,30%) WC data as training data with CC
data, and the remainder data is taken as test data. In every
experiment, one dataset is selected as WC data and the rest are
regarded as CC data. We repeated our proposed MSTrA
approach 20 times in every experiment to avoid sample bias.
Then the mean values of g-measure for MSTrA are recorded in
Figure 1.

As shown in Figure 1, using only 10% labeled WC data
with CC data is enough to achieve good performance by using
our MSTrA approach. In particular, better performance is
achieved on ant, elearn, jedit and xlalan datasets when using
only 10% labeled WC data. There is no significant
improvement on arc, synapse, system, xerces, tomcat, lucene,
poi and prop6 datasets when incrementally adding labeled WC
data. In total, we only need limited amount of labeled WC data
(i.e. 10% is enough) to achieve good performance of CCDP by
using our proposed MSTrA approach. Therefore, a new
company can exploit our proposed MSTrA approach to
perform CCDP at the early stages of development activities if
there is limited historical data.

(a) ant, arc, camel, elearn, jedit

(b) synapse, system, tomcat, xalan, xerces

(c) log4j,lucene,poi,prop6,redektor

Fig. 1. G-measure performances with different size of labeled WC data

V. CONCLUSION AND FUTURE WORK

In this paper, we address the issues of how to weaken the
impact of irrelevant CC data and how to avoid negative transfer
when leveraging multiple source companies data to improve
the performance of CCDP. We introduce Multi-Source
TrAdaBoost algorithm to improve the performance of CCDP.
First of all, we use NN-filter and data gravitation for
reweighting the whole distribution of CC data to fit WC data.

Then we train and combine a set of weak prediction models for
building a stronger ensemble defect prediction model using not
only reweighted CC data but also limited amount of labeled
WC data. In each training round, we transfer knowledge from
multiple sources to avoid negative transfer and reduce the
weights of irrelevant instances in CC data to weaken the impact
of irrelevant CC data continuously.

We conduct experiments on the 15 datasets to evaluate the
performance of the proposed approach. The experimental
results indicate that the proposed approach can effectively
weaken the impact of irrelevant data and avoid negative
transfer to improve the performance of CCDP. The proposed
MSTrA approach is an effective approach for CCDP.

In the future, we would like to validate the generalization
ability of our approach on more company data.

ACKNOWLEDGMENT

This work is partly supported by the grants of National high
technology research and development program (863 Program
2012AA011204-01), National Natural Science Foundation of
China (61070013, 61300042, U1135005, 71401128), the
Fundamental Research Funds for the Central Universities (No.
2042014kf0272, No. 2014211020201) and Natural Science
Foundation of HuBei (2011CDB072).

REFERENCES

[1] K. Elish and M. Elish, “Predicting defect-prone software modules using
support vector machines,” Journal of Systems and Software,2008,
81(5):649-660.

[2] J. Zheng,”Cost-sensitive boosting neural networks for software defect
prediction,” Expert Systems with Applications, 2010, 37(6):4537-4543.

[3] Z. B. Sun, Q. B. Song, and X. Y. Zhu, “Using coding based ensemble
learning to improve software defect prediction,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
2012,42(6):1806-1817.

[4] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” IEEE Transactions on Reliability,2013,62(2):434-443.

[5] M. Liu, L. Miao, and D. Zhang, “Two-stage cost-sensitive learning for
software defect prediction,” IEEE Transactions on Reliability,2014,
63(2):676-686.

[6] X. Y. Jing, S. Ying, Z. W. Zhang, S. S. Wu, and J. Liu, “Dictionary
learning based software defect prediction,” in: Proc. of the 36th
International Conference on Software Engineering (ICSE), 2014,pp.
414-423.

[7] Xiaoyuan Jing et al, “Heterogeneous Cross-Company Defect Prediction
by Unified Metric Representation and CCA-Based Transfer Learning,”
in: Proc. of the 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp 496-507.

[8] Briand L C, Melo W L, Wust J, “Assessing the applicability of fault-
proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, 2002, 28(7): 706-720.

[9] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, “Cross-
project defect prediction: a large scale experiment on data vs. domain vs.
process,” in: Proc. of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ACM, 2009, pp. 91–100.

[10] B. Turhan, T. Menzies, A.B. Bener, J. Di Stefano, “On the relative value
of cross company and within-company data for defect prediction,”
Empirical Softw. Eng. 2009,14 (5): 540–578.

[11] Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, “An investigation on the
feasibility of cross-project defect prediction,” Autom. Softw. Eng.
2012,19 (2) 167–199.

[12] Peters F, Menzies T, Marcus A, “Better cross company defect
prediction,” In: Proc. of the 10th International Workshop on Mining
Software Repositories, San Francisco, CA, 2013, 409-418.

[13] Zhang F, Mockus A, Keivanloo I, et al, “Towards Building a Universal
Defect Prediction Model,” In: Proc. of the 11th Working Conference on
Mining Software Repositories, 2014, 182-191.

[14] Y. Ma, G. Luo, X. Zeng, A. Chen, “Transfer learning for cross-company
software defect prediction,” Inform. Softw. Technol. 2012,54 (3): 248–
256.

[15] Chen L, Fang B, Shang Z, et al. “Negative samples reduction in cross-
company software defects prediction,” Information and Software
Technology, 2015, 62: 67-77.

[16] B. Turhan, A. Tosun Mısırlı, A. Bener, “Empirical evaluation of the
effects of mixed project data on learning defect predictors,” Inform.
Softw. Technol. 2013, 55 (6):1101–1118.

[17] Yao Y, Doretto G, “Boosting for transfer learning with multiple sources,”
in: 2010 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR),2010: 1855-1862.

[18] L. Peng, B. Yang, Y. Chen, A. Abraham, “Data gravitation based
classification,” Inform. Sci. 2009,179 (6): 809–819.

[19] D.D. Lewis, “Naive (Bayes) at forty: the independence assumption in
information retrieval” Machine Learning: ECML-98, Springer, 1998, pp.
4–15.

[20] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, “A systematic
literature review on fault prediction performance in software
engineering,” IEEE Trans.Softw. Eng. 2012,38 (6): 1276–1304.

[21] G. Boetticher, T. Menzies, T. Ostrand, The PROMISE Repository of
Empirical Software Engineering Data, 2007
<http://promisedata.org/repository>.

[22] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” J. Artif. Intell. Res.
2002,16 :321–357

