
An empirical study on the impact of Python dynamic

features on change-proneness

Beibei Wang, Lin Chen*, Wanwangying Ma, Zhifei Chen, Baowen Xu

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Abstract—The dynamic features of programming languages are

useful constructs that bring developers convenience and flexibility,

but they are also perceived to lead to difficulties in software

maintenance. Figuring out whether the use of dynamic features

affects maintenance is significant for both researchers and

practitioners, yet little work has been done to investigate it. In this

paper, we conduct an empirical study to explore whether program

source code files using dynamic features are more change-prone

and whether particular categories of dynamic features are more

correlated to change-proneness than others. To this end, we

statically analyze historical data from 4 to 7 years of the

development of seven open-source systems. We employ Fisher and

Mann-Whitney hypothetical test methods, along with logistic

regression model to solve three research questions. The results

show that: (1) files with dynamic features are more change-prone,

(2) files with a higher number of dynamic features are more

change-prone, and (3) Introspection is shown to be more

correlated to change-proneness than the other three categories in

most systems. This innovative work can give some inspirations

and references to researchers who are always focusing their eyes

on how and why the dynamic features are used. For practitioners,

we suggest them to be wary of files with dynamic features because

they are more likely to be the subject of their maintenance effort.

Keywords- dynamic features; change-proneness; Python;

empirical software engineering; open-source

I. INTRODUCTION

In recent years, many researchers have shown great interest
in the use of dynamic features or dynamic behaviors of
programming languages, such as Python, JavaScript and Ruby.
Previous works were conducted mainly to discuss whether
practitioners are willing to use dynamic features, the main
reasons that drive people to use them and how these features are
used [1], [2], [3], [4] . Besides, there is a long and ongoing
debate about the possible pros and cons of dynamic features in
programming languages. Some authors state that dynamic
features are of benefit for their flexibility, expressivity and
succinctness [5]. For example, the commonly available
reflective mechanisms include support for checking available
fields/methods, adding and removing fields/methods without
the need to restart or rebuild the running program. Others hold
the opposite view that the use of these features may hinder
software evolution and lead to difficulties in software
maintenance. For instance, the use of eval endows programmers
with the ability to extend applications, at any time, and in almost
any way they choose, but it will affect the optimizations that can
be applied to programs and significantly limit the kinds of errors
that can be caught statically and the security guarantees that can
be enforced [4].Hence, it is of great significance to investigate
the relation between the use of dynamic features and system
maintenance. However, to the best of our knowledge, little work

was focused on the effect of dynamic features on program
maintenance or evolution, let alone the use of Python dynamic
features. Therefore, we make an empirical study on the relation
between dynamic features and change-proneness which is well-
known to be an indicator of maintenance in the previous study.

Goal. We aim to investigate the effects of 18 Python built-
in dynamic features, classified into four broad categories, on the
three types of code evolution phenomena. First, we study
whether files with dynamic features have an increased
likelihood of changing compared to other files. Second, we
study whether files with more dynamic features than others are
more change-prone. Third, we study the relation between the
particular categories of dynamic features and change-proneness.

Contribution. This paper makes three contributions.

 This work is the first one to consider the effect of
dynamic features on change-proneness, especially
concerning Python language, and thus it will give some
inspirations and references for the successors.

 We analyze multiple historical releases of 7 open-
source systems to collect the occurrence of 18 Python
built-in dynamic features of each file and change
information between two versions. The data we gather
and publish1 are useful for the follow-up studies related.

 We get an instructive conclusion from the results of the
experiment that although developers are benefit from
the flexibility and convenience brought by dynamic
features, they should be prudent with them since these
features might contribute to more maintenance effort.

The remainder of this article is structured as follows. Section
II introduces an overview of related work. Section III provides
a description of the 18 Python dynamic features as well as the
classification and our detection approach for them. Section IV
describes the exploratory study definition and design. Section V
presents the study results. Section VI gives a detailed
explanation and discussion, along with threats to validity.
Finally, Section VII concludes the study and outlines the future
work.

II. RELATED WORK

Until now, as far as we know, there has been no study of the
relation between dynamic features and change-proneness.
Several works studied the usage of dynamic features of various
languages, such as JavaScript, Smalltalk and Python, by
dynamically or statically analyzing the source code. We will
summarize these works as well as works that aimed at relating
software quality with factors such as metrics, code smells and
language characteristics.

*Corresponding author: Lin Chen; E-mail: lchen@nju.edu.cn
1https://github.com/MG1333051/Detailed-Research-Results-.git

(DOI reference number: 10.18293/SEKE2015-097)

Previous research on the dynamic features concerned how to
collect them and why and how these features were used in
practice. Callaú et al. [1] studied the reflection feature in
Smalltalk and found that if a large portion of the usages of
dynamic features cannot be refactored, others work around
limitations of the programming languages. Richards et al. [4]
performed a large-scale study on the use of eval, the result of
which showed that eval was often misused and many uses were
unnecessary and could be replaced with equivalent and safer
code. Holkner and Harland [7] have conducted a study of the
use of 14 dynamic features in the Python programming language.
Their study focused on a smaller set of programs and concluded
that dynamic features occur mostly in the initialization phase of
programs and less so during the main computation. Further,
Åkerblom et al. [5] did a similar research to Holkner`s study.
They showed that dynamic behaviour is neither buried in library
code, nor predominantly occurs at program startup time, which
is in slight contrast to the results of Holkner`s study. In our study,
we were partly inspired by their classification of dynamic
features.

Some studies used metrics as quality indicators, such as
Basili et al.’s seminal work [9]. Cartwright and Shepperd [10]
performed an empirical study on an industrial C++ system,
supporting the hypothesis that classes in inheritance relations
are more fault prone. It followed that DIT and NOC metrics [11]
could be used to find classes that are likely to have higher fault
rates. Some studies chose code smells as predictor of change-
proneness. For example, Khomh et al. [12] [13] studied the
impact of code smells on software change-proneness and
showed that, in their corpus, classes with code smells are more
change-prone than others.

 Still others concentrated on the effect of programming
languages on software quality [14], [15], [16], [17]. For instance,
Baishakhi Ray et al. engaged a large scale study of
programming languages and code quality in Github. They found
that language features, such as static v.s. dynamic typing, strong
v.s. weak typing, do have a significant, but modest effect on
software quality. Bhattacharya and Neamtiu proposed a novel
methodology which controls for development process and
developer competence, and evaluates how the choice of
programming language affects software quality and developer
productivity. Fateman discussed the advantages of Lisp over C
and how C itself contributes to the “pervasiveness and subtlety
of programming flaws.” The author categorized flaws into
various kinds (logical, interface and maintainability) and
discussed how the very design of C, e.g., the presence of
pointers and weak typing, makes C programs more prone to
flaws.

Our study does not claim to compare which one is the best
predictor of software quality. On the other hand, we are
motivated by the previous work concerning the relation between
language features and software quality, and are enthusiastic
about how dynamic features may influence change-proneness
since they are claimed to have an effect on maintenance.

III. PYTHON DYNAMIC FEATURES

In this section, we first briefly introduce the 18 built-in
Python dynamic features we focus on. Then we describe the
method to collect them.

A. Dynamic Features Selection and Classification

Although there are multiple kinds of dynamic features in
Python language, we choose the 18 famous and most often used
and investigated [5], [6], [7] features, as shown in TABLE I,
which are thought to be representative and are classified as
Introspection, Object Changes, Code Generation and Library
Loading. For brevity, we refer to the Python Reference Manual
[8] and present the definition of each classification stated as
follows, instead of a description of the individual constructs.

Introspection is a mechanism to treat modules and functions in
memory as objects, getting information about them, and
manipulating them.

Object Changes is a category of features that can update or
change the state of an object, and that can update, add or remove
fields in a way that may depend on the program state.

Code Generation is a category of features that can execute code
generated or imported in text format during runtime.

Library Loading is a category of constructs that can load or
reload arbitrary libraries at runtime, which allows deferring
decisions such as what library should be loaded according to
user input or underlying hardware.

TABLE I. PYTHON DYNAMIC FEATURES OF FOUR CATEGORIES

Categories

Introspection
Object

Changes

Code

Generation

Library

Loading

hasattr isinstance setattr eval __import__

getattr issubclass delattr exec Reload

callable type del execfile

globals vars

locals super

B. Dynamic Features Collection

Previous works presented two popular methods to collect the
use of dynamic features. One is to statically analyze the source
code to identify the occurrence of a certain kind of dynamic
feature, e.g. Callaú O et al. [1] developed a framework in Pharo2
to trace statically the use of dynamic features of Smalltalk. The
other is carried out using trace-based dynamic data collection by
instrumenting an interpreter to record runtime data [5]. Tracing
is able to more precisely describe actual uses of a certain feature
than purely static analysis but is sensitive to different paths
taken in a program due to input.

In our study, we employ the static collection method instead
of the dynamic data collection, because it is difficult to choose
representative inputs or interaction strategies that will give
acceptable code coverage to figure out all files with or without
dynamic features. The specific code analysis and data collection
process are supported by a static analysis tool Understand3.For
each version of a system, we first filter non-Python source files
by using the Python Strict option in Understand to dispose of
files unrelated and then build an intermediate database which
stores information of entities (function, variable, file, class,
attribute et al.), the call graphs among these entities and so forth.
After that, we write Perl scripts to invoke Understand APIs to
mine all program points that use the built-in dynamic features
from the database. The algorithm contains three steps:

2http://www.pharo-project.org
3https://scitools.com/

TABLE II. SUMMARY OF THE CHARACTERISTICS OF THE ANALYZED SYSTEMS

Project Releases

(number)

Duration Files LOCs Description

Boto 2.0-2.28.0 (6) 2011.07-2014.04 217-617 29,246-104,967 interfaces to Amazon Web Services

Bzr 1.2-2.5.0 (9) 2008.02-2012.03 585-830 148,183-263,454 version control system

Django 1.0-1.6 (7) 2008.09-2013.11 956-1872 83,136-165,184 high-level Python Web framework

Matplotlib 0.99.0-1.3.1 (6) 2009.08-2013.10 767-1677 99,934-163,780 library for 2D plotting

Numpy 1.0.4-1.6.2 (8) 2007.12-2012.08 255-398 58,866-119,479 library for mathematics, science, engineering

Scipy 0.7.0-1.13.2 (8) 2009.02-2013.12 419-510 91,479-149,471 library for mathematics, science, engineering

Tornado 1.0.0-3.2.1 (8) 2010.07-2014.05 42-97 10,915-22,095 high-level Python Web framework

1) Firstly, for each function called in a database, the

algorithm checks whether it reflects one of the analyzed

dynamic features except for del, simply by comparing their

names. If it matches one, find out the name of the file that uses

this function, and thus the number of the matched dynamic

features in this file is increased by one.

2) Secondly, for each lexeme in a file recognized by

Understand, the algorithm checks whether its token is a

keyword and its text is equal to del. If it is, then record the file

name and increase the number of the del in this file.

3) Thirdly, for a kind of dynamic feature that does not

appear in a file, the algorithm sets the number of that dynamic

feature in the file to zero.

4) Finally, the algorithm makes a two-dimensional table

stored in .csv format for the subsequent data analysis, which

saves all of the file names of a system and the number of each

dynamic feature used in every file.

IV. STUDY DEFINITION AND DESIGN

Section four starts with an explanation of how to get change
information of each file. Then it presents an introduction of the
target systems. After that, it elaborates the research questions
and the analysis methods for solving each research question.

A. File Change Information

In the experiment analysis, we need the change information
of each file, specifically whether the file is changed or not. To
acquire such data, we first write a Perl script to invoke the Linux
system command 'diff' which can be used to compare two
arbitrary text files. The execution of the script can generate a
formatted difference report textfile that records the position of
all the changes and the number of changed lines (added,
modified or deleted). Then by writing another script to mine the
formatted difference report, we can easily get change data of
each file and store them in .csv format likewise. Furthermore,
for files that appear in the former version but disappear in the
latter version, we identify them as changed files.

B. Data Sets

The context of this study consists of the change history and
dynamic features of 7 most famous open-source projects, which
have a different size and belong to different domain. For each
target system, we regularly choose releases in the interval of 4
to 12 months. Characteristics of the analyzed projects are shown
in TABLE II, and the more detailed data are published online1.
On every considered release, we gather the change information

and dynamic features of each file, depending on the methods
mentioned earlier.

C. Research Questions

Based on the data collected from the above systems, our
study aims to answer 3 research questions.

 RQ1: What is the relation between dynamic features
and change-proneness? More specifically, we explore if
files with dynamic features are more change-prone than
others by testing the null hypothesis: H01: the
percentage of files exhibiting at least one change
between two releases does not significantly differ
between files with dynamic features and other files.

 RQ2: What is the relation between the number of
dynamic features in a file and its change-proneness? We
analyze whether files with a higher number of dynamic
features are more change-prone than others by testing
the null hypothesis: H02: the number of dynamic
features in change-prone files is not significantly higher
than the number of dynamic features in files that do not
change.

 RQ3: What is the relation between particular categories
of dynamic features and change-proneness? Since, we
are also interested to evaluate whether particular
categories of dynamic feature contribute more than
others to changes by testing the null hypothesis: H03:
files with particular categories of dynamic features are
not significantly more change-prone than other files.

D. Analysis Methods

To answer RQ1, we test whether the proportion of files
undergoing (or not) at least one change significantly varies
between files with dynamic features and other files by using
Fisher’s exact test [18].This test is appropriate for categorical
data that result from classifying objects in two different ways
and is used to examine the significance of the association
(contingency) between the two kinds of classification. To apply
the test, we divide the files of each release into four groups, that
is, (1) files undergoing at least one change and with at least one
dynamic feature; (2) files undergoing at least one change but
with no dynamic feature; (3) files undergoing no change but
with at least one dynamic feature; (4) files neither changing nor
using dynamic feature. In addition, we compute the odds ratio
(OR) [18]. The OR is the ratio of the odds p of an event occurring
in one group, i.e., the odds that files with dynamic features
underwent a change (experimental group), to the odds q of it
occurring in another group, i.e., the odds that files with no

http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Categorical_data
http://en.wikipedia.org/wiki/Odds

dynamic features underwent a change (control group), more

intuitively: OR=
𝑝

1−𝑝⁄

𝑞
1−𝑞⁄

. An OR greater than 1 indicates that

changes are more likely to happen in files with dynamic features,
while an OR less than 1 means that changes are more likely to
happen in files without dynamic features. If odds ratio equals to
1, the event is equally likely in both samples.

In RQ2, we use the Mann-Whitney test to compare the
number of dynamic features in change-prone files with the
number of dynamic features in non-change-prone files. The
Mann-Whitney test is a non-parametric test that does not require
any assumption on the underlying data distributions, and thus is
suitable for our experiment. Other than testing the hypothesis, it
is of practical interest to estimate the magnitude of the
difference of the number of dynamic features in files with and
without changes, thus we use the Cohen`s d effect size [18]. A
d greater than 0 indicates that the number of dynamic features
are more in changed files than in not changed files, and less than
0, the contrary. It is worth mentioning that the effect size is often
considered small for 0.2 ≤ |d|< 0.5, medium for 0.5 ≤ |d|< 0.8
and large for |d| ≥ 0.8. For RQ2, we consider the files change or
not as the independent variable, and the number of dynamic
features in files as the dependent variable.

In RQ3, to relate change-proneness with the presence of
particular categories of dynamic features, we use a logistic
regression model which is widely used in many studies, e.g.,
[12], [19], to deal with similar problems. In the logistic
regression model, the dependent variable is commonly a
dichotomous variable and, thus, only two values {0, 1}, i.e., in
this article changed or not. The multivariate logistic regression
model is based on the formula:

π(X1, X2,……,Xn)=
eβ0+β1∙X1+…+βn∙Xn

1+eβ0+β1∙X1+…+βn∙Xn

where (a) Xt are characteristics describing the modelled
phenomenon, in our case, the number of dynamic features of
category t a file contains; (b) βt are the model coefficients; and
c) 0 ≤ π ≤ 1; the closer the value is to 1, the higher is the
likelihood that the file undergoes a change. For each category of
dynamic features, we count the number of times that, across the
analyzed releases of a target system, the p-values obtained by
the logistic regression are significant. If files participating in a
specific category of dynamic features are more likely to change
in more than 75% of the releases of a target system, then we say
that this category of dynamic features has a significant impact
on increasing the change-proneness in this system.

V. STUDY RESULTS

In this section, we present the results of our empirical study
which are further discussed in section six. More detailed results
and raw data are available online1.

A. RQ1: Dynamic Features and Change-Proneness

TABLE III reports the results of Fisher’s exact test and OR
values when testing H01. For each target system, it presents the
number of all the releases that are analyzed and the number of
releases whose p-values of Fisher’s test are significant (p-
values<0.05).To be specific, six of seven projects turn out to be
significant for more than 75% of their releases, and three
projects even prove to be significant for all the releases analyzed.
The only outlier is Tornado, five of eight releases turn out to be
significant. In summary, although the results sometimes depend
on systems analyzed, we can reject H01, i.e., the percentage of
files exhibiting at least one change between two releases does
significantly differ between files with dynamic features and
other files. Regarding the ORs of significant releases, they vary
across systems and, within each system, across releases. In 75%
of the releases of six systems, the ORs for files with dynamic
features to change are two times higher or more than for files
without dynamic features and thus odds to change is in general
higher for files with dynamic features. In very few releases of
some systems, as highlighted, ORs are close to 1,i.e, the odds
are even that a file with a dynamic features changes or not.

We therefore conclude that, in most cases, there is a negative
relation between dynamic features and change-proneness: a
greater proportion of files participating in dynamic features
change comparing to other files. Developers should be wary of
files with dynamic features, because they are more likely to be
the subject of their maintenance effort.

B. RQ2: Number of Dynamic Features and Change-

Proneness

TABLE IV presents results of the Mann-Whitney two-tailed
test and Cohen`s d effect size of the target systems, with the
purpose of comparing the number of dynamic features in files
that changed or not. More than 75% of the releases of all projects,
show significant p-values with relatively small to medium effect
sizes, except for Tornado, where only 4 out of 8 releases are
significant but with a medium effect size. Moreover, the releases
that prove not to have significant p-values confirm the findings
from RQ1 regarding the limited relation of dynamic features
with change-proneness for these releases. It is worth mentioning
that p-value of boto-2.6.0 is significant (p-value=0.02) in RQ2

TABLE III. SUMMARY OF FISHER TEST RESULTS AND OR VALUES FOR EACH TARGET SYSTEM

Project Number of

analyzed

releases

Number of

significant

p-values

Percent of

significant

p-values

OR
Max Min Mean 25%

quartile

50%

quartile

75%

quartile

Boto 6 5 83.3% 4.18 1.97 2.83 2.04 2.15 3.96

Bzr 9 8 88.9% 4.77 2.05 3.00 2.44 2.82 3.33

Django 7 7 100% 10.13 1.38 5.88 3.47 4.48 9.53

Matplotlib 6 6 100% 27.07 1.61 8.71 3.78 5.30 13.13

Numpy 8 8 100% 4.77 2.19 3.47 2.71 3.54 4.31

Scipy 8 6 75% 4.04 1.50 2.87 1.69 3.30 3.91

Tornado 8 5 62.5% 8.70 3.94 5.96 4.08 6.41 7.61

Sum 52 45 86.5% - - - - - -

TABLE IV. SUMMARY OF MANN-WHITNEY RESULTS AND COHEN`S D FOR EACH TARGET SYSTEM

Project Number of

analyzed

releases

Number of

significant

p-values

Percent of

significant

p-values

Cohen`s d
Max Min Mean 25%

quartile

50%

quartile

75%

quartile

Boto 6 6 100% 0.60 0.16 0.39 0.27 0.38 0.56

Bzr 9 8 88.9% 0.45 -0.01 0.34 0.30 0.38 0.44

Django 7 7 100% 0.61 0.07 0.35 0.28 0.36 0.41

Matplotlib 6 6 100% 0.82 0.12 0.45 0.21 0.40 0.73

Numpy 8 8 100% 0.55 0.05 0.38 0.29 0.43 0.51

Scipy 8 6 75% 0.55 0.33 0.44 0.38 0.45 0.50

Tornado 8 4 50% 0.75 0.54 0.64 0.56 0.64 0.73

Sum 52 45 86.5% - - - - - -

but not significant (p-value=0.14) in RQ1, yet we consider it a
tolerable abnormal phenomena that does not affect the whole
results. In summary, the results of most releases support that
change-prone files are those with a higher number of dynamic
features and thus we can reject H02.

C. RQ3: Categories of Dynamic Features and Change-

Proneness

TABLE V summarizes the results of the logistic regression
for the correlations between change-proneness and the different
categories of dynamic features. In particular, the table presents
the number of analysed releases for which each categories of
dynamic features is significant in the logistic regression model.
Boldface indicates significant p-values for at least 75% of the
releases in each system. Following our analysis method of RQ3
in section four, it is noticed that Introspection is shown to be
significantly correlated to change-proneness in 5 target systems,
and that Library Loading only has impact on Numpy project.
However, for Boto and Tornado, there are not enough releases
to support the relation between any category of dynamic
features and change-proneness. Therefore, we can partly reject
H03 for Introspection and Library Loading depending on the
results observed. On the whole, although only 5 of 7 analyzed
systems reject H03, we can conclude that there are categories of
dynamic features which are more related to others to change-
proneness in most cases and that the relation between particular
categories of dynamic features and change-proneness cannot be
completely ignored. What is more, the Introspection category
deserves extra attention for it turns out to be more related to
change-proneness than others.

TABLE V. NUMBER OF RELEASES WHERE EACH CATEGORY OF DYNAMIC

FEATURES SIGNIFICANTLY CORRELATES WITH CHANGE-PRONENESS.

VI. DISCUSSION

We now discuss the implications of the results reported in
section five, along with threats to validity.

A. Discussions and Implications

In this study, we investigate the impact of 18 built-in Python
dynamic features on file change-proneness. As analyzed in
section five, the results show that files with dynamic features
(and, in particular, those with a higher number of dynamic
features) are significantly more change-prone than others in
most releases of the analyzed systems, except for Tornado. And
dynamic features of Introspection are more related to file
change-proneness than the other three categories. Based on
these results, we can get some useful implications for both
research and practice.

For the research community, this work is the first one to
focus on the relation between dynamic features and
maintenance. The negative relation between dynamic features
and change-proneness promotes further investigations to be
conducted on the relation between dynamic features and other
maintenance related factors, such as fault-proneness. In sum,
our study inspires researchers to turn their attention from how
and why to use dynamic features to the effect that these features
have on maintenance. Additionally, we suggest that more work
should be focused on the category of dynamic features that
affect change-proneness most, in this work, the Introspection
category, and on how and why this kind of feature can be
constructed, in order to improve the quality of software and help
us better understand dynamic features as well.

For practice, we suggest that developers should be cautious
when using dynamic features, especially the Introspection,
because the presence of these features may lead to the
maintenance effort and cost. As for quality assurance personnel,
they need to pay extra attention to files with more dynamic
features, since these files may contribute to more maintenance
problems.

In addition to the foregoing, it is noticed that Tornado does
not exhibit an overwhelming significant relation (percent of

significant p-values ≥75%) of all the releases even if in one of

the three RQs. We deduce the reason for this fact lies in the
minor number of files of each release ranging from 42 to 97,
while file number of the other systems varies from hundreds to
thousands.

B. Threats to Validity

Internal threats in this work mainly concern whether the
hypothesis testing methods are properly used. Although in
practice the Fisher’s exact test is often employed when sample
sizes are small, it is also valid for all the sample sizes. Also, we

Project Number of

analyzed

releases

Proneness to Change of each category of

Dynamic features

Introsp

ection

Object

Changes
Code

Generation

Library

Loading

Boto 6 3 2 - -

Bzr 9 7 4 1 -

Django 7 6 2 1 1

Matplotlib 6 5 3 2 1

Numpy 8 6 - 2 6

Scipy 8 6 - 2 -

Tornado 8 3 1 - -

choose the non-parametric tests that do not require making
assumption about the data set distribution. To build the logistic
regression model, it is important to discard the independent
variables that are highly correlated to each other. We eliminate
such a threat by calculating the Spearman rank correlation
coefficient between any two different categories of dynamic
features. As expected, the results3 show that no two categories
of dynamic features are highly correlated (Spearman rank
correlation coefficient is higher than 0.8), and thus it is no need
to exclude any of the independent variables in our experiment.

Threats to external validity concern the possibility to
generalize our findings. Although we have tried our best to limit
such a threat and make the results general by choosing 7 open-
source systems of 5 different problem domains, as shown in
TABLE I, and by covering most of the built-in Python dynamic
features that are representative in each of the categories, yet the
generalization still requires further case studies including a large
number of Python systems from various domains and more
dynamic features as well. Besides, since covering all historical
versions for one project is a hard work, we select them regularly
by an interval of 4 to 12 months, which is a reasonable way.

Construct validity threats concern the relation between
theory and observation. In our context, they are mainly due to
errors introduced in measurements. In this work, the count of
changes occurred to files is based on comparing the difference
of files with the same name but from two versions. We are just
interested to check whether a file changes or not, rather than
quantifying the amount of change, which is however possible
based on rules in [20] and could be investigated in the future
work. In our detection algorithm, we ignore dynamic features
appearing in annotated codes. But we consider it does not
influence our results, for these circumstances are rare and are
often used for illustration purpose not for realizing functions.

VII. CONCLUSIONS AND FUTURE WORK

 In this paper, we explore how the use of dynamic features
affects file change-proneness. The whole study is undertaken by
choosing 18 most often used and studied Python dynamic
features [5], [6], [7] and 7 famous open-source Python systems
from Github and SourceForge online repositories. We find that
files with dynamic features are significantly more likely to be
the subject of changes, than other files. We also show that
dynamic features of Introspection are more likely to be of
concern during evolution. This exploratory study supports,
within the limits of the threats to its validity, the conjecture in
the literature that dynamic features may have a negative impact
on software evolution. Depending on the results observed, we
suggest practitioners that they should be cautions of treating
systems with a high prevalence of dynamic features during
development and maintenance, because those systems are likely
to be more change-prone: therefore, the cost-of-ownership of
such systems will be higher than for other systems. Additionally,
we call on researchers to pay more attention to dynamic features
of other languages concerning their impacts on software quality
and on the root causes of their negative impact, on the basis of
our work.

In the future work, we will replicate this study on more
systems and with more dynamic features considered to validate
the above-mentioned findings. Further, we are interested to

relate dynamic features to other phenomena such as the fault-
proneness.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (61472175, 61170071, 61472178), and the
National Natural Science Foundation of Jiangsu Province
(BK20130014). I express my sincere gratitude to all the teachers
and students who make contributions to this work.

REFERENCES

[1] Callaú O, Robbes R, Tanter É, Röthlisberger D. How (and why)

developers use the dynamic features of programming languages: the case
of Smalltalk. Empirical Software Engineering 18.6 (2013): 1156-1194.

[2] An, J. H. D., Chaudhuri, A., Foster, J. S., & Hicks, M. (2011). Dynamic
inference of static types for ruby (Vol. 46, No. 1, pp. 459-472). ACM.

[3] Richards, G., Lebresne, S., Burg, B., & Vitek, J. (2010, June). An analysis
of the dynamic behavior of JavaScript programs. In ACM Sigplan Notices
(Vol. 45, No. 6, pp. 1-12).

[4] Richards, G., Hammer, C., Burg, B., & Vitek, J. (2011). The eval that
men do. In ECOOP 2011–Object-Oriented Programming (pp. 52-78).

[5] Åkerblom, B., Stendahl, J., Tumlin, M., & Wrigstad, T. (2014, May).
Tracing dynamic features in python programs. In Proceedings of the 11th
Working Conference on Mining Software Repositories (pp. 292-295).

[6] Tratt, L. (2009). Dynamically typed languages. Advances in Computers,
77, 149-184.

[7] Holkner, A., & Harland, J. (2009, January). Evaluating the dynamic
behaviour of Python applications. In Proceedings of the Thirty-Second
Australasian Conference on Computer Science-Volume 91 (pp. 19-28).

[8] G. van Rossum and F.L.Drake, “PYTHON 2.6 Reference Manual”,
CreateSpace, Paramount, CA, 2009.

[9] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-
oriented design metrics as quality indicators. TSE, 22(10):751–761, 1996.

[10] M. Cartwright and M. Shepperd. An empirical investigation of an object-
oriented software system. TSE, 26(8):786–796, August 2000.

[11] Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object
oriented design. Software Engineering, IEEE Transactions on, 20(6),
476-493.

[12] Khomh, F., Di Penta, M., & Gueheneuc, Y. (2009, October). An
exploratory study of the impact of code smells on software change-
proneness. In Reverse Engineering, 2009. WCRE'09. 16th Working
Conference on (pp. 75-84). IEEE.

[13] Khomh, F., Di Penta, M., Guéhéneuc, Y. G., & Antoniol, G. (2012). An
exploratory study of the impact of antipatterns on class change-and fault-
proneness. Empirical Software Engineering, 17(3), 243-275.

[14] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar T
Devanbu. A Large Scale Study of Programming Languages and Code
Quality in Github. FSE’14, 16–22, 2014.

[15] S. Hanenberg. An experiment about static and dynamic type systems:
Doubts about the positive impact of static type systems on development
time. OOPSLA ’10, 22–35, 2010.

[16] Fateman, R. (2002). Software fault prevention by language choice: Why
C is not my favorite language. Advances in Computers, 56, 167-188.

[17] Pamela Bhattacharya and Iulian Neamtiu. Assessing Programming
Language Impact on Development and Maintenance: A Study on C and
C++. ICSE’11, 21–28, 2011.

[18] D. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[19] Hosmer Jr, D. W., & Lemeshow, S. (2004). Applied logistic regression.
John Wiley & Sons.

[20] Yuming Zhou, Hareton Leung and Baowen Xu. Examining the
potentially confounding effect of class size on the associations between
object-oriented metrics and Change-Proneness. TSE, 607-623, 2009.

