A Platform for Empirical Research on Information System Evolution

*

Robert Heinrich!, Stefan Girtner?, Tom-Michael Hesse®, Thomas Ruhroth?,
Ralf Reussner', Kurt Schneider?, Barbara Paech?®, and Jan Jiirjens*

IKarlsruhe Institute of Technology, Germany, {heinrich, reussner } @kit.edu
?Leibniz Universitit Hannover, Germany, {stefan.gaertner, kurt.schneider } @inf.uni-hannover.de
3University of Heidelberg, Germany, {hesse, paech} @informatik.uni-heidelberg.de
*TU Dortmund, Germany, {thomas.ruhroth, jan.jurjens} @cs.tu-dortmund.de

Abstract

Software-intensive systems are subject to continuous
change due to modification of the systems themselves and
their environment. Methods for supporting evolution are
a competitive edge in software engineering as software is
operated over decades. Empirical research is useful to val-
idate the effectiveness of these methods. However, empir-
ical studies on software evolution are rarely comprehen-
sive and hardly replicable. Collaboration in empirical stud-
ies may prevent these shortcomings. We analyzed the sup-
port for such collaboration and examined existing studies
in a literature review. Based on our findings, we designed
CoCoMEP- a platform for supporting collaboration in em-
pirical research on software evolution by shared knowledge.
We report lessons learned from the application of the plat-
form in a large research programme.

1 Introduction

In industrial practice, many information systems [1]] are
operated over decades. During operation they face vari-
ous modifications, e.g. due to emerging requirements, bug
fixes, and environmental changes, such as legal constraint
or technology stack updates. In consequence, the systems
change continually which is named software evolution [2].
Supporting software evolution is a competitive advantage
in software engineering. A variety of methods aim at sup-
porting different aspects of software evolution. However,
it is hard to assess their effectiveness and to compare them
due to divergent characteristics. Empirical research in terms
of case studies and controlled experiments is useful to val-
idate these methods. However, empirical studies on soft-
ware evolution are rarely comprehensive. They often cover
only one of the many aspects needed to study evolution:

*This work was partially supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design For Future
— Managed Software Evolution.

DOI reference number: 10.18293/SEKE2015-066

(1) long time-frames of observation are required to analyze
changes, (ii) large amount of artifacts and (iii) various types
of artifacts are affected by evolution, (iv) artifacts repeat-
edly change, (v) changes partly build upon each other, (vi)
various stakeholders are involved, (vii) access to relevant
project data, (viii) relevant project data must be documented
over long time spans, (ix) relevant context knowledge must
be documented beyond the code base and issue trackers.

To study evolution comprehensively, we believe it is im-
portant to collaborate by joint research in order to increase
coverage of the aspects. Joint research supports sharing of
knowledge and resources [3]. In particular, this allows repli-
cating studies which in general is important to confirm and
to strengthen results of empirical research [4] and thus en-
hance evidence. Our goal is to support joint research by
collaboration and replication in empirical studies based on
common evolution scenarios and artifacts. Currently, em-
pirical studies on software evolution are seldom compara-
ble as they vary in analyzed subjects and execution process.
Furthermore, these studies are rarely reusable as important
artifacts (e.g., requirements, design decisions, or context
knowledge) are often not provided to the community. To
the best of our knowledge, there is neither a community-
accepted case study for software evolution nor a common
benchmark available. Consequently, a common basis for
study collaboration and replication is missing.

In this paper, we propose CoCoMEPE] — a platform for
collaborative empirical research on information system evo-
lution. Under a “platform” we understand a comprehen-
sive knowledge base for the evaluation process that can
be exploited and extended by other researchers with dif-
ferent backgrounds and research interests. It provides as-
sistance on diverse characteristics important for software
evolution, e.g. the life-cycle of the system, artifacts in
different revisions, and comprehensive evolution scenarios.

IThe term is a combination of Common Component Modeling Exam-
ple “CoCoME ” [5] and “Platform”

CoCoMEP builds upon the established CoCoME case study
[5]. CoCoMEP is already in use for collaboration between
several projects within the DFG Priority Programme De-
sign For Future - Managed Software Evolution (SPP1593)
[6]. These projects collected knowledge on experiences and
lessons learned on research collaboration in software evo-
lution. CoCoMEP, however, is not limited to SPP1593
but open for reuse and extension by researchers outside
the scope of the priority programme. For constructing
CoCoMEP, we first analyzed the current support for re-
search collaboration (Sec. EI) Second, we conducted a liter-
ature review to examine existing empirical studies (Sec. [3).
Based on identified issues and requirements derived, we de-
signed CoOCoMEP (Sec.[). We discuss lessons learned from
applying CoCoMEP in SPP1593 (Sec.[5). The paper con-
cludes in Sec.

2 Related Work in Empirical Research

In this section, we analyze related work with regard to
collaboration. In particular, we focus on replicability and
comparability that are both indispensable to enable research
collaboration. The aim is to learn from experiences in em-
pirical research and derive requirements (R1-6) as basis for
the design of CoCoMEP. On this account, we focus on how
other research communities standardized their evaluations
to compare different solutions. We are interested in proper-
ties that enable or constrain comparability. Furthermore, we
examine papers discussing replication in empirical research
to consider replicability in our platform.

Standardized Evaluation within certain Research
Communities: In Espinha et al. [7]], a standard and open-
source case study for SOA is proposed. The authors dis-
cussed that for case studies in the SOA research community
a wide variety of small and closed systems is used limiting
comparability of obtained results. Therefore, standardized
study subjects are needed to enable assessment of ideas and
methods within this community. Another attempt to stan-
dardize evaluation has been made in Proksch et al. [8]]. They
described a framework focusing on evaluations of developer
assistance tools. As discussed in the mentioned papers, the
standardized case studies have to address the major chal-
lenges within a particular community. Otherwise, it will
not find broad acceptance.

To compose suitable case studies, we can learn a lot from
the repository mining community. In this community, de-
velopment histories (repositories) are analyzed with respect
to certain research questions. To compare results, some
projects (e.g., Apache Tomcat, Mozilla Firefox, etc.) exist
that are used by several research teams. For example, Lott
et al. [9]] and Lessmann et al. [10]] proposed frameworks for
comparative software defect prediction experiments. Ac-
cording to this, all artifacts of the study subject should be

made available to motivate a certain community to conduct
necessary empirical studies and to achieve better and more
convincing result as well as research collaboration. Hence,
we consider standardized evaluation as requirement R1 for
joint empirical research.

Replication of Empirical Studies: The aim of standard-
ized evaluation is to enable comparison and replication of
empirical and complementary studies. As described in Ju-
risto et al. [4], replication in empirical studies is required
to confirm or deny original results as well as to comple-
ment the original experiment. However, experiences have
shown that replication is hard to achieve [4]. One rea-
son is to establish identical conditions of the experimental
context which might be impossible in some cases. In ad-
dition, the replicating researchers need to fully understand
the experimental design, but most rationale is not provided
(tacit knowledge). To enable replication effectively, Schull
et al. [11]] proposed to provide laboratory packages for ex-
periments. The authors defined a laboratory package as
an experimental infrastructure including experiment design,
necessary material, and possible variation points. As stated
in Mendonga et al. [12], the problem is to compose static
laboratory packages that cover all aspects of the experi-
ment. The replicating researchers need to fully understand
the experiment and the corresponding material to avoid un-
predictable variants in the experiment limiting the meaning
of the achieved results. As a consequence, Mendonga et
al. proposed that effective replications also require well-
defined processes involving the original researchers. This
implies the need for an effective collaboration structure
among researchers, which we consider as requirement R2.
For this purpose, they introduced a framework for improv-
ing the replication of experiments (FIRE) and emphasize
the importance of knowledge sharing for internal and exter-
nal replications (e.g., experimental details and rationale).

Requirements on a Research Platform: As stated in
Demeyer et al. [13]], case studies are popular for assessing
new approaches relating to evolution, but most of them use
toy examples that have a bias towards the approach. More-
over, as stated in Runeson et al. [[14], different study sub-
jects and missing documentation of the evaluation process
decrease replication and comparability of case studies. To
cope with these issues, a standardized study as well as eval-
uation process is needed. Regarding evolution, Demeyer et
al. proposed a set of requirements. R3: the case must com-
prise artifacts that correspond to all life-cycle phases (life-
cycle requirement). R4: the evolution process must contain
iterations and increments (evolution requirement). RS: the
application, problem, and solution domains of the case must
be qualified (domain requirement). R6: tools necessary to
replicate the case must be evaluated (tool requirement). Our
research platform must address these six requirements prop-
erly.

3 A Literature Review on Empirical Studies

To understand how well existing studies on software evo-
lution support the requirements identified above we con-
ducted a literature review. This section provides the search
strategy, process documentation, and findings of the litera-
ture review. Basically, the review followed the guidelines
by Kitchenham and Charters [15]. However, it was not con-
ducted as a strict review as every paper was only reviewed
by one of the authors. As empirical methods we considered
case studies and experiments. We neither aimed at giving a
comprehensive overview of approaches for supporting soft-
ware evolution nor at presenting the approaches found. The
research questions (RQ) for our review were:

Which aspects of evolution are addressed explicitly
in case studies and experiments? (RQ1) According to
the requirements of Demeyer et al. [[13], we consider the
following aspects of evolution: Life-cycle which covers the
artifacts, activities and their relationships that correspond
to all phases in the system’s life-cycle. Evolution process
covering iterations in the life-cycle which we surveyed by
the time horizon of the study (i.e. design-time, run-time, or
post-mortem). Domain which covers the artifacts to provide
a concrete study setting. We did not include the requirement
tool as this is hard to examine by literature review.

With RQ2 we again refer to the focus of Sec. 2]by asking
how is comparability and replication supported in case
studies and experiments?

3.1 Paper Search and Selection Process

To answer the research questions publications were re-
quired to be related to evolution, information systems or
software engineering, and empirical studies. In conse-
quence, three sets of keywords were created. The evolution
set covers the keywords evolution, maintenance, change-
ability, and modifiability. The domain set contains the key-
words information system and software. The methods set
comprises case study and experiment. We did not derive
search terms from RQ2 as comparability and replicability
is typically not stated within the single study, but has to
be assessed manually. We searched journals (e.g., ESEJ,
TOSEM, TSE, KAIS, and ICSM) and conference proceed-
ings (e.g., CSMR, ESEM, ICSE, and FSE) related to empir-
ical research and software evolution with an impact factor
greater or equal one and an acceptance rate lower than 30%,
respectively.

We performed two selection iterations on the initial
amount of 272 search hits. Each iteration was performed by
one author guided by defined inclusion and exclusion cri-
teria as proposed by Kitchenham and Charters [15]. The
first iteration evaluated whether the papers conformed to
the formal requirements on case studies and experiments

as described by Runeson et al. [14]. In the second itera-
tion, the contribution of the papers to one or both research
questions was evaluated. After the first iteration 105 papers
were selected for further analysis. Within the second itera-
tion 53 papers were identified that contribute to the research
questions. The identified papers are listed online (www .
dfg-sppl593.de/cocome/platform) due to page
restrictions in this paper.

3.2 Findings

As a general answer to RQI1, no study has been found
considering the entire evolution life-cycle. In addition, nei-
ther artifacts nor relations between the different develop-
ment activities are comprehensively covered by existing
studies. Distributions for the findings are depicted in Fig.
Focus on design-time: Our review shows that design-time
and post-mortem studies (52 out of 53) outweigh run-time
studies (1 out of 53). Focus on a specific activity: Most
studies are only focused on a specific activity within the life-
cycle. In particular, requirements engineering and mainte-
nance phase were least covered. Focus on a specific arti-
fact: For supported activities, the approaches usually con-
sider a typical type of artifact, like code or UML models.
Only a few studies (2 out of 53) focus on changes of addi-
tional documentation. We could not find a study focusing on
changing decisions during evolution. Moreover, only a few
studies (10 out of 53) cover co-evolution of development
artifacts. The majority of these (6 out of 10) covers co-
evolution within the same type of artifact, like co-evolution
of components or test cases. Relationships between activi-
ties mostly not considered: Only a few studies (8 out of 53)
examine the relationships between activities within differ-
ent life-cycle phases (requirements engineering and imple-
mentation, design and implementation, implementation and
maintenance).

The following findings answer RQ2. Missing compara-
bility and replicability of studies: Most empirical studies
and their results are not comparable in terms of domain,
size, or complexity. In particular, this is true for controlled
experiments, where the complexity of tasks is limited which
may lead to less realistic settings. Thus, the obtained results
have only limited evidence for software evolution in prac-
tice. This is related to the problem of replicating empirical
studies [4]. Regarding software evolution, replication is dif-
ficult to achieve due to a large amount of changes required
in the study subjects within a long period of time. Con-
sequently, a complete change history would be required for
the study subjects. Moreover, no study in our review made a
clear distinction which types of evolution were addressed by
given changes. As introduced by Lientz and Swanson [16],
three types can be distinguished — corrective, perfective and
adaptive evolution. If a case study does not specify the ad-

www.dfg-spp1593.de/cocome/platform
www.dfg-spp1593.de/cocome/platform

Time Horizon of Study

2
o,
0 = Design-time %

= Run-time

J Post-mortem j
32 \ 1 23

Supported Activities

= Requ. Engineering
= Design
Implementation
= Test
0)
= Maintenance

Supported Artifacts Supported Relationships
2-I11r2 = Product-lines a-irt = No relationship
3 \” [1 = Use Cases] \
/ 7 = Database Schema 2 \ = Requ. Engineering and
= Design Tasks Implementation
= UML Models Design and
= Components Implementation
3 .Code * Implementation and
= Bugs Maintenance

i = Not clear
= Documentation 45 ot cleal

Figure 1. Distribution of Supported Development Time Horizon, Activities, Artifacts and Relationships

dressed evolution type, it is difficult for other researchers to
assess whether the study is appropriate for their approach.

Only a few publications provide enough details about
their empirical study to enable replication. Most of these
studies are performing a post-mortem analysis on code
repositories. However, there exist only a few open-source
projects for repository mining studies, on which the com-
munity for post-mortem analysis agreed. Overall, no com-
mon guidelines have been found for studies on software
evolution in order to support joint research.

4 The CoCoME Platform

The findings of our literature review clarified the need
for improvement in case study research on information sys-
tem evolution. According to the requirements identified in
Sec. 2] we developed the research platform CoCoMEP de-
picted in Fig.[2] On this account, the established CoCoME
system [5] serves as the study subject (Sec.d.I)). We devel-
oped examples of change scenarios in information system
evolution (Sec. , constructed sample activities in system
development and operation, and arranged them in life-cycle

form (Sec.[d.3).

4.1 Evolution Subject

An evolution subject is the amount of artifacts in dif-
ferent revisions (e.g., requirements or monitoring data) that
represent an information system. We used CoCoME [3] as
evolution subject. CoCoME has been set up in a Dagstuhl
research seminar as a common case study on which sev-
eral methods in the context of component-based software
engineering have been applied. Since more and more peo-
ple do research on software evolution, CoCoME has been
applied in new areas as a demonstrator for software evo-
lution methods. CoCoME represents a trading system as
[Platform Migration])DRD;::T) as:::iit[v) besen)

Decisionsf Analysis / +Impl.

\J Design
[Adding a Web Shop] “ g@
IS Run-time

CoCoME

Variant .
.] Deploy- Dvnar_nlc Ada.m
Run-time Reconfig. mene) Quality } Design
Analysis / +Impl.
Evol. Subject Evol. Scenarios Evol. Life-Cycle

Figure 2. Overview of the CoCoME Platform

it can be observed in a supermarket chain handling sales.
This includes processing sales at a single store of the chain,
e.g. scanning products or paying, as well as enterprise-wide
administrative tasks, e.g. inventory management or report-
ing. A detailed description of CoCoME is given in [5].
Since CoCoME has been applied and evolved successfully
in various research projects, e.g. SLA@SOI (http://
sla-at-soi.eu) and Q-Impress (www.q-impress.
eu)), several variants exist that span different platforms and
technologies, such as plain Java code or service-oriented
frameworks. Furthermore, various development artifacts
are available, such as requirements specification or design
documentation, which changed over time. CoCoME is well
suited to serve as evolution subject because the supermarket
context is commonly comprehensible and the complexity of
the system is appropriate. As CoCoME is a distributed sys-
tem, several quality properties are affected by evolution.

4.2 Evolution Scenarios

An evolution scenario describes changes to a certain evo-
lution subject. Based on CoCoME, we implemented dis-
tinct evolution scenarios (S1-S3) covering the categories
adaptive and perfective evolution (cf. Sec.[3). Corrective
evolution is not considered as this merely refers to fixing de-
sign or implementation issues. A perfective evolution with
regard to a changing environment is represented in S1 by
emerging user requirements. An adaptive evolution is re-
flected in S2 by platform alterations due to evolving tech-
nology. Furthermore, in order to accommodate the self-
adaptiveness of modern software architectures, reconfigura-
tion during system operation is addressed in S3. Implemen-
tation details are visualized online (www .dfg—spp1593.
de/cocome/plat form) due to page restrictions.

S1: Web Shop Extension: A web shop is added where
the customers can order online and pick-up the goods at the
store. This design-time modification includes adding new
use cases and modifying existing design models. S1 rep-
resents a requirements-driven evolution that transforms a
closed system (only employees can access) to an open sys-
tem (customers can accessed via internet). Hence, various
quality properties are affected, e.g. privacy, security, perfor-
mance, and reliability.

S2: Platform Migration: The enterprise server and its
connected database are now running in the Cloud to reduce

http://sla-at-soi.eu
http://sla-at-soi.eu
www.q-impress.eu
www.q-impress.eu
www.dfg-spp1593.de/cocome/platform
www.dfg-spp1593.de/cocome/platform

operating costs of resources. The introduction of the Cloud
enables flexible adaptation and reconfiguration of the sys-
tem, however, causes new challenges regarding aforemen-
tioned quality properties.

S3: Database Migration: During a big advertise cam-
paign, the performance of the system may suffer due to lim-
ited capacities of the Cloud provider currently hosting the
database. Migrating the database from one Cloud provider
to another may solve the scalability issues. S3 represents
a reconfiguration at run-time. Migrating the database may
cause privacy issues, as described in further detail in [17]].

4.3 Evolution Life-Cycle

An evolution life-cycle integrates activities and their re-
lationships required to implement one or more evolution
scenarios. We developed a set of sample activities typical
in information system evolution and arranged them in life-
cycle form (cf. Fig.[2) to cope with aforementioned evolu-
tion scenarios.

An iteration in the life-cycle starts with a change request,
e.g. for S1 or S2. Decisions are made and documented. A
static quality analysis is conducted to identify quality issues
at design-time. The design is adapted and implemented. Af-
ter deployment, a dynamic quality analysis is conducted for
the running system which may result in automated adapta-
tion at run-time (S3) or a new iteration for manual evolution.

The life-cycle addresses the findings from literature re-
view as it (i) spans design-time and run-time, (ii) covers var-
ious activities located in different phases of software devel-
opment and operation, (iii) contains a variety of heteroge-
neous artifacts associated to the life-cycle activities, e.g. re-
quirements, decisions, UML models, monitoring data, sim-
ulation data, and (iv) covers relationships between the ac-
tivities. Tab.[I] gives an excerpt of the review findings and
how they are supported by CoCoMEP.

Diverse variants of the three parts of CoCoMEP are pos-
sible. However, CoCoMEDP is appropriate to conduct empir-
ical studies on software evolution as it covers the require-
ments (see Sec. [2). R1: It provides standardized study sub-
ject, evolution scenarios, and life-cycle activities. R2: This
standardization in conjunction with the community offers a
structure for collaboration and study replication (see Sec[3).
R3: CoCoMEP comprises activities and artifacts that cor-
respond to all phases in the system’s life-cycle (life-cycle
req.). R4: It covers iterations and increments in the devel-
opment process (evolution req.). RS: It provides a concrete
setting to qualify the application domain (i.e. supermar-
ket), problem domain (i.e. web-based system) and solution
domain (e.g., architecture, code, etc.) of the case (domain
req.). R6: It supports evaluating the tools necessary to repli-
cate the case, such as implementation/design languages, op-
erating system, or development environments (tool req.).

Finding | Dimension in Fig.[1] | CoCoME Platform

Time horizon | design- and run-time | both [18]

Activities requirements, design, | use cases [[19]/static [20]/
maintenance dynamic analysis [18]

Artifacts documentation, design decisions [19],
UML models, code simulation/instrumentation

data [18!121], java code
Relation req. and impl. all phases related

Table 1. Supported Review Findings (excerpt)

5 Lessons Learned

In this section, we discuss experiences (wrt. outcomes of
Sec. 2] and 3) from applying CoCoMEP in the DFG Prior-
ity Programme 1593 which comprises 13 research projects
with a focus on long-living systems [6]. The application is
exemplified in [18} [19} 20, 21]]. CoCoMEP proved to be a
suitable knowledge base and supported us in: (i) Gathering
project-spanning understanding on activities and artifacts
wrt. evolution. Mapping the diverse activities and artifacts
specific to the single projects within the priority programme
into the given life-cycle structure enabled a common un-
derstanding of them. Furthermore, common understanding
has been supported by a joint communication and documen-
tation infrastructure, i.e. mailing lists, media wiki, SVN
repository. The wiki contains all the information about life-
cycle activities and related artifacts to be shared and refined
among the projects. We use the SVN repository to share
source code as well as configuration and documentation ar-
tifacts. Based on the life-cycle and infrastructure it was easy
to identify and solve uncertainties and misunderstandings
among the projects and to create a project-spanning under-
standing. This is one foundation for research collaboration
(i.e. comparability and replication). (ii) Identifying common
artifacts. Mapping activities and artifacts into the life-cycle
allows for identifying artifacts used by diverse projects and
relations between artifacts. This is another foundation for
research collaborations. (iii) Reuse of activities and arti-
facts. Mapping activities and artifacts into the life-cycle al-
lows for reusing them among the projects and for others.
In the priority programme context, the output of activities
associated to one project is often reused as an input for ac-
tivities associated to another project. Using the artifacts in
subsequent activities by another project contributes to the
evaluation of the artifacts and thus the applied approaches.
Furthermore, activities are reused as they are performed by
two or more projects. This also contributes to the evaluation
of the approaches applied by one projects by comparison to
another project. (iv) Clarifying interfaces between projects.
Project-spanning understanding and knowledge about de-
pendencies between activities and artifacts supports clarify-
ing the interfaces between the single projects. This leads to
distribution of responsibilities and thus results in more effi-
cient collaborations. For example, if a required artifact has

already been created by one project, it can often be reused
by another project without additional effort. (v) Using feed-
back loop. Including design-time and run-time in the life-
cycle allows for analyzing the effects of design decisions at
run-time within the same study. This is in contrast to exist-
ing studies, which are mostly limited to design and imple-
mentation. (vi) Establishing a technical basis. CoCoMEP
contributed to the development of a common technical basis
between the single projects. It supported us in developing
tools that interact with each other based on clearly defined
interfaces and in configuring common execution environ-
ments. Joint tool development and configuration reduces
effort for the single projects. Additionally, the integrated
tooling eases collaboration while evaluation.

Applying CoCoMERP in the priority programme context,
however, showed some potentials for improvement. Change
history of some artifacts is rather short. Since the prior-
ity programme started in 2012, artifacts still face few evo-
lutionary changes compared to ordinary repository mining
studies for instance. This is caused by the fact that CoCoME
is a research prototype and we do not have the amount of
resources (human and financial) involved in real-life devel-
opment. Nevertheless, as shown by studies in the priority
programme, CoCoME provides a sufficient knowledge ba-
sis so far for conducting various analysis, e.g. on use cases,
decisions, or monitoring and simulation data. We are confi-
dent to produce a larger change history in the future as the
priority programme continues for further three years and si-
multaneously CoCoME is applied in a growing number of
studies beyond the programme.

6 Conclusion

Based on requirements for collaboration support from re-
lated work and a literature review on empirical studies on
software evolution, we developed CoCoMEP. The platform
consists of three interconnected parts — an established study
subject, related evolution scenarios, and a life-cycle cov-
ering activities to address the scenarios. Thus, it supports
collaboration in and replication of empirical studies by en-
abling common understanding and reuse of activities and
artifacts, interfaces between projects and technical infras-
tructure, as perceived while applying CoCoMEP in a large
research priority programme. In short, CoOCoMEP is ex-
pected to provide the following benefits to researchers: (i)
less effort in scenario definition, study setup and execution,
as well as (ii) increased evaluation confidence and (iii) com-
munity acceptance by interaction with others. In the fu-
ture, the subject CoCoME will be further modified to create
new and evolve existing artifacts by new evolution scenarios
such as the introduction of mobile clients. These scenarios
may include parallel evolution and co-evolution of artifacts
which are difficult to achieve in most empirical settings.

References

(1]
(2]
(3]

(4]

(]

(6]
(7]
(8]
(9]

(10]

(1]

[12]

[13]
(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

J. O’Brien and G. Marakas, Introduction to Information Sys-
tems, 15th ed. McGraw-Hill, 2010.

M. M. Lehman and L. A. Belady, Eds., Program Evolution:
Processes of Software Change. Academic Press, 1985.

D. L. Sjoberg et al., “The future of empirical methods in soft-

ware engineering research,” in Future of Software Engineer-

ing. 1EEE, 2007, pp. 358-378.
N. Juristo and O. Gémez, “Replication of software engineer-

ing experiments,” Empirical software engineering and veri-
fication, pp. 60-88, 2012.

S. Herold et al., “CoCoME - the common component mod-
eling example,” in The Common Component Modeling Ex-
ample. Springer, 2008, pp. 16-53.

U. Goltz et al., “Design for future: managed software evolu-
tion,” CSRD, pp. 1-11, 2014.

T. Espinha et al., “Maintenance research in SOA - towards a

standard case study,” in CSMR. 1EEE, 2012, pp. 391-396.
S. Proksch et al., “Towards standardized evaluation of

developer-assistance tools,” in RSSE’14. ACM, pp. 14-18.
C. Lott and H. Rombach, “Repeatable software engineer-

ing experiments for comparing defect-detection techniques,”

Empirical Software Engineering, vol. 1, no. 3, 1997.
S. Lessmann and B. Baesens, “Benchmarking classification

models for software defect prediction: A proposed frame-
work and novel findings,” IEEE TSE, vol. 34, no. 4, pp. 485—

496, 2008.

F. Shull et al., “Replicating software engineering experi-
ments: addressing the tacit knowledge problem,” Inzl. Sym-
posium on Empirical Software Engineering, pp. 7-16, 2002.
M. G. Mendonga et al., “A Framework for Software Engi-
neering Experimental Replications,” ICECCS, pp. 203-212,
2008.

S. Demeyer et al., “Towards a Software Evolution Bench-
mark,” in IWPSE. ACM, 2001, pp. 174-177.

P. Runeson et al., Case Study Research in Software Engi-

neering: Guidelines and Examples. Wiley, 2012.
B. Kitchenham and S. Charters, “Guidelines for performing

systematic literature reviews in software engineering,” Keele

University, Tech. Rep., 2007.
B. P. Lientz and B. E. Swanson, Software Maintenance Man-

agement: A Study of the Maintenance of Computer Ap-
plication Software in 487 Data Processing Organizations.
Addison-Wesley, 1980.

R. Heinrich et al., “Integrating run-time observations and de-
sign component models for cloud system analysis,” in MRT.
CEUR Vol-1270, 2014, pp. 41-46.

W. Hasselbring et al., “iObserve: integrated observation and
modeling techniques to support adaptation and evolution,”

CAU Kiel, Tech. Rep. 1309, 2013.
S. Gaertner et al., “Capturing and Documentation of Deci-

sions in Security Requirements Engineering through Heuris-

tics,” SWT-Trends, vol. 34, no. 1, pp. 21-22, 2013.
R. Heinrich et al., “Architecture-based analysis of changes in

information system evolution,” WSRE, SWT-Trends, vol. 34,

no. 3, 2015.
R. Heinrich et al., “Run-time architecture models for dy-

namic adaptation and evolution of cloud applications,” CAU
Kiel, Tech. Rep. 1503, 2015.

	Introduction
	Related Work in Empirical Research
	A Literature Review on Empirical Studies
	Paper Search and Selection Process
	Findings

	The CoCoME Platform
	Evolution Subject
	Evolution Scenarios
	Evolution Life-Cycle

	Lessons Learned
	Conclusion

