
1

PIPE+Verifier - A Tool for Analyzing High Level
Petri Nets

Su Liu and Xudong He
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199, USA
{sliu002, hex}cis.fiu.edu

Abstract—High level Petri nets (HLPNs) have been widely
used to model complex systems; however, their high expressive
power costs their analyzability. Model checking techniques have
been exploited in analyzing high level Petri nets, but have limited
success due to either undecidability problem or state explosion
problem. Bounded model checking (BMC) is a promising
analysis method that explores state space within a predefined
bound. BMC sacrifices the completeness of traditional model
checking but becomes more practical and often effective to
analyze large models. In our prior work, we have developed a
method based on BMC and a supporting tool PIPE+Verifier to
analyze high level Petri nets using a state of the art satisfiability
modulo theories (SMT) solver Z3 as the backend engine. Our
experiment results have been very encouraging. In this paper, we
present the design, implementation, and use of PIPE+Verifier,
as well as show additional improvements to make PIPE+Verifier
more efficient.

Keywords- Petri Net, Model Checking, Bounded Model Checking.

I. INTRODUCTION

High level Petri nets (HLPNs) [2] have been widely used to
model the data, functionality, structure, and dynamic behaviors
of complex systems. However the powerful expressiveness of
HLPNs costs their analyzability. Simulations are the primarily
analysis technique for HLPNs. Many HLPNs modeling tools
such as CPN tools [10], [1], ALPiNA [9] and PIPE+ [12]
support the simulation of different forms of HLPNs. While
simulation is practical and cost effective, it cannot assure
a safety property to be satisfied in all possible executions.
Exhaustive analysis methods such as model checking [11]
search all possible execution paths of a model but suffer from
the state explosion problem, and are often limited to finite
state systems. Since HLPNs can be used to model complex
systems, where the state space can be not only huge but also
infinite.

Bounded model checking (BMC) with satisfiability solving
[6], [3] was proposed as an alternative approach to address
the state explosion problem, which is particularly suited to
analyze safety properties. BMC tries to find a counterexample
violating a safety property by exploring only a finite state
space defined by all execution paths up to a pre-defined bound
k. A counterexample is found if the negated safety property is
held in a reachable state; otherwise, the safety property holds

DOI reference number: 10.18293/SEKE2015-060

Figure 1: An Overview of PIPE+Verifier’s Workflow

up to k. k can be iteractively increased to an acceptable value
proportional to the size of a model’s state space. Since the
true upper bound cannot be determined in general, BMC is
not a complete analysis method, yet is practical and effective
in many real-world applications.

In SAT-based BMC [5], a model is converted into a propo-
sitional formula whose satisfiability is determined by a SAT
solver. In recent years, satisfiability modulo theories (SMT)
solvers [7] have made great progresses to efficiently check
the satisfiability of a subset of first-order logic formulas with
a variety of underlying theories including linear arithmetic,
difference arithmetic, arrays and so on. These theories are rich
enough to represent the data and algebraic expressions in most
HLPN models.

In [13], we have developed a method based on BMC and
a supporting tool PIPE+Verifier to analyze high level Petri
nets using a state of the art satisfiability modulo theories
(SMT) solver Z3 [8] as the backend engine. We have applied
PIPE+Verifier to a variety of models from the existing litera-
ture and obtained very encouraging experimental results. An
overview of PIPE+Verifier’s workflow is shown in Figure 1.

PIPE+Verifier has the following features:
• being compatible with HLPN models and first-order

linear time logic (FOLTL) representing properties built
by modeling tool PIPE+ [12];

• encoding HLPN models and safety properties in FOLTL
into an SMT formula;

• exporting the SMT formula into a file in C language
(written in Z3’s C API) recognizable by Z3;

• invoking Z3 to check the satisfiability of the SMT formula
and returning an analysis report with the checking result,
counterexample, consumed time and memory to check;
and

• allowing incremental checking by increasing the k upper

2

Figure 2: Five Dining Philosopher Problem in HLPN

bound value.
In this paper, we present the design, implementation, and use
of PIPE+Verifier, as well as show additional improvements
to make PIPE+Verifier more efficient with some experimental
results.

II. BACKGROUND

A. High Level Petri Nets

A HLPN [2] has a net structure consisting of a finite set
of places (drawn as circles), a finite set of transitions (drawn
as bars), and a finite set of directed arcs between places and
transitions (drawn as arrows); and a net inscription supporting
the definitions of place types, place markings, arc annotations,
and transition conditions. A place type can be a power set to
capture a set of tokens. All the tokens in a power set are
of the same type built from primitive data types including
integer type and string type. A place marking is a collection of
tokens (data items) associated with the place. Arc annotations
are inscribed with expressions that may comprise constants,
variables, and function images. Transition conditions are logic
expressions.

Figure 2 illustrates a dining philosopher problem mod-
eled in a HLPN. The net consists of three places
PPhil Thinking , PChopsticks, PPhil Eating and two transitions
TPickup and TRelease. All the places’ token type is hinti.
PPhil Thinking and PChopsticks both have five tokens ini-
tially {h0i, h1i, h2i, h3i, h4i}. TPickup’s transition condition is
p = c1^(p+1)%5 = c2^e = p. TRelease’s transition condition
is p = r ^ c1 = r ^ c2 = (r + 1)%5.

B. Bounded Model Checking

Different from traditional model checking, BMC is incom-
plete and only performs an exhaustive search up to an upper
bound. In many real world applications, a property can be
effectively checked by examing only the limited prefixes of
all executions, thus BMC becomes a practical and useful anal-
ysis technique, which partially alleviates the state explosion
problem. Given a finite transition system M , a linear time
temporal logic (LTL) formula f , and an integer k; BMC tries
to determine whether there exists a computation path in M of
length k or less (denoted as Mk) that satisfies f .

In BMC, a logic formula �k is constructed from a given Mk,
including the initial state I and unrolled transition relation T ,

and some properties f . Since transition T in �k is unrolled k

times, the length of �k is dependent on k. The logic formula
�k is represented in equation 1:

�k
.

= I(s0) ^
k�1̂

i=0

T (si, si+1) ^
k_

i=0

¬f(si) (1)

where I (s0) is the characteristic function of the initial state,
T (si, si+1) is the characteristic function of the transition re-
lation, and f(si) represents the property formula f associated
with unrolled state si (0 i k). Currently our tool supports
the analysis of safety properties, thus f represents some safety
property. If �k is satisfiable, there is a firing sequence or a
state transition path from the initial state I(s0) to a state si

that satisfies the negation of fi, thus violates f ; otherwise,
property f holds in all execution sequences up to k transition
steps in M .

Satisfiability modulo theories (SMT) [7] solvers are effi-
cient modern theorem provers that support a combination of
underlying theories such as bit-vectors, rational and integer
linear arithmetic, arrays, and uninterpreted functions. SMT
solvers are the extensions of satisfiability (SAT) solvers and
directly applicable to the decision problems expressed in first
order logic formulas with respect to the multiple background
theories. For example, an SMT solver can decide whether a
formula in the theory of linear arithmetic is satisfiable:

(x+ y 0) ^ (qb _ a ^ (y = 0)) ^ (x 0)

where x, y are integer variables and a, b are Boolean variables.
If the formula is satisfiable, the SMT solver returns a variable
assignment satisfying the formula.

Both SAT solvers and SMT solvers have been successfully
used in BMC. Z3 [8], developed in Microsoft Research
Institution, is an efficient and widely used SMT solver that
supports many background theories, such as rational and
integer arithmetic, bit-vectors, array theory, and set theory. Z3
ranks highly in annual SMT competitions [4]. Therefore, Z3
is chosen as PIPE+Verifier’s backend engine.

III. TRANSLATING HLPN MODELS TO SMT FORMULAS

A. General Translation Rules HLPNs to a SMT Formulas

In BMC [6], a model and a property are encoded into
a formula �k, which is solved by a SAT or SMT solver.
Encoding a HLPN model and a property formula into �k

involves the following steps.
1) Representing HLPN Markings as Symbolic States: In a

HLPN model, a marking Mi is defined by a distribution of
tokens in all places. Thus we need to define a symbolic state
in SMT covering all places and their types in the HLPN. A
mapping from HLPN model’s elements to SMT sorts is shown
in Table I.

A marking is defined by a SMT tuple with each tuple
element denoting a place in the HLPN. Since a place can
contain multple tokens, it is defined as a set in SMT. Structured
token types defined in the HLPN are mapped to tuples in
SMT, and primitive token types such as integer and strings
are encoded as Integer in SMT.

3

Table I: HLPN Elements to SMT Sorts

HLPN Elements SMT Sorts
Marking Tuple
Places Set

Structured Token Type Tuple
Primitive Token Type Integer

Since an execution sequence having k transition firing steps
M0 ! M1 ! · · · ! Mk contains k + 1 markings, which
correspond to k+1 symbolic states in �k, k+1 sets of unique
variables {V0, V1, · · · , Vk} in SMT are needed.

2) Encoding Initial State : In a HLPN model, the initial
state is defined by the initial marking. In �k, an initial sym-
bolic state is defined by assigning values to the first symbolic
state through clauses. The clauses are mainly expressed in
equations. Thus a formula representing the initial marking in
the HLPN is first constructed and then added as a conjunct to
�k.

3) Formulating Transitions: In a HLPN model, each tran-
sition tj captures a local state change and its firing subtracts
tokens from tj’s input places and adds tokens into tj’s
output places, which contributes to the overall marking change
Mi ! Mi+1. The effect of firing each transition is encoded
as a logic formula tj (Si, Si+1). More specifically, let P be
the set of places in HLPN model and ptj be the set of places
connected to tj , the relation is encoded as Equation 2.

tj (Si, Si+1) =

(
Si+1 (ptj) = ti (Si (ptj))

Si+1 (P \ ptj) = Si (P \ ptj)
(2)

Concurrent transition firings in the HLPN model need to
be linearized, which does not affect the safety properties to
be analyzed. Thus only interleaved executions are considered.
Due to the non-determinism of transition firings, each firing
(transition) step is encoded as a formula Ti (Si, Si+1) =Wn

j=0 tj(Si, Si+1) representing the disjunction of the for-
mulas capturing the effects of firing individual transitions
tj (0 j n). An execution consisting of k transition firings
is formulated as a conjunction of k successive state transition
formulas as follows, which is added as a conjunct to �k:

k�1̂

i=0

(
n_

j=0

tj(Si, Si+1)) (3)

4) Defining Property : In a HLPN model, properties are
defined in FOLTL formula f . Since BMC is most effective
in checking the violation of safety properties, a formula
f (Si) representing the safety property formula f without
temporal operators in state Si needs to be checked. FormulaWk

i=0¬f(Si) expressing the violation of the safety property in
the first k transition step in an execution sequence is added as
a conjunct to �k.

B. Specific Translation Code from HLPNs to Z3

PIPE+Verifier processes an HLPN model and translates it
into C API code provided by Z3 solver so that Z3 solver can
compile and execute the code.

The generated C API code contains five parts:

Table II: SMT Declaration Z3 Code

SMT Sort Code Example Relation to HLPN
StateTUPLE Z3 mk tuple sort() Marking

PlaceSetSORT Z3 mk set sort() Place
TokenSORT Z3 mk tuple sort() Structured token type
IntegerSORT Z3 mk int sort() Primitive token type

1) Declaration: declares a list of required types (called
SORT in SMT), shown in Table II.

2) Defining symbolic states: the state builder de-
fines k + 1 states in C code, each state has a
type STATETUPLE. The C code uses Z3 ast Si =
Z3 mk const(STATE TUPLE), where Si is the identi-
fier of state i.

3) Building initial state: since symbolic states are defined,
a formula capturing the initial marking asserts that an
empty place set equals to S0. A code snippet is shown
in Code 1:

Code 1: Initial State in Z3
1 Z3_ast ini_token_clauses[m];
2 Z3_ast ini_place = Z3_mk_empty_set(TokenSORT);
3 Z3_ast ini_token = Z3_mk_const(TokenSORT);
4 Z3_mk_set_add(ini_place, ini_token);
5 ...
6 Z3_ast ini_token_clauses[0] =
7 Z3_mk_eq(mk_unary_app(proj_decls[0], S0), ini_place);
8 ...
9 Z3_assert_cnstr(ctx, Z3_mk_and(m, ini_token_clauses[0]));

4) Formulating transitions: the formula is defined in
terms of a conjunction of k successive state transi-
tions T (Si, Si+1), where each state transition is de-
fined by a disjunction of local transitions t (Si, Si+1).
t (Si, Si+1) is defined by an if � then� else structure
if c0 then c1 else c2 , which is a concise representation
of (c0 =) ct) ^ (¬c0 =) cf). A code snippet is
shown in Code 2:

Code 2: Transition Formulation in Z3
1 Z3_ast transitions_state[k];
2 Z3_ast transitions_local_or[l];
3 Z3_ast var_in = Z3_mk_const(Z3_mk_set_sort(TokenSORT)

);
4 ...
5 Z3_ast cond_in = Z3_mk_set_member([input arc variable

], [input place]);
6 Z3_ast cond_trans = [transition formula];
7 Z3_ast cond_out = Z3_mk_set_member([output arc

variable], [output place]);
8 Z3_ast cond = Z3_mk_and(o, cond_and);
9 Z3_ast trans_true_and[m];

10 ...
11 Z3_ast trans_true = Z3_mk_and(m, trans_true_and);
12 Z3_ast trans_false_and[n];
13 ...
14 Z3_ast trans_false = Z3_mk_and(n, trans_false_and);
15 Z3_ast transitions_local[0] = Z3_mk_ite(cond,

trans_true, trans_false);
16 ...
17 Z3_ast trans_dump = Z3_mk_eq(S0, S1);
18 Z3_ast transitions_local_dump = Z3_mk_implies(

Z3_mk_true(), trans_dump);
19 ...
20 Z3_ast transitions_state[0] = Z3_mk_or(l,

transitions_local_or);
21 ...
22 Z3_assert_cnstr(ctx, Z3_mk_and(k, transitions_state));

5) Defining properties: each safety property f is defined
by a disjunction of negated formulas in successive

4

Figure 3: The Design View of PIPE+Verifier

states ¬f (si). Thus a bad state indicated by a spe-
cific token reaching a particular place is checked using
Z3 mk set member(). A code snippet is shown in Code
3:

Code 3: Property Definition in Z3
1 Z3_ast properties[k];
2 Z3_ast token = Z3_mk_const(TokenSORT);
3 ...
4 property[0] = Z3_mk_set_member(token, mk_unary_app(place,

S0));
5 ...
6 Z3_assert_cnstr(Z3_mk_or(k, properties));

IV. PIPE+VERIFIER

PIPE+Verifier is developed as an additional analysis com-
ponent of PIPE+ [12]. PIPE+ is a graphical HLPN editor and
simulator. A user builds a HLPN model in PIPE+ by dragging
and dropping graphical elements as well as editing specifica-
tions inside the graphical elements. PIPE+Verifier leverages
this editor as an input source of HLPN models and launches
PIPE+Verifier to conduct BMC on the models. Similar to
PIPE+, PIPE+Verifier is implemented in Java, thus is able to
run on any platform that can run Java Virtual Machine and Z3
solver. A detailed design view of PIPE+Verifier is shown in
Figure 3:

1) User Interface: User interface in PIPE+Verifier is built
as a dashboard (in Java Swing) that can take in user’s input
for properties in FOLTL and command to start the checking
process. Furthermore, it displays the analysis results as well
as error messages that may encounter during the checking
process.

Properties are built in a standard format in order to conform
to the safety property that BMC can check effectively. The
format eases the transformation of FOLTL formula into SMT
formula. In order to restrict the user’s input format and specify
the targeted bad state, a user is provided with a list of
places fetched from the HLPN model and tokens need to be
constructed according to the selected place types. A user needs
to provide an upper bound k value required by BMC.

If a safety property holds for all states searched from the
initial state to a depth up to predefined k, the displayer will
show a message “SAT” and a resources consumed summary
including time and memory usage; otherwise, a message

“UNSAT” is shown and a counterexample leading to the bad
state is printed.

2) Model and Property Handler: Model and property han-
dlers are used to prepare for the next model to formula
converting process. Because PIPE+Verifier uses HLPN model
built from PIPE+ model editor, the model connector is built to
refine the HLPN model from PIPE+ and check the consistency
of the model to avoid conversion error. The property handler,
on the other hand, takes the user input property from the
interface and prepares its conversion to an SMT formula.

3) Model To Formula Converter: Model To Formula Con-
verter is the component to conduct this conversion process.
The converter consists of several components including State
Builder, Place Type Recognizer, Transition Parser and Inter-
preter, Property Converter and Formula Template Writer.

• State builder: The state builder defines a STATETUPLE
(shown in the SMT context above) according to the
structure of the HLPN model. The tuple is a structure
that consists of a list of place sorts, each place sort is
also a tuple. The complete state list for the SMT formula
in Equation 1 contains k + 1 states.

• Place type recognizer: the recognizer traverses all the
places in the HLPN model and stores all the distinct place
types in order to construct distinct sorts in SMT context;

• Transition Parser and Interpreter: in the HLPN model,
transition formula is a first-order logic formula that
guards the token flow in the model. The formula needs
to be parsed and interpreted into an abstract syntax tree
in order to allow this tool to understand the first-order
logic formula and build a corresponding SMT formula;

• Property Converter: in BMC, SMT solver’s responsibility
is to search for bad state, which is satisfiable solution
to the negated properties. The safety properties prepared
by property handler is converted into a negated SMT
formula by Property Converter. The converting process
is straightforward.

• Formula Template Writer: The template writer leverages
a predefined template file in C language that contains
necessary utility functions for checking the SMT formula
in Z3 solver, and fills in model and property information
in order to build the input file that conforms to Z3
solver’s input format. Formula Template Writer writes the
converted SMT formula’s declarations, states, transitions,
and properties into the file that can be compiled and
checked by Z3 solver.

4) SMT Solver Connector: The SMT Solver Connector
handles the process of delivering the SMT formula to Z3 solver
as well as receiving the checking result from Z3 solver. The
connector consists of four components:

• Solver Invoker: the invoker links to the tool to the
backend engine Z3, which contains some scripts to auto-
matically launch Z3 with proper parameters. The scripts
are shell scripts for Windows and Unix in order to allow
the tool to run on different platforms.

• Intermediate file manipulator: As the analysis process
includes conversions and checkings, intermediate tempo-
rary files are created such as a file to represent formula,

5

a compiled Z3 checker, a file to record Z3’s checking
result, and a file to store final result. Intermediate file
manipulator is in charge of the creating and deleting
temporary files.

• Runtime error handler: Since PIPE+Verifier involves an
external tool and file system interactions, unexpected
errors can happen, an error handler can prevent the tool
get into failure and can better managing errors.

• Output refiner: the raw result generated by Z3 solver is
not readable as it only checks the satisfiability of the
intermediate SMT formula instead of the original model
and property. Thus, it is necessary to rebuild the model
and property’s checking result based on Z3 generated
result. Output refiner can process the Z3 result file by
removing redundant information and reorganize structure,
and present readable results to the user.

V. AN IMPROVED TRANSITION FORMULATION

The naive transition formulation given in the previous
sections results in a �k capturing all the possible interleavings
of transition firings in the given HLPN within depth k without
considering the dependencies among them. The computation
complexity of the naive method is thus exponential and is not
computable with a large k value.

The firing of a transition depends on the existence of tokens
from its input places P , thus depends on the other transitions
producing tokens for P . If in a state s, a transition t’s input
places are empty or do not have enough tokens to enable t,
t cannot fire at state s. If in a state s, a transition t

0s output
places are not relevant to a given property, a transition firing
sequence �k has a t as the last transition has no impact on
the satisfiability of the property. With these observations and
analysis, it is possible to build a more concise formula to avoid
redundant checking by an SMT solver and thus improve the
efficiency of BMC.

For example, in Figure 4, the initial marking is P0 {tok0},
P1 {}, P2 {}, if we want to check whether it can reach a
marking where P2 {tok0}. The model formula produced by
equation 1 with k = 2 is:

�k = I(s0) ^ (ti (s0, s1) _ to (s0, s1))^
(ti (s1, s2) _ to (s1, s2)) ^ (¬f(s0) _ ¬f(s1) _ ¬f(s2)) (4)

This formula �k covers all possible transition firing orders
including ti ! ti, ti ! to, to ! ti and to ! to. There
are infeasible firing sequences in this net model. Firing ti

twice cannot reach a marking in P2 because P2 is not directly
updated by ti. Firing to before ti is impossible because P1

is empty initially that cannot enable to if ti has not yet fired.
The only feasible firing sequence is ti ! to. We can build a
reduced formula �

0:

�

0 = I(s0) ^ (ti (s0, stemp) ^ to (stemp, s2))

^ (¬f(s0) _ ¬f(s1)) (5)

where stemp is an intermediate state for a consecutive firings
of ti and to, and does not need to be checked.

Figure 4: A Simple Model

Figure 5: A Structural Pattern

A. A New Structural Pattern

The above observations show that exploring transition de-
pendencies can field much concise formulas that can be solved
more efficiently. It is well known that many simple structural
reductions such as removing self-loop can be done to a given
Petri net to obtain a behavioral equivalent yet simpler Petri
nets. However simple net structural transformation rules need
to be applied carefully with regard to high level Petri nets since
the removed net elements may contain critical information
such type information in places, arc label expressions, and
constraints associated with transitions, as a result the reduced
net may not be behavioral equivalent to the original net. We
have developed the following general structural and conceptual
(only used during formula translation) reduction rule, and
proved its correctness - behavioral preservation.

Figure 5 shows a place Pp that is connected by a set of
transitions Tp = {ti0, ti1, . . . , tiu, to0, to1, . . . , tov}. Pp’s input
transition set is Tpi = {ti0, ti1, . . . , tiu}and output transition
set is Tpo = {to0, to1, . . . , tov}.

Under the following conditions:
1) All the arc label connected to Pp are simple variables;
2) Pp is neither an initial marking place nor a property

identified place;
3) Pp is the only output place of all Tpi and the only input

place of all Tpo.
Let s0 be a successor state of s and s

00 be a successor state of
s

0. A new and much more concise subformula (equation 6) of
�k is obtained:

Tp(s, s
00) = (ti0 (s, s

0) _ ti1 (s, s
0) _ ... _ tiu (s, s

0))^
(to0 (s

0
, s

00) _ to1 (s
0
, s

00) _ ... _ tov (s
0
, s

00)) (6)

B. Experiment Results For Refined Transition Formula Con-
struction

Figure 6 shows a share memory model in HLPN.
In this model, the pattern can be applied to place
POwnMemAcc’s input transition TBegin Own Acc and out-
put transition TEnd Own Acc, thus the pattern is defined as

6

Figure 6: Shared Memory Model in PIPE+Verifier

Table III: Performances of Checking Shared Memory Model
using Old and Refined Methods

Procs
Number

Bound
Step

Time
Old

Time
Refined

Heap
Old

Heap
Refined

5 5 0.07s 0.05s 0.86mb 0.78mb
5 10 0.30s 0.23s 1.54mb 1.34mb
5 15 1.49s 1.20s 2.53mb 2.42mb

10 5 0.12s 0.10s 1.02mb 1.00mb
10 10 0.98s 0.84s 2.08mb 1.97mb
10 15 15.50s 8.37s 4.73mb 4.60mb

TBegin Own Acc^TEnd Own Acc. Table III presents a compar-
ison of time and memory consumption of the naive transition
construction method and the refined construction method.
Despite the pattern is applied once in this model, some
performance improvements are clear as shown in Equation 7:

⇤¬(marking (Ext Mem Acc) = h3, 0i
^marking (Ext Mem Acc) = h2, 4i) (7)

VI. CONCLUSION

In this paper, we presented a tool called PIPE+Verifier
that supports BMC safety properties of HLPN models, which
has been successfully applied to analyze a variety of HLPN
net models [13]. The tool automatically converts a HLPN
model into a SMT formula, leverages a SMT solver Z3 to
solve the formula, and then displays the checking results.
We provided both functional and design views of this tool,
which facilitate advanced users to extend this open source tool
(https://github.com/liusu1011/PIPE-Verifier.git) easily. We dis-
cussed additional improvements that can make PIPE+Verifier
more efficient. We are working on several other potential
extensions to make PIPE+Verifier more efficient and powerful.
Currently, the transitions are formulated in a breadth first
approach based on the original BMC idea [5], thus a SMT
solver explores all possible transition sequences of one step,
two steps, and up to ksteps. Many of these transition sequences
may not be relevant to the property being checked. An alterna-
tive depth first formulation chaining k transition firings utiliz-
ing structural transition dependencies as well as the checked
property may be solved much more efficiently. PIPE+Verifier

currently only supports BMC of safety properties. Integrating
a SMT solver with induction techniques [14] can become a
full fledged analysis methodology to check safety properties
completely.

Acknowledgments We thank three anonymous reviewers
for their helpful comments. This work was partially supported
by the NSF under grant HRD-0833093 and by the AFRL under
agreement number FA8750-15-2-0106. The U.S. Government
is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright notation
thereon.

REFERENCES

[1] Cpn tools. http://cpntools.org.
[2] High-level Petri Nets - Concepts, Definitions and Graphical Notation,

2000.
[3] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania.

Bounded model checking of software using smt solvers instead of sat
solvers. Int. J. Softw. Tools Technol. Transf., 11(1):69–83, January 2009.

[4] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability
Modulo Theories Library (SMT-LIB). www.SMT-LIB.org, 2010.

[5] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without bdds. In Proceedings of the
5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems, TACAS ’99, pages 193–207, London, UK, UK,
1999. Springer-Verlag.

[6] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. In Formal Methods
in System Design, page 2001. Kluwer Academic Publishers, 2001.

[7] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
introduction and applications. Commun. ACM, 54(9):69–77, September
2011.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
smt solver. In TACAS, pages 337–340, 2008.

[9] Steve Hostettler, Alexis Marechal, Alban Linard, Matteo Risoldi, and
Didier Buchs. High-level petri net model checking with alpina. Funda-
menta Informaticae, 113(3-4):229–264, August 2011.

[10] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri
nets and cpn tools for modelling and validation of concurrent systems.
Int. J. Softw. Tools Technol. Transf., 9(3):213–254, May 2007.

[11] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[12] Su Liu, Reng Zeng, and Xudong He. PIPE+ - A modeling tool for high
level petri nets. In Proceedings of the 23rd International Conference on
Software Engineering & Knowledge Engineering (SEKE’2011), Eden
Roc Renaissance, Miami Beach, USA, July 7-9, 2011, pages 115–121,
2011.

[13] Su Liu, Reng Zeng, Zhuo Sun, and Xudong He. Bounded model
checking high level petri nets in pipe+verifier. In Formal Methods and
Software Engineering - 16th International Conference on Formal Engi-
neering Methods, ICFEM 2014, Luxembourg, Luxembourg, November
3-5, 2014. Proceedings, pages 348–363, 2014.

[14] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a sat-solver. In Proceedings of the
Third International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’00, pages 108–125, London, UK, UK, 2000. Springer-
Verlag.

