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Abstract—Crawling JavaScript heavy Rich Internet Applications 
has been a hot topic in recent years, giving us automated tools for 
indexing content, test generation, and security- and accessibility 
evaluation to mention a few examples. However, existing 
crawling techniques tend to ignore user interactions beyond 
mouse clicking, and therefore often fail to consider potential 
mouse, keyboard and touch interactions. We propose a new 
technique for finding and exercising mouse, keyboard, and touch 
interactions when crawling highly interactive JavaScript-based 
websites by analyzing and exercising event handlers registered in 
the DOM. A basic form of gesture emulation is employed to find 
states accessible via swiping and tapping. Testing the tool against 
6 well-known gesture libraries and 5 actual RIA’s, we find that 
the technique discovers many states and transitions resulting 
from such interactions. Our findings indicate the technique could 
be useful for automatic test generation, error discovery, and 
accessibility evaluation, especially for mobile web applications 
with advanced interaction options. 

Keywords-crawling; gesture emulation; event handler analysis; 
RIA 

I.  INTRODUCTION 
Web applications have become more and more advanced 

over the past few years with the maturation and increased 
adoption of HTML5 and its related API’s. As a result of this, 
the amount and complexity of JavaScript code on the client-
side has grown, giving us a different breed of web application 
capable of much more advanced functionality and richer user 
interaction models than before. Compounding this is the advent 
of the smartphone, which has popularized touch screens and 
made various gesture interactions part of most people’s 
technical vocabulary. A recent report finds that users in the US 
now spend more time consuming media using their mobile and 
tablet devices than desktop computers [8].  

This rise in client-side complexity coupled with the 
dynamic nature of JavaScript has introduced many challenges 
in how to reliably crawl such web applications. While 
traditional websites rely on anchor tags and buttons for 
navigation and are static in terms of content on the client-side, 
new JavaScript-reliant RIA’s can change dynamically and 
drastically as the result of JavaScript manipulating the DOM of 
the page without the need of a round-trip to the server for new 
HTML. In papers such as [1, 7] methods for automatic 
crawling of JavaScript reliant RIA’s have been introduced. 

These methods have spawned a variety of applications to 
automate beneficial tasks such as indexing for search engines 
[1], accessibility and usability evaluation [6, 16], automatic test 
generation [3, 11, 12, 13], regression testing [4], and security 
testing [5] to mention some. 

One aspect oft neglected is the fact that this new breed of 
web applications are capable of very advanced interactions. 
Existing research focuses heavily on simple interactions 
initiated by mouse clicks, usually ignoring other keyboard, 
mouse, and touch events, not to mention gestures. Another 
common assumption is that most state transitions can be 
reached by interactions with <a>, <button>, and <input> 
elements when choosing candidate interactions as often done 
by empirical studies such as [10]. This might be okay for web 
sites containing simple interaction models on this small subset 
of elements, but we believe many states and transitions could 
be missed for RIA’s with more advanced UI and mobile web 
applications.  

In this paper we propose a set of extensions to Crawljax 
with functionality enabling it to detect the event handlers 
available in each state. These detected event handlers are then 
used as a basis for identifying new candidate interactions,. The 
candidate interactions are exercised using programmatic event 
construction and gesture emulation, leading to an increase in 
discovered states and transitions.  

The following research questions are addressed: 

• RQ1. How comprehensively and efficiently can our 
technique capture and perform gesture interactions? 

• RQ2. How often do various keyboard, mouse, and 
touch events lead to new states in modern RIA’s, and 
which event types are more likely to induce new 
states? 

• RQ3. What DOM elements are more likely to be 
targets for interactions leading to new state transitions? 

The following contributions are offered: 

• A technique for discovering all event handlers of a 
state when crawling websites. 

• A set of extensions to Crawljax enabling it to identify 
candidate transitions based on event handler analysis 
and emulate simple event dispatches as well as tap and 



swipe gestures. Henceforth this modified version of 
Crawljax is referred to as mobCrawler1. 

• Evaluation of mobCrawler’s ability in emulating 
common gestures and interactions by testing against 6 
of the most popular gesture libraries for JavaScript 
available. 

• A case study against 5 modern RIA’s with advanced 
interaction models evaluating the efficiency and 
usefulness of event handler analysis when crawling 
advanced RIA's. 

II. BACKGROUND 

A. Crawling RIA’s and Crawljax 
Crawling websites used to be relatively less complex than it 

is today. For traditional websites the content of each page is 
static after it has been loaded in the browser, and other static 
pages were loaded by following anchor or button elements. In 
modern rich Internet applications using JavaScript things are 
more complex. Changes to the DOM can come as the result of 
asynchronous HTTP requests loading new content, or event 
handlers and timeout events firing custom code. Additionally, 
the dynamic nature of the JavaScript language itself can 
provide flexibility as well as unintended states and side effects 
[2].  

Crawling such applications is usually done by loading a 
starting page, its DOM recorded as the initial state, and then 
automatically exploring the various interactions possible on the 
page to elicit changes in the DOM. Each interaction causing a 
change is recorded as a transition, and each modified DOM is 
recorded as a new state. 

One of the most prominent tools fulfilling this purpose is 
Crawljax. Crawljax is a highly customizable crawler aimed at 
JavaScript-heavy web sites. It performs a depth-first search of 
the target web site using the Selenium Web Driver to control 
the browser, and has many customization options for things 
such as setting crawl depth, state abstraction comparators, and 
crawl rules for ignoring certain links. It performs a depth-first 
search trying to detect as many states and transitions as 
possible within the constraints specified by the user. Due to this 
open and customizable nature we implement our technique as a 
set of modifications and extensions to Crawljax. 

B. Event Handler Registration 
When adding event handlers to a web page, there are three 

options available through the browser API: 

1. Programmatically use a target elements 
addEventListener() function 

2. Programmatically use a target elements on[eventType] 
attribute, [eventType] indicating the type of event 
handler 

                                                             
1  1 https://github.com/fnakstad/mobcrawler 

3. Declare a on[eventType] attribute on the target 
elements HTML tag, [eventType] indicating type of 
event handler 

There are countless libraries offering other API's to attach 
event handlers, but they all eventually resolve to one of these 
standardized, “native” API calls offered by the browser. Using 
any of these options, developers are able to attach custom code 
to be fired when one of a multitude of event types is performed 
on the given element. The code in these event handlers may 
manipulate the DOM, potentially eliciting a new state. Gestures 
are usually developed as a sequence of related event handlers 
on event types such as touchstart, touchmove, and touchend, 
analyzing each event sequence’s properties to determine what 
gesture was performed. 

Though a common pattern is to attach event handlers once 
the DOMContentLoaded event of the browser has fired as part 
of the page’s lifecycle, developers can technically add events as 
soon as JavaScript is being evaluated by the browser. New 
event handlers can also be attached at any point after page load, 
as part of other event handlers being exercised. 

C. Mobile Devices 
According to [9] web browsing on mobile and tablet 

devices has increased rapidly the last few years, and together 
constitutes 37.48% of all usage. As mobile navigation of the 
web increases, developers may also want to adapt their website 
to take advantage if touch screen input and gestures. This could 
mean that many states and transitions not reachable by simple 
mouse clicks anymore. Previous techniques may miss 
important states relying on touch, mouse, and keyboard 
interactions, especially for mobile web applications relying on 
gestures. We believe actually exercising such interactions will 
help in finding new states and transitions whether it is for 
indexing content, automatically evaluating accessibility, or 
employing automated testing approaches for the target web 
application.  

There has been a huge increase in use of the web from 
smartphones [9], and as a result of this many web applications 
also offer an especially tailored mobile version. These mobile 
versions often take advantage of the devices touch screen, and 
may implement certain navigational interactions using touch 
and gestures. It therefore seems likely to us that such web 
applications may contain states and transitions only reachable 
through touch and gesture interaction. 

Figure 1.  Gesture Handler Registration 

 

<div id=“gallery"> 
  <img class=“image" src=“mtfuji.jpg” /> 
  <label class=“caption">Mt. Fuji</label> 
</div> 
 
$(‘#gallery’).swipeLeft(function() { 
  // Load new image and caption via AJAX 
  ... 
}); 



 

Figure 2.  Gallery with swipe interactions 

D. Motivating Example 
For our motivating example we consider a photo gallery 

component embedded on a web site containing an image and 
some descriptive text as pictured in Figure 1 and 2. In order to 
load the next picture and text caption in the gallery you have to 
swipe left or right. These swipe interactions would likely be 
implemented by attaching the desired gesture type to a target 
DOM element as seen in the code sample. Since existing crawl 
techniques don’t attempt to execute such advanced interaction 
events, the states loaded by performing these swipe gestures 
would not be found, leaving a good chunk of application 
functionality and content unexplored. This kind of interaction 
pattern has become quite common and can often be seen in 
photo galleries, carousels for news stories, especially featured 
sales products, and so on. 

III. EVENT HANDLER ANALYSIS AND GESTURE EMULATION 

A. Detecting Registered Event Handlers for a State 
In order to find out what event handlers have been 

registered in any given state it is necessary to instrument the 
native addEventListener() function implementation to keep 
track of all event registrations performed by the target web 
site’s JavaScript code. It is important that our instrumentation 
code is performed before any other client-side code in order to 
catch all events programmatically added to the page. This 
means we need to inject this instrumentation module at the very 
top of the documents <head> tag before the page is loaded in 
the browser. This approach ensures that any event handlers 
attached during page load as well as dynamically when 
crawling to another state from initial page load will be detected 
by our tool.  

 

Figure 3.  Event Handler Registration Detection 

There may also be event handlers attached directly via 
on[eventType] attributes on the DOM elements. These event 
registrations are not processed through addEventListener(), so 
we need to handle them separately. After the page is loaded we 
walk the entire DOM tree, polling each element for any such 
event handler registrations. 

As seen in the code snippet in Figure 3, The 
addEventHandler() function will check whether the event type 
is of a type we are interested in, which can be configured in the 
script, and if so add it to a list. Once the DOM is loaded, the 
script will call the walkSubtree() function on the document 
object, which will recursively traverse the entire DOM tree 
looking for event handlers attached via the on[eventType] 
attribute, and add them via addEventHandler(). This means we 
can effectively monitor any and all event handler registrations 
performed on the page. 

B. Injecting Script via a MITM Proxy 
Figure 4 shows the structure of mobCrawler. Neither the 

browser itself nor the Selenium WebDriver used by 
mobCrawler to control the browser offers a way to manipulate 
the HTML before it is evaluated. Therefore we inject the 
instrumentation script using a faux man-in-the-middle attack 
via a proxy server.  

This proxy server is implemented using the well-known 
mitmproxy [14] program, and run with a custom script. The 
proxy server sniffs for any relayed HTML content, intercepts it, 
and modifies the <head> tag to inject our JavaScript module. 
The injected JavaScript module then attaches one non-intrusive 
JavaScript object on the window object, which can be 
configured to listen for event handler registrations of any 
specified event types. mobCrawler can communicate with this 
module via JavaScript operations executed in the browser to 
fetch the current event handlers for a state as well as exercise 
various interactions on the web page. Using a man-in-the-
middle proxy server poses some problems with regards to the 
browser denying 3rd party SSL certificates for certain sites or 
forbidding functionality which might be restricted due to 
CORS security policies. A preferable option would be to use 
the WebDriver or web browser itself to inject this script into 
the document before evaluating it, however this is not 
supported as of today. We configure mobCrawler to use this 
proxy server when crawling. 

 

var original = 
  EventTarget.prototype.addEventListener; 
EventTarget.prototype.addEventListener = 
function() { 
  var type = arguments[0]; 
  addEventHandler({ 
    type: type, 
    xpath: getElementXPath(this), 
  }); 
  original.apply(this, arguments); 
}; 
  
window.addEventListener('load', function(){ 
  walkSubtree(document); 
},false); 



 
Figure 4.  Structure of mobCrawler

TABLE I.  GESTURE EMULATION 

Interaction Description Fire On 
Event 
dispatch 

Create and dispatch an event to the target 
element 

click, dblclick, 
mouseover, 
mouseout, 
keydown, 
keyup, 
keypress 

Mouse 
swipe 

Emulates a mouse swipe in a given direction 
(left, right, up or down), by creating and 
dispatching a series of mousedown, 
mousemove, and mouseup events. 

mousedown 

Touch 
swipe 

Emulates a touch swipe in a given direction 
(left, right, up or down), by creating and 
dispatching a series of touchstart, 
touchmove, and touchend events. 

touchstart 

Tap Emulates a tap by dispatching touchstart and 
touchend events with a small timeout. 

touchstart 

Double tap Two tap events in quick succession. touchstart 
Tap hold Same as a tap but with a longer timeout 

between the touchstart and touchend events. 
touchstart 

 

C. Emulating Browser Interactions 
mobCrawler can now fetch all registered event handlers 

registered in a state by calling our injected JavaScript module. 
This list of event handler registrations will in turn form the 
basis for what candidate elements and interactions we choose 
to perform. Though we can possibly detect and emulate all 
possible browser event types, we choose to focus on mouse, 
keyboard, and touch events. For some of these events, such as 
mousehover, mouseout or keydown it is sufficient to create and 
dispatch a corresponding event object to the target element. 
These events are created via the JavaScript module injected 
into the page, and will programmatically construct events of the 
desired type mirroring the W3 specifications in [17]. The 
parameters set will be based on the target element in question 
and what the desired interaction specified is, then finally 
dispatched to the target element in question. 

For keyboard events there is a big span of keys that can be 
set to be activated. In our simulations we use the somewhat 
naïve approach of always setting the key being pressed to the 

character ‘e’. It seems like many more states can be elicited 
with a more advanced strategy of when to use what characters. 
Many websites include various keyboard shortcuts which could 
increase the number of found transitions and states if exercised. 
However we do not consider that beyond our rather simple 
approach in this paper. 

Additionally, we emulate certain common gestures using 
mouse and touch events as specified in Table I. Variations of 
tap gestures are only considered for touch, while swipe gestures 
are also implemented for mouse. In this paper we only consider 
single-touch gestures, ignoring more advanced gestures 
involving more fingers. We do this since we find it less likely 
they will induce meaningful states and to reduce the number of 
candidate interactions performed.  

Swipe gestures can be emulated in 4 different directions, 
and are calculated by starting at the center of the target 
element, then rapidly being moved 400 pixels in the given 
direction. Candidate interactions are created based on the event 
handler registrations detected in the current state. This means 
that if a touchstart event handler is found on an element, a total 
of 7 candidate interactions will be attempted: swipe up, swipe 
down, swipe left, swipe right, tap, double tap and tap hold. This 
can lead to a rapid increase in candidate interactions, but can be 
customized to add only a subset of these candidate interactions. 
For example, we could instruct mobCrawler to only try swipe 
right and single tap interactions for elements containing 
touchstart event handler registrations if that is desired. 

Using this approach we can see how the problem posed in 
the motivating example can be solved. The JavaScript module 
injected into the browser via the MITM proxy will detect a 
touchstart event registered on the gallery element, and record it 
in a list of event handler registrations. Once the page has 
loaded mobCrawler will fetch this list of event handler 
registrations, and process them in turn. When it reaches the 
touchstart event registered on the gallery element, it will 
attempt various swipe and tap gestures as described in Table I 
to see if the action changes the state of the DOM. Once it tries 
swiping left and swiping right the content inside the gallery 
should change, and mobCrawler will register these new 
transitions and states in the state graph. 



TABLE II.  GESTURE SUPPORT 

Library Tap Double 
tap 

Tap 
hold 

Swipe  
Left Right Up Down 

Hammer.js ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Quo.js ✓ × × × × × × 
dojox.gesture ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
touchSwipe ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Touchy × × × × × × × 
jGestures ✓ N/A N/A ✓ ✓ ✓ ✓ 
D. Mobile Websites 

It has become increasingly common for websites to offer a 
separate mobile version, which can be very different from the 
plain “desktop” version. In many cases the mobile version is a 
completely separate implementation from the desktop version 
to create a user experience entirely tailor made for mobile and 
tablet devices. The most common technique used by websites 
to differentiate between mobile and desktop users is user agent 
sniffing, which will parse the user-agent string in the initial 
HTTP request, and then serve back either the mobile or desktop 
version of the website depending on the device reported in the 
user agent string.  

We add functionality to mobCrawler which enables the user 
to imitate a mobile device by overriding the user-agent string 
sent in HTTP requests to the webserver of the site we are 
crawling. If the user wants to imitate a mobile device, this 
string can be set to the user agent string reported by a browser 
built for the iOS or Android platforms. Some gesture libraries 
and websites will also offer different functionality based on 
whether the browser reports the user’s device as being touch 
enabled or not. For such cases, we inject a polyfill spoofing 
that we support touch even if we are crawling using a non-
touch device. 

IV. EVALUATION 

A. Gesture Dection and Emulation (for RQ1) 
To evaluate the effectiveness of emulating gestures, we set 

up an experiment where we task mobCrawler with finding 
gestures as implemented by various popular JavaScript gesture 
libraries. Though it is possible to create gestures from scratch 
just by using the native touch and mouse events, it seems likely 
to assume that the majority of developers will rely on a gesture 
library to make their jobs easier. This also gives us the 
opportunity to investigate many different implementation 
approaches, and seeing if our tool can handle them. 

We create a basic website for each library with a <div> 
element on which we register gesture interactions using the 
various libraries. Though many of the libraries offers a big set 
of gestures we focus only on simple single-point gestures as 
described in Table I. 

As can be seen in Table II, the approach was able to handle 
the gesture interactions of most libraries flawlessly with two 
exceptions. Both Quo.js and Touchy create and register custom 
event types, which they use when registering their gestures. 
Since our code instrumenting addEventListener() registrations 

was configured to only look for a predefined set of standard 
event types it didn’t pick up on these non-standard event type 
registrations. However, mobCrawler can be configured to also 
look for these custom events, and fire corresponding gesture 
interactions on them to expand library support. 

The majority of gesture libraries seem to use the native 
touchstart and mousedown events, and in these cases our tool 
was able to exercise all the transitions and find all the given 
states. Note that jGestures did not have API’s for registering 
doubletap and  tap hold gestures, and so those gestures are not 
considered. Hammer.js adds both mouse and touch handlers for 
gestures, while Quo.js and dojox.gesture actually checks mosue 
and touch capabilities of the device before registering the 
appropriate event handlers. 

A drawback of the approach is the large number of 
candidate interactions which have to be exercised in order to 
find valid states. Since we can’t make any assumptions about 
what gesture interaction is required to elicit a new state, we 
resort to exercising all of them. For example, upon finding an 
element with a touchstart event handler attached, we create 
candidate elements for all 3 tap gestures as well as swipes in 4 
different directions. This might lead to a high recall of new 
states, but precision is lacking and can lead to a lot of failed 
candidate interactions. Reducing the candidate gesture 
interactions to attempt could help reduce this number 
drastically, e.g. by just focusing on right swipes and single taps. 

RQ1. How comprehensively and efficiently can our 
technique capture and perform gesture interactions? 

To answer RQ1 we conclude that our approach can 
successfully handle the majority of ways to implement gestures 
in the browser, though it might be necessary with some extra 
configuration to support specific libraries using custom event 
types. Additionally, to increase precision of state and transition 
discovery developers may want to minimize what gesture 
interactions are attempted when crawling a site. 

B. Case Study (for RQ2 and RQ3) 
We proceeded to test out this tool on 6 actual websites to 

evaluate the remaining two research questions. The target 
websites were chosen due to having advanced GUI’s, being 
tailored for mobile, and being crawlable through the MITM 
proxy. C1 is an interactive application for manipulating 
animations, while C2 implements a MS Paint clone in the web 
browser. C3 is a web application for displaying presentations. 
C4 and C5 are informational sites customized for smartphone 
devices. We kept the level of state abstraction low, trying to 
consider all changes introduced to the DOM. However, in order 
to weed out false positives we do instruct mobCrawler to 
ignore ads and automatically created hash values on a site-by-
site basis. Maximum crawl times are set to 2 hours, with a 
crawl depth of 2. We also instruct the browser to not accept any 
cookies. 



TABLE III.  CASE STUDY TARGET SITES 

Case URL Mobile UA 
C1 bomomo.com No 
C2 muro.deviantart.com No 
C3 slides.com/andreylisin/omaha-server#/6/1 Yes 
C4 m.weather.com/weather/today/JAXX0085:1:JA Yes 
C5 touch.toyota.com/index.html Yes 

TABLE IV.  CRAWL RESULTS 

 C1 C2 C3 C4 C5 
States, “click” 22 60 18 60 50 
States, other 42 124 61 7 38 

Transitions, “click” 22 60 23 61 100 
Transitions, other 42 124 198 7 108 

Transitions, <a> + <button>  4 16 0 29 49 
Transitions, other elements 60 175 221 39 159 

 

 

Figure 5.  Event Type Distibution for State Transitions 

 

Figure 6.  Element Type Distribution for State Transitions 

As can be seen in Table IV, all the target sites have a large 
number of states and transitions being reached by exercising 
interactions other than “click”. In C1 a lot of the menu buttons’ 
CSS styling are changed as part of mouseover and mouseout 
events. C2 mirrors C1 in that most of the non-“click” induced 
states are often differentiated by changes in styling or visibility 
of elements. There are also a number of keyboard shortcuts to 
quickly select given menu options. 

C3 depends on swipe gestures to switch between various 
slides. The high number of transitions can be explained by the 
fact that a lot of states can be reached by multiple interactions. 
For example, moving to the next slide in the deck can be 
accomplished by swiping right or using a button in the control 
panel. C4 and C5 are examples of more standard mobile web 
applications, and we can see that most states can be found 
using the “click” interaction. However, both sites contain 
image galleries or sections which can be swiped to change the 
contained content, similar to our motivating example. C5 has a 
huge number of transitions due to multiple interactions 
reaching the same state, as was also observed in C3. 

Looking at Figure 5, we can see that “click” events still, 
unsurprisingly, still make up the major amount of transitions 
when crawling, though a considerable amount of transitions use 
other event types. In C3-C5 there are considerably many touch 
transitions, though many lead to the same state. Swiping 
horizontally seems to be more fruitful than vertically. Both the 
desktop sites, C1 and C2, have a fair amount of mouse and 
keyboard events. Though not inducing a state change we 
observed the swipes were also able to change what was drawn 
on the <canvas> element. 

RQ2. How often do various keyboard, mouse, and touch 
events lead to new state transitions in modern RIA’s, and 
which event types are more likely to induce new states? 

To answer RQ2, we conclude that swipe gesture transitions 
are very common for mobile web applications and can induce 
new and meaningful states. The huge number of transitions 
leading to the same state might be unwanted if crawling with 
the aim of discovering content, but may be desirable if trying to 
generate a comprehensive test suite or detecting errors in a web 
application. For desktop sites, both keyboard and mouse events 
are found to be common for advanced web applications with 
advanced GUI’s. 

Considering the amount of non-“click” transitions in C2, 
C3, and C5, it seems they are too numerous to ignore. Though 
not all applications rely heavily on these kinds of transitions, 
such as C4, the number can be too high to simply ignore. As 
evidenced by the image galleries in C5 and slides in C3, 
content crawlers may be able to increase the amount of data 
found if they attempt to emulate swipe gestures on mobile 
websites. When it comes to automatically generating test suites 
for web applications, the developers may get a higher test 
coverage by instructing the crawler to attempt gesture types 
they know are present in the application. 

Figure 6 depicts what elements were interacted with to find 
state transitions. As can be seen, this varies depending on the 
specific website, with C1 relying heavily on <span> elements 
which it uses for its menu buttons. C2, C3 and C5 have large 



numbers of event handlers attached to the <html> or <body> 
element. Many of these transitions are gestures which can be 
performed anywhere in the visible document. <a> and <div> 
elements are in consistent use in all the web sites. However 
<a> and <button> elements are not nearly as prominent as the 
<div> element in terms of inducing transitions.  

RQ3. What DOM elements are more likely to be targets for 
interactions leading to new state transitions? 

To answer RQ3 we can conclude that element types 
employed as interaction targets can differ widely depending on 
the website. <a> and <div> elements seem to be the most 
common interaction targets to use for transitioning between 
states. Web applications using gesture actions applied to the 
entire documents surface area will likely have interaction 
targets on the <html> or <body> element. The results indicate 
that event handler analysis is a more comprehensive and 
precise way of finding possible transitions in a state than 
exhaustively trying out a predetermined list of element types in 
each state. 

The most obvious takeaway is that the types of elements 
used for inducing transitions are too varied from site to site, to 
rely on a small subset when targeting a large variety of web 
applications. This could be useful when performing empirical 
studies on a large host of web applications by way of crawling. 
By combining event handler analysis along with a somewhat 
selective set of gesture interactions to try out, the resulting state 
graphs could be richer and more representative of their 
respective web applications. 

V. USAGE 
Our findings indicate our technique can help augment 

existing tools that are automatically exploring web applications 
by increasing the number of found transitions. If our case study 
is a good indicator of a more general trend in web applications, 
there are many web sites containing advanced interactions 
which can be modeled better than with current crawling 
techniques. A fitting example would be content crawling 
mobile web applications relying on swiping to load new 
content. If a crawler can’t emulate a user swiping on the given 
GUI element, the content loaded as a result may be left 
unexplored and unindexed. 

Another area in which our technique seemingly can help is 
increasing code coverage in automatically created test suites for 
web applications relying on advanced interactions. This is well 
illustrated by C3 in our case study, which is a web application 
for browsing slide presentations in a mobile browser. When 
creating an automatic test suite for this application, it is 
reasonable to assume the developer also wants to generate test 
cases for the various gestures involved in manipulating the 
slides. By emulating these gestures we could trigger event 
handlers not triggered by traditional crawling techniques and 
thus increase the total code coverage of the web application. 
Possibly this could also lead to finding a number of unexpected 
errors and event sequences, and should generally increase the 
quality of the test suite. 

For many of the same reasons stated in the previous two 
examples, we believe our approach would be beneficial for 

various automatic evaluation techniques of rich web 
applications. Several approaches to accessibility and security 
evaluation rely on automatically exercising the GUI to find 
states and transitions as evidenced in [6] and [5] respectively. It 
seems reasonable to assume these approaches would benefit 
from our technique as they would be able to explore a larger 
number of transitions initiated by non-“click” interactions. 
Once again it seems like mobile web applications especially 
would benefit from this. 

VI. RELATED WORK 
Though Crawljax[1] can be configured to initiate simple 

click events on any kind of element, it relies on exhaustively 
exercising all such elements on a page rather than finding only 
the elements with “click” event handlers attached on them. The 
support for exercising different kinds of event types is minimal 
and focuses on simple mouse clicks. Our extensions allow it to 
find all desired events registered on a page via event handler 
analysis, and exercise simple even dispatches as well as single-
point gestures. 

There has been performed some previous research utilizing 
event handlers as evidenced by tools such as ARTEMIS from 
[3] and FEEDEX from [12]. These tools seem to analyze event 
handler registrations by using a modified version of the Rhino 
JavaScript interpreter. They use the event handlers as input in 
prioritizing what crawl action to take next. [18] introduces a 
symbolic execution framework for finding security 
vulnerabilities in web applications. It utilizes event handler 
analysis and can perform simple event dispatches, but does not 
attempt to emulate gestures. [15] introduces a static analysis 
approach to creating finite state machines from source code by 
analyzing event handlers. In contrast to out tool, none of these 
approaches try to find and emulate more complex gestures, and 
most of them, except [18], also seem to ignore simple event 
dispatches.  

A static approach to analyzing interactions in JavaScript 
applications can be found in [23] which models web 
applications as finite state machines. However, it focuses on 
verifying interaction invariants by way of model checking as 
well as mutation analysis, while we are following a dynamic 
approach of modeling web applications as state diagrams for 
purposes such as test suite generation and content indexing. 
Related papers [22, 24] use the same approach, and target 
mutation analysis and testing AJAX and RIA’s. 

There has also been performed related research in the native 
mobile application space. [19] targets Android applications, 
and introduces a technique in which they first analyze event 
handlers, and then generate and exercise different sequences of 
events to reach hard-to-find states and transitions. [20] and [21] 
automatically analyzes event handlers in order to create and 
exercise events to find GUI bugs or create test suites for 
Android applications. While all these researches focus on apps 
on the Android platform, our research is focused on RIA’s on 
the web. 

 



VII. CONCLUSION 
We have introduced a new technique for finding and 

exercising mouse, keyboard, and touch candidate interactions 
when crawling web applications, as well as a case study 
investigating its performance in modern RIA’s. The technique 
we proposed seems like a good fit for automatic crawling of 
web applications with advanced interaction models, especially 
mobile. Automatic test generation and error detection, as well 
as automatic solutions for evaluating accessibility and usability 
seem like good use cases.  

In the future we would like to replace the script injection 
mechanism with something less intrusive than a MITM proxy, 
as well as add a default configuration supporting the custom 
event types of all major gesture libraries. In addition, we 
believe it would be fruitful to do a bigger case study involving 
a number of the most popular mobile web applications to 
further investigate the applicability of the approach. This would 
give us a better idea of the robustness of the approach and 
whether the patterns observed in our limited case study holds 
on a larger scale. 
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