
(DOI reference number: 10.18293/SEKE2015-059)

Finding and Emulating Keyboard, Mouse, and Touch
Interactions and Gestures while Crawling RIA’s

Frederik H. Nakstad, Hironori Washizaki, Yoshiaki Fukazawa
Department of Fundamental Science and Engineering

Waseda University
Tokyo, Japan

frederik@fuji.waseda.jp

Abstract—Crawling JavaScript heavy Rich Internet Applications
has been a hot topic in recent years, giving us automated tools for
indexing content, test generation, and security- and accessibility
evaluation to mention a few examples. However, existing
crawling techniques tend to ignore user interactions beyond
mouse clicking, and therefore often fail to consider potential
mouse, keyboard and touch interactions. We propose a new
technique for finding and exercising mouse, keyboard, and touch
interactions when crawling highly interactive JavaScript-based
websites by analyzing and exercising event handlers registered in
the DOM. A basic form of gesture emulation is employed to find
states accessible via swiping and tapping. Testing the tool against
6 well-known gesture libraries and 5 actual RIA’s, we find that
the technique discovers many states and transitions resulting
from such interactions. Our findings indicate the technique could
be useful for automatic test generation, error discovery, and
accessibility evaluation, especially for mobile web applications
with advanced interaction options.

Keywords-crawling; gesture emulation; event handler analysis;
RIA

I. INTRODUCTION
Web applications have become more and more advanced

over the past few years with the maturation and increased
adoption of HTML5 and its related API’s. As a result of this,
the amount and complexity of JavaScript code on the client-
side has grown, giving us a different breed of web application
capable of much more advanced functionality and richer user
interaction models than before. Compounding this is the advent
of the smartphone, which has popularized touch screens and
made various gesture interactions part of most people’s
technical vocabulary. A recent report finds that users in the US
now spend more time consuming media using their mobile and
tablet devices than desktop computers [8].

This rise in client-side complexity coupled with the
dynamic nature of JavaScript has introduced many challenges
in how to reliably crawl such web applications. While
traditional websites rely on anchor tags and buttons for
navigation and are static in terms of content on the client-side,
new JavaScript-reliant RIA’s can change dynamically and
drastically as the result of JavaScript manipulating the DOM of
the page without the need of a round-trip to the server for new
HTML. In papers such as [1, 7] methods for automatic
crawling of JavaScript reliant RIA’s have been introduced.

These methods have spawned a variety of applications to
automate beneficial tasks such as indexing for search engines
[1], accessibility and usability evaluation [6, 16], automatic test
generation [3, 11, 12, 13], regression testing [4], and security
testing [5] to mention some.

One aspect oft neglected is the fact that this new breed of
web applications are capable of very advanced interactions.
Existing research focuses heavily on simple interactions
initiated by mouse clicks, usually ignoring other keyboard,
mouse, and touch events, not to mention gestures. Another
common assumption is that most state transitions can be
reached by interactions with <a>, <button>, and <input>
elements when choosing candidate interactions as often done
by empirical studies such as [10]. This might be okay for web
sites containing simple interaction models on this small subset
of elements, but we believe many states and transitions could
be missed for RIA’s with more advanced UI and mobile web
applications.

In this paper we propose a set of extensions to Crawljax
with functionality enabling it to detect the event handlers
available in each state. These detected event handlers are then
used as a basis for identifying new candidate interactions,. The
candidate interactions are exercised using programmatic event
construction and gesture emulation, leading to an increase in
discovered states and transitions.

The following research questions are addressed:

• RQ1. How comprehensively and efficiently can our
technique capture and perform gesture interactions?

• RQ2. How often do various keyboard, mouse, and
touch events lead to new states in modern RIA’s, and
which event types are more likely to induce new
states?

• RQ3. What DOM elements are more likely to be
targets for interactions leading to new state transitions?

The following contributions are offered:

• A technique for discovering all event handlers of a
state when crawling websites.

• A set of extensions to Crawljax enabling it to identify
candidate transitions based on event handler analysis
and emulate simple event dispatches as well as tap and

swipe gestures. Henceforth this modified version of
Crawljax is referred to as mobCrawler1.

• Evaluation of mobCrawler’s ability in emulating
common gestures and interactions by testing against 6
of the most popular gesture libraries for JavaScript
available.

• A case study against 5 modern RIA’s with advanced
interaction models evaluating the efficiency and
usefulness of event handler analysis when crawling
advanced RIA's.

II. BACKGROUND

A. Crawling RIA’s and Crawljax
Crawling websites used to be relatively less complex than it

is today. For traditional websites the content of each page is
static after it has been loaded in the browser, and other static
pages were loaded by following anchor or button elements. In
modern rich Internet applications using JavaScript things are
more complex. Changes to the DOM can come as the result of
asynchronous HTTP requests loading new content, or event
handlers and timeout events firing custom code. Additionally,
the dynamic nature of the JavaScript language itself can
provide flexibility as well as unintended states and side effects
[2].

Crawling such applications is usually done by loading a
starting page, its DOM recorded as the initial state, and then
automatically exploring the various interactions possible on the
page to elicit changes in the DOM. Each interaction causing a
change is recorded as a transition, and each modified DOM is
recorded as a new state.

One of the most prominent tools fulfilling this purpose is
Crawljax. Crawljax is a highly customizable crawler aimed at
JavaScript-heavy web sites. It performs a depth-first search of
the target web site using the Selenium Web Driver to control
the browser, and has many customization options for things
such as setting crawl depth, state abstraction comparators, and
crawl rules for ignoring certain links. It performs a depth-first
search trying to detect as many states and transitions as
possible within the constraints specified by the user. Due to this
open and customizable nature we implement our technique as a
set of modifications and extensions to Crawljax.

B. Event Handler Registration
When adding event handlers to a web page, there are three

options available through the browser API:

1. Programmatically use a target elements
addEventListener() function

2. Programmatically use a target elements on[eventType]
attribute, [eventType] indicating the type of event
handler

1 1 https://github.com/fnakstad/mobcrawler

3. Declare a on[eventType] attribute on the target
elements HTML tag, [eventType] indicating type of
event handler

There are countless libraries offering other API's to attach
event handlers, but they all eventually resolve to one of these
standardized, “native” API calls offered by the browser. Using
any of these options, developers are able to attach custom code
to be fired when one of a multitude of event types is performed
on the given element. The code in these event handlers may
manipulate the DOM, potentially eliciting a new state. Gestures
are usually developed as a sequence of related event handlers
on event types such as touchstart, touchmove, and touchend,
analyzing each event sequence’s properties to determine what
gesture was performed.

Though a common pattern is to attach event handlers once
the DOMContentLoaded event of the browser has fired as part
of the page’s lifecycle, developers can technically add events as
soon as JavaScript is being evaluated by the browser. New
event handlers can also be attached at any point after page load,
as part of other event handlers being exercised.

C. Mobile Devices
According to [9] web browsing on mobile and tablet

devices has increased rapidly the last few years, and together
constitutes 37.48% of all usage. As mobile navigation of the
web increases, developers may also want to adapt their website
to take advantage if touch screen input and gestures. This could
mean that many states and transitions not reachable by simple
mouse clicks anymore. Previous techniques may miss
important states relying on touch, mouse, and keyboard
interactions, especially for mobile web applications relying on
gestures. We believe actually exercising such interactions will
help in finding new states and transitions whether it is for
indexing content, automatically evaluating accessibility, or
employing automated testing approaches for the target web
application.

There has been a huge increase in use of the web from
smartphones [9], and as a result of this many web applications
also offer an especially tailored mobile version. These mobile
versions often take advantage of the devices touch screen, and
may implement certain navigational interactions using touch
and gestures. It therefore seems likely to us that such web
applications may contain states and transitions only reachable
through touch and gesture interaction.

Figure 1. Gesture Handler Registration

<div id=“gallery">

 <label class=“caption">Mt. Fuji</label>
</div>

$(‘#gallery’).swipeLeft(function() {
 // Load new image and caption via AJAX
 ...
});

Figure 2. Gallery with swipe interactions

D. Motivating Example
For our motivating example we consider a photo gallery

component embedded on a web site containing an image and
some descriptive text as pictured in Figure 1 and 2. In order to
load the next picture and text caption in the gallery you have to
swipe left or right. These swipe interactions would likely be
implemented by attaching the desired gesture type to a target
DOM element as seen in the code sample. Since existing crawl
techniques don’t attempt to execute such advanced interaction
events, the states loaded by performing these swipe gestures
would not be found, leaving a good chunk of application
functionality and content unexplored. This kind of interaction
pattern has become quite common and can often be seen in
photo galleries, carousels for news stories, especially featured
sales products, and so on.

III. EVENT HANDLER ANALYSIS AND GESTURE EMULATION

A. Detecting Registered Event Handlers for a State
In order to find out what event handlers have been

registered in any given state it is necessary to instrument the
native addEventListener() function implementation to keep
track of all event registrations performed by the target web
site’s JavaScript code. It is important that our instrumentation
code is performed before any other client-side code in order to
catch all events programmatically added to the page. This
means we need to inject this instrumentation module at the very
top of the documents <head> tag before the page is loaded in
the browser. This approach ensures that any event handlers
attached during page load as well as dynamically when
crawling to another state from initial page load will be detected
by our tool.

Figure 3. Event Handler Registration Detection

There may also be event handlers attached directly via
on[eventType] attributes on the DOM elements. These event
registrations are not processed through addEventListener(), so
we need to handle them separately. After the page is loaded we
walk the entire DOM tree, polling each element for any such
event handler registrations.

As seen in the code snippet in Figure 3, The
addEventHandler() function will check whether the event type
is of a type we are interested in, which can be configured in the
script, and if so add it to a list. Once the DOM is loaded, the
script will call the walkSubtree() function on the document
object, which will recursively traverse the entire DOM tree
looking for event handlers attached via the on[eventType]
attribute, and add them via addEventHandler(). This means we
can effectively monitor any and all event handler registrations
performed on the page.

B. Injecting Script via a MITM Proxy
Figure 4 shows the structure of mobCrawler. Neither the

browser itself nor the Selenium WebDriver used by
mobCrawler to control the browser offers a way to manipulate
the HTML before it is evaluated. Therefore we inject the
instrumentation script using a faux man-in-the-middle attack
via a proxy server.

This proxy server is implemented using the well-known
mitmproxy [14] program, and run with a custom script. The
proxy server sniffs for any relayed HTML content, intercepts it,
and modifies the <head> tag to inject our JavaScript module.
The injected JavaScript module then attaches one non-intrusive
JavaScript object on the window object, which can be
configured to listen for event handler registrations of any
specified event types. mobCrawler can communicate with this
module via JavaScript operations executed in the browser to
fetch the current event handlers for a state as well as exercise
various interactions on the web page. Using a man-in-the-
middle proxy server poses some problems with regards to the
browser denying 3rd party SSL certificates for certain sites or
forbidding functionality which might be restricted due to
CORS security policies. A preferable option would be to use
the WebDriver or web browser itself to inject this script into
the document before evaluating it, however this is not
supported as of today. We configure mobCrawler to use this
proxy server when crawling.

var original =
 EventTarget.prototype.addEventListener;
EventTarget.prototype.addEventListener =
function() {
 var type = arguments[0];
 addEventHandler({
 type: type,
 xpath: getElementXPath(this),
 });
 original.apply(this, arguments);
};

window.addEventListener('load', function(){
 walkSubtree(document);
},false);

Figure 4. Structure of mobCrawler

TABLE I. GESTURE EMULATION

Interaction Description Fire On
Event
dispatch

Create and dispatch an event to the target
element

click, dblclick,
mouseover,
mouseout,
keydown,
keyup,
keypress

Mouse
swipe

Emulates a mouse swipe in a given direction
(left, right, up or down), by creating and
dispatching a series of mousedown,
mousemove, and mouseup events.

mousedown

Touch
swipe

Emulates a touch swipe in a given direction
(left, right, up or down), by creating and
dispatching a series of touchstart,
touchmove, and touchend events.

touchstart

Tap Emulates a tap by dispatching touchstart and
touchend events with a small timeout.

touchstart

Double tap Two tap events in quick succession. touchstart
Tap hold Same as a tap but with a longer timeout

between the touchstart and touchend events.
touchstart

C. Emulating Browser Interactions
mobCrawler can now fetch all registered event handlers

registered in a state by calling our injected JavaScript module.
This list of event handler registrations will in turn form the
basis for what candidate elements and interactions we choose
to perform. Though we can possibly detect and emulate all
possible browser event types, we choose to focus on mouse,
keyboard, and touch events. For some of these events, such as
mousehover, mouseout or keydown it is sufficient to create and
dispatch a corresponding event object to the target element.
These events are created via the JavaScript module injected
into the page, and will programmatically construct events of the
desired type mirroring the W3 specifications in [17]. The
parameters set will be based on the target element in question
and what the desired interaction specified is, then finally
dispatched to the target element in question.

For keyboard events there is a big span of keys that can be
set to be activated. In our simulations we use the somewhat
naïve approach of always setting the key being pressed to the

character ‘e’. It seems like many more states can be elicited
with a more advanced strategy of when to use what characters.
Many websites include various keyboard shortcuts which could
increase the number of found transitions and states if exercised.
However we do not consider that beyond our rather simple
approach in this paper.

Additionally, we emulate certain common gestures using
mouse and touch events as specified in Table I. Variations of
tap gestures are only considered for touch, while swipe gestures
are also implemented for mouse. In this paper we only consider
single-touch gestures, ignoring more advanced gestures
involving more fingers. We do this since we find it less likely
they will induce meaningful states and to reduce the number of
candidate interactions performed.

Swipe gestures can be emulated in 4 different directions,
and are calculated by starting at the center of the target
element, then rapidly being moved 400 pixels in the given
direction. Candidate interactions are created based on the event
handler registrations detected in the current state. This means
that if a touchstart event handler is found on an element, a total
of 7 candidate interactions will be attempted: swipe up, swipe
down, swipe left, swipe right, tap, double tap and tap hold. This
can lead to a rapid increase in candidate interactions, but can be
customized to add only a subset of these candidate interactions.
For example, we could instruct mobCrawler to only try swipe
right and single tap interactions for elements containing
touchstart event handler registrations if that is desired.

Using this approach we can see how the problem posed in
the motivating example can be solved. The JavaScript module
injected into the browser via the MITM proxy will detect a
touchstart event registered on the gallery element, and record it
in a list of event handler registrations. Once the page has
loaded mobCrawler will fetch this list of event handler
registrations, and process them in turn. When it reaches the
touchstart event registered on the gallery element, it will
attempt various swipe and tap gestures as described in Table I
to see if the action changes the state of the DOM. Once it tries
swiping left and swiping right the content inside the gallery
should change, and mobCrawler will register these new
transitions and states in the state graph.

TABLE II. GESTURE SUPPORT

Library Tap Double
tap

Tap
hold

Swipe
Left Right Up Down

Hammer.js ✓ ✓ ✓ ✓ ✓ ✓ ✓
Quo.js ✓ × × × × × ×
dojox.gesture ✓ ✓ ✓ ✓ ✓ ✓ ✓
touchSwipe ✓ ✓ ✓ ✓ ✓ ✓ ✓
Touchy × × × × × × ×
jGestures ✓ N/A N/A ✓ ✓ ✓ ✓
D. Mobile Websites

It has become increasingly common for websites to offer a
separate mobile version, which can be very different from the
plain “desktop” version. In many cases the mobile version is a
completely separate implementation from the desktop version
to create a user experience entirely tailor made for mobile and
tablet devices. The most common technique used by websites
to differentiate between mobile and desktop users is user agent
sniffing, which will parse the user-agent string in the initial
HTTP request, and then serve back either the mobile or desktop
version of the website depending on the device reported in the
user agent string.

We add functionality to mobCrawler which enables the user
to imitate a mobile device by overriding the user-agent string
sent in HTTP requests to the webserver of the site we are
crawling. If the user wants to imitate a mobile device, this
string can be set to the user agent string reported by a browser
built for the iOS or Android platforms. Some gesture libraries
and websites will also offer different functionality based on
whether the browser reports the user’s device as being touch
enabled or not. For such cases, we inject a polyfill spoofing
that we support touch even if we are crawling using a non-
touch device.

IV. EVALUATION

A. Gesture Dection and Emulation (for RQ1)
To evaluate the effectiveness of emulating gestures, we set

up an experiment where we task mobCrawler with finding
gestures as implemented by various popular JavaScript gesture
libraries. Though it is possible to create gestures from scratch
just by using the native touch and mouse events, it seems likely
to assume that the majority of developers will rely on a gesture
library to make their jobs easier. This also gives us the
opportunity to investigate many different implementation
approaches, and seeing if our tool can handle them.

We create a basic website for each library with a <div>
element on which we register gesture interactions using the
various libraries. Though many of the libraries offers a big set
of gestures we focus only on simple single-point gestures as
described in Table I.

As can be seen in Table II, the approach was able to handle
the gesture interactions of most libraries flawlessly with two
exceptions. Both Quo.js and Touchy create and register custom
event types, which they use when registering their gestures.
Since our code instrumenting addEventListener() registrations

was configured to only look for a predefined set of standard
event types it didn’t pick up on these non-standard event type
registrations. However, mobCrawler can be configured to also
look for these custom events, and fire corresponding gesture
interactions on them to expand library support.

The majority of gesture libraries seem to use the native
touchstart and mousedown events, and in these cases our tool
was able to exercise all the transitions and find all the given
states. Note that jGestures did not have API’s for registering
doubletap and tap hold gestures, and so those gestures are not
considered. Hammer.js adds both mouse and touch handlers for
gestures, while Quo.js and dojox.gesture actually checks mosue
and touch capabilities of the device before registering the
appropriate event handlers.

A drawback of the approach is the large number of
candidate interactions which have to be exercised in order to
find valid states. Since we can’t make any assumptions about
what gesture interaction is required to elicit a new state, we
resort to exercising all of them. For example, upon finding an
element with a touchstart event handler attached, we create
candidate elements for all 3 tap gestures as well as swipes in 4
different directions. This might lead to a high recall of new
states, but precision is lacking and can lead to a lot of failed
candidate interactions. Reducing the candidate gesture
interactions to attempt could help reduce this number
drastically, e.g. by just focusing on right swipes and single taps.

RQ1. How comprehensively and efficiently can our
technique capture and perform gesture interactions?

To answer RQ1 we conclude that our approach can
successfully handle the majority of ways to implement gestures
in the browser, though it might be necessary with some extra
configuration to support specific libraries using custom event
types. Additionally, to increase precision of state and transition
discovery developers may want to minimize what gesture
interactions are attempted when crawling a site.

B. Case Study (for RQ2 and RQ3)
We proceeded to test out this tool on 6 actual websites to

evaluate the remaining two research questions. The target
websites were chosen due to having advanced GUI’s, being
tailored for mobile, and being crawlable through the MITM
proxy. C1 is an interactive application for manipulating
animations, while C2 implements a MS Paint clone in the web
browser. C3 is a web application for displaying presentations.
C4 and C5 are informational sites customized for smartphone
devices. We kept the level of state abstraction low, trying to
consider all changes introduced to the DOM. However, in order
to weed out false positives we do instruct mobCrawler to
ignore ads and automatically created hash values on a site-by-
site basis. Maximum crawl times are set to 2 hours, with a
crawl depth of 2. We also instruct the browser to not accept any
cookies.

TABLE III. CASE STUDY TARGET SITES

Case URL Mobile UA
C1 bomomo.com No
C2 muro.deviantart.com No
C3 slides.com/andreylisin/omaha-server#/6/1 Yes
C4 m.weather.com/weather/today/JAXX0085:1:JA Yes
C5 touch.toyota.com/index.html Yes

TABLE IV. CRAWL RESULTS

 C1 C2 C3 C4 C5
States, “click” 22 60 18 60 50
States, other 42 124 61 7 38

Transitions, “click” 22 60 23 61 100
Transitions, other 42 124 198 7 108

Transitions, <a> + <button> 4 16 0 29 49
Transitions, other elements 60 175 221 39 159

Figure 5. Event Type Distibution for State Transitions

Figure 6. Element Type Distribution for State Transitions

As can be seen in Table IV, all the target sites have a large
number of states and transitions being reached by exercising
interactions other than “click”. In C1 a lot of the menu buttons’
CSS styling are changed as part of mouseover and mouseout
events. C2 mirrors C1 in that most of the non-“click” induced
states are often differentiated by changes in styling or visibility
of elements. There are also a number of keyboard shortcuts to
quickly select given menu options.

C3 depends on swipe gestures to switch between various
slides. The high number of transitions can be explained by the
fact that a lot of states can be reached by multiple interactions.
For example, moving to the next slide in the deck can be
accomplished by swiping right or using a button in the control
panel. C4 and C5 are examples of more standard mobile web
applications, and we can see that most states can be found
using the “click” interaction. However, both sites contain
image galleries or sections which can be swiped to change the
contained content, similar to our motivating example. C5 has a
huge number of transitions due to multiple interactions
reaching the same state, as was also observed in C3.

Looking at Figure 5, we can see that “click” events still,
unsurprisingly, still make up the major amount of transitions
when crawling, though a considerable amount of transitions use
other event types. In C3-C5 there are considerably many touch
transitions, though many lead to the same state. Swiping
horizontally seems to be more fruitful than vertically. Both the
desktop sites, C1 and C2, have a fair amount of mouse and
keyboard events. Though not inducing a state change we
observed the swipes were also able to change what was drawn
on the <canvas> element.

RQ2. How often do various keyboard, mouse, and touch
events lead to new state transitions in modern RIA’s, and
which event types are more likely to induce new states?

To answer RQ2, we conclude that swipe gesture transitions
are very common for mobile web applications and can induce
new and meaningful states. The huge number of transitions
leading to the same state might be unwanted if crawling with
the aim of discovering content, but may be desirable if trying to
generate a comprehensive test suite or detecting errors in a web
application. For desktop sites, both keyboard and mouse events
are found to be common for advanced web applications with
advanced GUI’s.

Considering the amount of non-“click” transitions in C2,
C3, and C5, it seems they are too numerous to ignore. Though
not all applications rely heavily on these kinds of transitions,
such as C4, the number can be too high to simply ignore. As
evidenced by the image galleries in C5 and slides in C3,
content crawlers may be able to increase the amount of data
found if they attempt to emulate swipe gestures on mobile
websites. When it comes to automatically generating test suites
for web applications, the developers may get a higher test
coverage by instructing the crawler to attempt gesture types
they know are present in the application.

Figure 6 depicts what elements were interacted with to find
state transitions. As can be seen, this varies depending on the
specific website, with C1 relying heavily on elements
which it uses for its menu buttons. C2, C3 and C5 have large

numbers of event handlers attached to the <html> or <body>
element. Many of these transitions are gestures which can be
performed anywhere in the visible document. <a> and <div>
elements are in consistent use in all the web sites. However
<a> and <button> elements are not nearly as prominent as the
<div> element in terms of inducing transitions.

RQ3. What DOM elements are more likely to be targets for
interactions leading to new state transitions?

To answer RQ3 we can conclude that element types
employed as interaction targets can differ widely depending on
the website. <a> and <div> elements seem to be the most
common interaction targets to use for transitioning between
states. Web applications using gesture actions applied to the
entire documents surface area will likely have interaction
targets on the <html> or <body> element. The results indicate
that event handler analysis is a more comprehensive and
precise way of finding possible transitions in a state than
exhaustively trying out a predetermined list of element types in
each state.

The most obvious takeaway is that the types of elements
used for inducing transitions are too varied from site to site, to
rely on a small subset when targeting a large variety of web
applications. This could be useful when performing empirical
studies on a large host of web applications by way of crawling.
By combining event handler analysis along with a somewhat
selective set of gesture interactions to try out, the resulting state
graphs could be richer and more representative of their
respective web applications.

V. USAGE
Our findings indicate our technique can help augment

existing tools that are automatically exploring web applications
by increasing the number of found transitions. If our case study
is a good indicator of a more general trend in web applications,
there are many web sites containing advanced interactions
which can be modeled better than with current crawling
techniques. A fitting example would be content crawling
mobile web applications relying on swiping to load new
content. If a crawler can’t emulate a user swiping on the given
GUI element, the content loaded as a result may be left
unexplored and unindexed.

Another area in which our technique seemingly can help is
increasing code coverage in automatically created test suites for
web applications relying on advanced interactions. This is well
illustrated by C3 in our case study, which is a web application
for browsing slide presentations in a mobile browser. When
creating an automatic test suite for this application, it is
reasonable to assume the developer also wants to generate test
cases for the various gestures involved in manipulating the
slides. By emulating these gestures we could trigger event
handlers not triggered by traditional crawling techniques and
thus increase the total code coverage of the web application.
Possibly this could also lead to finding a number of unexpected
errors and event sequences, and should generally increase the
quality of the test suite.

For many of the same reasons stated in the previous two
examples, we believe our approach would be beneficial for

various automatic evaluation techniques of rich web
applications. Several approaches to accessibility and security
evaluation rely on automatically exercising the GUI to find
states and transitions as evidenced in [6] and [5] respectively. It
seems reasonable to assume these approaches would benefit
from our technique as they would be able to explore a larger
number of transitions initiated by non-“click” interactions.
Once again it seems like mobile web applications especially
would benefit from this.

VI. RELATED WORK
Though Crawljax[1] can be configured to initiate simple

click events on any kind of element, it relies on exhaustively
exercising all such elements on a page rather than finding only
the elements with “click” event handlers attached on them. The
support for exercising different kinds of event types is minimal
and focuses on simple mouse clicks. Our extensions allow it to
find all desired events registered on a page via event handler
analysis, and exercise simple even dispatches as well as single-
point gestures.

There has been performed some previous research utilizing
event handlers as evidenced by tools such as ARTEMIS from
[3] and FEEDEX from [12]. These tools seem to analyze event
handler registrations by using a modified version of the Rhino
JavaScript interpreter. They use the event handlers as input in
prioritizing what crawl action to take next. [18] introduces a
symbolic execution framework for finding security
vulnerabilities in web applications. It utilizes event handler
analysis and can perform simple event dispatches, but does not
attempt to emulate gestures. [15] introduces a static analysis
approach to creating finite state machines from source code by
analyzing event handlers. In contrast to out tool, none of these
approaches try to find and emulate more complex gestures, and
most of them, except [18], also seem to ignore simple event
dispatches.

A static approach to analyzing interactions in JavaScript
applications can be found in [23] which models web
applications as finite state machines. However, it focuses on
verifying interaction invariants by way of model checking as
well as mutation analysis, while we are following a dynamic
approach of modeling web applications as state diagrams for
purposes such as test suite generation and content indexing.
Related papers [22, 24] use the same approach, and target
mutation analysis and testing AJAX and RIA’s.

There has also been performed related research in the native
mobile application space. [19] targets Android applications,
and introduces a technique in which they first analyze event
handlers, and then generate and exercise different sequences of
events to reach hard-to-find states and transitions. [20] and [21]
automatically analyzes event handlers in order to create and
exercise events to find GUI bugs or create test suites for
Android applications. While all these researches focus on apps
on the Android platform, our research is focused on RIA’s on
the web.

VII. CONCLUSION
We have introduced a new technique for finding and

exercising mouse, keyboard, and touch candidate interactions
when crawling web applications, as well as a case study
investigating its performance in modern RIA’s. The technique
we proposed seems like a good fit for automatic crawling of
web applications with advanced interaction models, especially
mobile. Automatic test generation and error detection, as well
as automatic solutions for evaluating accessibility and usability
seem like good use cases.

In the future we would like to replace the script injection
mechanism with something less intrusive than a MITM proxy,
as well as add a default configuration supporting the custom
event types of all major gesture libraries. In addition, we
believe it would be fruitful to do a bigger case study involving
a number of the most popular mobile web applications to
further investigate the applicability of the approach. This would
give us a better idea of the robustness of the approach and
whether the patterns observed in our limited case study holds
on a larger scale.

REFERENCES
[1] A. Mesbah, E. Bozdag, and A. van Deursen. “Crawling Ajax by

inferring user interface state changes,” Eighth International Conference
on Web Engineering, 2008, pp. 122-134. IEEE.

[2] G. Richards, S. Lebresne, B. Burg, and J. Vitek. “An analysis of the
dynamic behavior of JavaScript programs,” Proceedings of the 2010
ACM SIGPLAN conference on Programming language design and
implementation, 2010, pp. 1-12. ACM.

[3] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, and F. Tip. “A framework for
automated testing of javascript web applications,” 33rd International
Conference on Software Engineering, 2011, pp. 571-580. IEEE.

[4] D. Roest, A. Mesbah, and A. van Deursen. “Regression testing ajax
applications: Coping with dynamism,” Third International Conference
on Software Testing, Verifiation and Validation, 2010, pp. 127-136.
IEEE.

[5] C. P. Bezemer, A. Mesbah, and A. van Deursen. “Automated security
testing of web widget interactions,” Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering,
2009, pp. 81-90. ACM.

[6] F. Ferrucci, F. Sarro, D. Ronca, and S. Abrahao. “A Crawljax Based
Approach to Exploit Traditional Accessibility Evaluation Tools for
AJAX Applications,” Information Technology and Innovation Trends in
Organizations, 2011, pp. 255-262. Springer.

[7] C. Duda, G. Frey, D. Kossmann, and C. Zhou. “Ajaxsearch: crawling,
indexing and searching web 2.0 applications,” Proceedings of the VLDB
Endowment 1.2, 2008, pp. 1440-1443. ACM.

[8] comScore. “The U.S. Mobile App Report,” comScore Whitepaper.

[9] StatCounter Web Usage Stats, Jan 2012 – Jan 2015.
http://gs.statcounter.com/#all-comparison-ww-monthly-201201-201501.
12 May 2015.

[10] A. Nederlof, A. Mesbah, and A. van Deursen. “Software engineering for
the web: the state of the practice,” Companion Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 4-13.
ACM.

[11] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra.
“Guided test generation for web applications,” 35th International
Conference on Software Engineering, 2013, pp. 162-171. IEEE.

[12] A. M. Fard, and A. Mesbah. “Feedback-directed exploration of web
applications to derive test models,” ISSRE, 2013, pp. 278-287.

[13] A. Marchetto, P. Tonella, and F. Ricca. “State-based testing of ajax web
applications,” 1st International Conference on Software Testing,
Verification, and Validation, 2008, pp. 121-130. IEEE.

[14] Mitmproxy. https://mitmproxy.org/. 12 May 2015.
[15] Y. Maezawa, H. Washizaki, and S. Honiden. “Extracting interaction-

based stateful behavior in rich internet applications,” 16th European
Conference on Software Maintenance and Reengineering, 2012, pp. 423-
428. IEEE.

[16] H. Takagi, S. Saito, K. Fukuda, and C. Asakawa. “Analysis of
navigability of Web applications for improving blind usability.” ACM
Transactions on Computer-Human Interaction v. 14, no. 3, 2007, article
number 13. ACM.

[17] W3 JavaScript APIs. http://www.w3.org/TR/#tr_Javascript_APIs/. 12
May 2015.

[18] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song.
“A symbolic execution framework for javascript,” IEEE Symposium on
Security and Privacy, 2010, pp. 513-528. IEEE.

[19] C. S. Jensen, M. R. Prasad, and A. Møller. “Automated testing with
targeted event sequence generation,” Proceedings of the 2013
International Symposium on Software Testing and Analysis, 2013, pp.
67-77. ACM.

[20] C. Hu, and I. Neamtiu. “Automating GUI testing for Android
applications,” Proceedings of the 6th International Workshop on
Automation of Software Test, 2011, pp. 77-83. ACM.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. de Carmine, and A. M.
Memon. "Using GUI ripping for automated testing of Android
applications," Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 258-261.
ACM.

[22] K. Nishiura, Y. Maezawa, H. Washizaki, S. Honiden, “Mutation
Analysis for JavaScript Web Applications Testing,” Proceedings of the
24th International Conference on Software Engineering and Knowledge
Engineering, 2013, pp.159-165.

[23] Y. Maezawa, H. Washizaki, Y. Tanabe and S. Honiden, "Automated
Verification of Pattern-based Interaction Invariants in Ajax
Applications," IEEE/ACM 28th International Conference on Automated
Software Engineering, 2013, pp. 158-168. IEEE.

[24] Y. Maezawa, K. Nishiura, H. Washizaki, S. Honiden, "Validating Ajax
Applications Using a Delay-Based Mutation Technique," Proceedings of
the 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 491-502. ACM.

