

Integration of Software Measurement Supporting Tools:

A Mapping Study

Vinícius Soares Fonseca Monalessa Perini Barcellos Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO)

Computer Science Department, Federal University of Espírito Santo

Vitória, ES, Brazil

{vsfonseca, monalessa, falbo}@inf.ufes.br

Abstract - During software projects, it is necessary to collect, store

and analyze data to support decision making at project and

organizational levels. Software measurement is a key practice to

process quality improvement and project management. Given the

nature of measurement activities, supporting tools are essential.

Different tools can be combined to support the measurement

process and provide the necessary information for decision

making. However, usually these tools are developed by different

developers, at different points in time and without concern for

integration. As a result, organizations have to deal with

integration issues to allow tools communication and properly

support the measurement process. This paper presents a study

investigating in the literature initiatives involving tools

integration to support software measurement. As a result, twelve

proposals were analyzed and their characteristics are presented.

Keywords - Software measurement; software measurement

process; software measurement tools; integration; interoperability;

systematic mapping

I. INTRODUCTION

Organizations use software measurement in several
contexts. For example, in project management, measurement
helps to develop realistic plans, monitor progress, identify
problems and justify decisions [1]. In process improvement,
measurement supports analyzing process behavior, identifying
needs for improvement and predicting if processes will be able
to achieve the established goals [2]. For this, data related to
software processes, such as project management and testing
processes, must be collected and analyzed.

Typically, organizations use different tools to support
different processes, such as supporting tools for project
management, requirements management, testing and bug
tracking. Although, in general, these tools are not conceived
aiming at supporting software measurement, many times they
support collecting and storing useful data related to those
processes (e.g., number of detected defects, time spent on
activities, number of lines of code, etc.).

In order to properly support the software measurement
process, providing consistent data to generate useful
information, tools should be integrated. However, integration is
a complex task. In general, each tool runs independently and
implements its own data and behavioral models, which are not
shared between different tools, leading to several conflicts [3].

(DOI reference number: 10.18293/SEKE2015-058)

Considering this scenario, we investigated the literature
looking for initiatives involving tools integration to support
software measurement. Aiming to reduce bias and ensure the
study repeatability, the investigation was conducted as a
systematic mapping. According to [4], a systematic mapping
makes a broad study in a topic of a specific theme and aims to
identify available evidence about that topic.

This paper is organized as follows: Section II briefly
discusses software measurement and integration; Section III
presents the research protocol used to guide the study; Section
IV describes the obtained results; Section V discusses the
results; and Section VI presents our final considerations.

II. BACKGROUND

A. Software Measurement

Software measurement (SM) is a primary support process
for managing projects. It is also a key discipline in evaluating
the quality of software products and the performance and
capability of software processes. The software measurement
process includes: measurement planning, measurement
execution, and measurement evaluation [5].

For performing software measurement, initially, an
organization must plan it. Based on its goals, the organization
has to define which entities (processes, products and so on) are
to be considered for software measurement and which of their
properties (size, cost, time, etc.) are to be measured. The
organization has also to define which measures are to be used
to quantify those properties. For each measure, an operational
definition should be specified, indicating, among others, how
the measure must be collected and analyzed. Once planned,
measurement can start. Measurement execution involves
collecting data for the defined measures, storing and analyzing
them. The data analysis provides information to decision
making, supporting the identification of appropriate actions.
Finally, the measurement process and its products should be
evaluated in order to identify potential improvements [6].

B. Integration and Interoperability

Integration and interoperability are very related notions.
Integration can be defined as the act of incorporating
components into a complete set, conferring it some expected
properties and creating synergy [3]. Interoperability, in turn,
can be understood as the ability of applications or application
components to exchange data and services [7]. Due to their

interrelation, these terms are often used in an indistinct way [8].
In this paper, the term integration is adopted with a wider
sense, covering both integration and interoperability meaning.

Izza [3] synthesizes integration approaches through four

main dimensions: scope, which distinguishes between intra-

and inter-enterprise integration; viewpoint, considering user,

designer, and programmer views; layer, referring to data,

service/message, and process integration; and level, which

considers hardware, platform, syntactical, and semantic

integration. For this paper, the two last dimensions are

particularly relevant. Regarding integration layers, data

integration deals with moving data between multiple data

stores. Integration at this layer assumes bypassing the

application logic and manipulating data directly in the

database, through its native interface. Service/message

integration addresses messages exchange between the

integrated applications. Process integration views enterprises

as a set of interrelated processes and it is responsible for

handling message flows, implementing rules and defining the

overall process execution. With respect to integration levels,

syntactical integration encompasses the way data model and

operation signatures are written down, while semantic

integration encompasses the intended meaning of the concepts

in a data schema or operation signature [3].

Challenges in applications integration arise, among others,
from the fact that heterogeneous applications employ different
data and behavioral models, leading to semantic conflicts.
These conflicts occur whenever applications are built with
different conceptualizations, which can impact the integration
of data, services, and processes [8].

III. THE RESEARCH PROTOCOL

The study was performed following the approach defined in
[4]. According to this approach, a systematic mapping
involves: planning, when the research protocol
 is defined; conducting, when the protocol is executed and data

are extracted, analyzed and recorded; and reporting, when the
results are recorded and made available to potential interested
parties. In this section we present the main parts of the research
protocol used to perform the study.

Research Questions: the goal of this mapping study is to

depict a general view of the current status of the research

regarding tools integration to support software measurement.

Table I presents the research questions that this mapping study

aims to answer, as well as the rationale for considering them.

Search String: the search string was developed considering

three groups of terms that were joined with the operator AND.

The first group includes terms related to integration and

interoperability. The second group includes terms related to

software measurement. The third group includes terms related

to tools and applications. Within the groups, we used the OR

operator to allow synonyms. The following search string was

used: ("integration" OR "integrated "OR "interoperability" OR

"interoperable") AND ("software measurement" OR "software

process measurement" OR "software project measurement"

OR "software engineering measurement" OR "software

product measurement") AND ("tool" OR "application" OR

"system" OR "framework" OR "suite" OR "toolkit").

For establishing this search string, we performed some

tests using different terms, logical connectors, and

combinations among them. More restrictive strings excluded

some important publications identified during the informal

literature review that preceded the systematic mapping. These

publications were used as control publications, meaning that

the search string should be able to retrieve them. We decided

to use a comprehensive string that provided better results in

terms of number and relevance of the selected publications,

even thought it had selected many publications that had to be

eliminated in subsequent steps.

TABLE I. RESEARCH QUESTIONS

ID Question Rationale

RQ1

When and in which type of vehicle

(journal / scientific event) have the

publications been published?

Give an understanding on when and where the selected publications have been published.

RQ2 Which types of research have been done?

Identify the research type according to the classification defined by Wieringa et al. [9]: Evaluation

Research; Proposal of Solution; Validation Research; Philosophical Paper; Opinion Paper; and

Personal Experience Paper.

RQ3
Which types of tools have been

integrated for supporting SM?

Identify the types of the integrated tools (e.g., project management tool, issue tracking tool, etc.)

and verify whether a type is used in more than one proposal.

RQ4
Have the integrated tools been developed

by the same group or organization?

Verify whether or not the initiatives have been integrating tools developed by the same group or
organization. The purpose is to analyze if there is a trend in using tools developed by the same or

by different groups.

RQ5

Which SM process activities

(measurement planning, data collection,

and data analysis) are supported by the
integrated set of tools?

Identify which measurement activities are being supported by the initiatives, in order to evaluate

the coverage of the resulting set of integrated tools. The activities considered are the two first

activities established in [5] (measurement planning and measurement execution). Moreover,

measurement execution was split for allowing us to verify if the tools support both data collection

(which involves data collection itself and data storage) and data analysis, or only one of them.

RQ6
Which categories of measures are

addressed by the proposal?

Identify which categories of measures (e.g., code measures, tests measures, etc.) have been

considered, allowing us to analyze how specific or comprehensive is the measurement scope.

RQ7
In which layers (data, message/service or

process) does the integration occur?

Identify the layers in which the integration is performed, considering the layers defined in [3].

The purpose is to analyze in which layer the integration initiatives have been focused on.

RQ8
In which level (syntactical or semantic)

does the integration occur?

Identify the levels in which the integration is performed, considering the levels defined in [3]. The

purpose is to analyze in which level the integration initiatives have been focused on.

RQ9

Does the proposal support measurement

in the context of maturity models or

standards? If so, which ones?

Identify which proposals support measurement in the context of maturity models (e.g., CMMI) or

standards (e.g., ISO/IEC 9001), allowing us to verify whether supporting maturity models and

standards has been a concern in SM tools integration initiatives.

Sources: the following six electronic databases were searched:
IEEE Xplore (http://ieeexplore.ieee.org), ACM Digital Library

(http://dl.acm.org), Springer Link (http://www.springerlink.com),

Scopus (http://www.scopus.com), Science Direct

(http://www.sciencedirect.com), and Engineering Village

(http://www.engineeringvillage.com). They were selected based

on other systematic reviews in the Software Engineering area.

Publication Selection: selection was performed in five steps:

Step 1 (S1) - Preliminary selection and cataloging: the search

string was applied in the search mechanisms of the selected

sources. Publication type was limited to papers from the

Computer Science and Engineering area.

Step 2 (S2) – Duplicates Removal: studies indexed by more

than one digital library were identified and the duplications

were removed.

Step 3 (S3) – Selection of Relevant Publications – First Filter:

selecting publications by applying a search string does not

ensure that all selected publications are relevant, because such

selection is restricted to syntactic aspects. Thus, the title,

abstract and keywords of the selected publications were

analyzed considering the following inclusion (IC) and

exclusion (EC) selection criteria: (IC1) the publication

presents information regarding integration among tools,

applications or systems that support software measurement;

(EC1) the publication does not have an abstract; (EC2) the

publication is published as an abstract; and (EC3) the

publication is not a primary study.

Step 4 (S4) - Selection of Relevant Publications – Second

Filter: the full text of the publications selected in S3 was read

with the purpose of identifying the ones that provide useful

information. Thereby, the inclusion criterion IC1 was

considered and also the following exclusion criteria: (EC4) the

publication is not written in English; (EC5) the publication full

text is not available; and (EC6) the publication is a copy or an

older version of an already considered publication.

Step 5 (S5) - Snowballing: as suggested in [4], the references

of publications selected in the study must be analyzed and, if

some of them seems to present evidence related to the research

topic, it should be assessed by the selection criteria and

included in the study. Thus, in this step, references of the

publications selected in S4 were investigated by applying the

first and second filters.

IV. RESULTS

The systematic mapping considers publications until

December 31
st

2014. As a result of S1, 948 publications were

obtained (357 from IEEE Xplore, 90 from Scopus, 257 from

ACM, 8 from Science Direct, 49 from Engineering Village

and 187 from Springer Link). After S2, 85 duplications were

eliminated, achieving 863 publications. After S3, only 24

studies were selected (a reduction of approximately 97%).

After S4, we achieved 8 studies. Applying snowballing (S5), 4

publications were added, reaching a total of 12 publications.

Table II presents a brief description of each proposal.

Following, we present the main results obtained for each

research question.

Publications source and year (RQ1): as Table II shows, the

first study was published in 1988. Some studies were

published since then, but research in the area has not been

stable and presents two gaps (one between 1989 and 1996, and

another between 2004 and 2009). Since 2010, it seems to be a

more continuous research in the topic, with at least one work

published per year. Most studies were published in scientific

events (7) instead of journals (5).

Research type (RQ2): all the analyzed studies include

proposals of solution. Studies [11], [12], [13], [14], [15], [19],

[20] and [21] are also categorized as evaluation research,

since they have been applied into a production environment in

at least one organization. Studies [10], [16] and [18] are also

considered validation research due to the use of a prototype or

experiment to evaluate the proposal.

Integrated Tools (RQ3, RQ4): Table III presents the types of

the tools being integrated in each proposal. Except [10], in

which it was not possible to identify whether the tools were

developed by the same group or not, all proposals integrated

tools developed by different groups.

Measurement activities and Measures (RQ5, RQ6): only four

proposals ([10], [12], [13] and [20]) address Measurement

Planning. Data Collection and Data Analysis, in turn, are

addressed by all proposals. Table III presents the categories of

the measures addressed by the proposals.

Integration layers (RQ7): seven proposals ([12], [13], [14],

[15], [18], [20] and [21]) address integration only in data

layer; four proposals ([10], [16], [17], and [19]) address

integration only in the message layer; and one proposal ([11])

addresses integration in both data and message layers. None

of the proposals address the process layer.

Semantic aspects (RQ8): only [16] addresses integration in

the semantic level; the others address integration in the

syntactical level. In [16], Ghezzi and Gall use ontologies

implemented in OWL to define and represent the data

consumed and produced by the services of the integrated tools.

Maturity Models/Standards (RQ9): only two studies mention

maturity models/standards and both of them refer to CMMI

[22]. [15] uses CMMI measurement practices to define the

measurement program supported by the proposed framework.

[20] was conducted at a CMMI Level 3 organization.

TABLE II. PROPOSALS INVOLVING TOOLS INTEGRATION FOR SUPPORTING SOFTWARE MEASUREMENT

Proposal Year/Vehicle Description

TAME

[10]

1988

Journal

TAME (Tailoring A Measurement Environment) system is an Integrated Software Engineering Environment that is composed

by several components. TAME integrates three measurement tools that capture data from Ada source and generate measures.

Tool support

for SM

[11]

1997

Journal

This approach uses a set of integrated tools in order to support software measurement and quality improvement. A tool that

supports tree-modeling analysis (S-PLUS) is the central analysis tool. Other tools are used for data gathering, analysis, and

result presentation. The tools are connected to S-PLUS, either as an information consumer or as information providers. The

integration is achieved through the adoption of external rules for data contents and formats (to ensure tools interoperability), the

usage of common tools for multiple purposes, and the usage of utility programs that convert data for tools interoperability.

GQM tool

[12]

2000

Journal

GQM tool supports measures definition, data collection, analysis, and feedback. It has interface with a configuration

management system and other measurement tools. The integration with the configuration management system is performed

through a data link between their relational databases. The integration with the other measurement tools is done by developing

an XML translator for each tool, allowing the translation of the native data format to XML format.

MetriFlame

[13]

2001

Symposium

MetriFlame is a measurement automation tool based on GQM that uses existing data recorded during software development

process. It has components for collecting and converting measurement data from various tools, spreadsheets and databases. In

the paper, the components are not detailed and no further information about integration is given.

A Decision

Support

System [14]

2003

Workshop

The Decision Support System was developed at IBM for tracking and using software measures aiming to enable executives to

make better informed decisions in supporting their products. It captures (from different host systems) data regarding customer

support, critical situations and customer satisfaction and integrates these data into a data warehouse.

SM in a CI

Environment

[15]

2010

Conference

It uses a Continuous Integration (CI)1 engine in order to automate measurement data extraction. It follows CMMI Measurement

and Analysis process area practices and GQ(I)M concepts for selecting relevant measures. Data collection is done by several

tools. After extraction, data are consolidated in a XML file that is stored into a relational database until an ETL (Extract,

Transform, and Load) process run and load data into a data warehouse. An OLAP tool is used to analyze data.

SOFAS

[16]

2011

Conference

SOFAS is a platform that offers software analysis services to allow for interoperability among analysis tools. It is made up of

three main constituents: Software Analysis Web Services, which provides a catalogue of services for data analysis; a Software

Analysis Broker, acting as the services manager and the interface between the services and the users; and Software Analysis

Ontologies, which defines and represents the data consumed and produced by the different services.

Dione

[17]

2012

Symposium

Dione is a Java web application whose majors functions are: i) build a measurement repository that contains product and

process measures as well as information about defected software components; ii) analyze trends in measures and issues using

chart and report configurations; and iii) construct and calibrate customized defect prediction models to predict defect proneness

of a software product version or release. It collects data from several tools and uses a smart client to connect with software

development artifacts and automatically extract measures. It also supports integration with other tools through web services.

QualitySpy

[18]

2012

Journal

QualitySpy is a framework for monitoring the software development process. It collects raw data from several integrated tools

as well as from the source code. The collected data and reports are available in a reporting module implemented as light web

client, which communicates with the server using Representational State Transfer (REST).

The 3C
Approach

[19]

2012

Workshop

The 3C Approach is an extension to the CI practice and addresses Continuous Measurement and Continuous Improvement as
subsequent activities to Continuous Integration. Several Java tools and a version control system were integrated into the CI

engine CruiseControl, allowing collection of measures related to source code and test coverage.

ASSIST

[20]

2013

Conference

ASSIST is an integrated tool developed by a CMMI level 3 organization. It adopts GQ(I)M approach and is connected with

commercial software suites for project management, issue tracking and enterprise resource planning. ASSIST uses a low-level

integration strategy based on SQL because all the tools involved depend on a relational database management system. It allows

automatic data collection from the integrated tools, data import from spreadsheets and manual data entry.

DePress

[21]

2014

Journal

DePress is an open source, extensible framework for software measurement and data integration which can be used for

prediction purposes (e.g., defect prediction, effort prediction) and software changes analysis (e.g., release notes, bug statistics).

It supports the integrated use (through KNIME Framework) of the issue tracking systems JIRA and Bugzilla, the software

configuration management systems SVN and GIT, and the measurement tools Judy, JaCoCo, EclipseMetrics, CheckStyle and

PMD.

TABLE III. TYPES OF INTEGRATED TOOLS AND CATEGORIES OF MEASURES ADDRESSED BY THE INTEGRATION INITIATIVES.

Pub. Types of the tools being integrated Measure categories

[10] Code Measurement, Tests code, size, test

[11]
Code Measurement, Tests, Configuration Management, Issue Tracking, Modeling,

Presentation/Reporting, Reverse Engineering

code, size, test, defects, changes, design, transactions

[12] Code Measurement, Configuration Management code, size, defects

[13]
Configuration Management, Project Management, Document Management, Databases,

Spreadsheets

it depends on the data available in the integrated tools,

databases and spreadsheets

[14] Customer Management, OLAP Tool problem, product quality, customer satisfaction

[15] Code Measurement, Tests, Continuous Integration, Build Automation, OLAP Tool code, size, test

[16] Code Measurement, Configuration Management, Issue Tracking code, size

[17] Code Measurement, Configuration Management, Issue Tracking, Presentation/Reporting code, size, defects

[18] Code Measurement, Configuration Management, Issue Tracking, Continuous Integration code

[19]
Code Measurement, Tests, Configuration Management, Continuous Integration, Build

Automation, Presentation/Reporting

code, size, test

[20] Issue tracking, Project management, Enterprise Resource Planning, Spreadsheets
code, size and other measures depending on the data

available in the integrated tools and spreadsheets

[21]
Code Measurement, Configuration Management, Issue Tracking, Presentation/Reporting,

Defect Prediction, Data Mining Tool, Security, Statistics, Spreadsheets

code, defects, time, issue

1
CI is a practice for continuous integration of new source code into the base code, including automated compile, build and running of tests [19].

V. DISCUSSION

This section provides some additional discussion about the

results presented in the previous section.

Concerning the measurement activities, we noticed that all

proposals that support Measurement Planning ([10], [12], [13]

and [20]) use GQM (Goal-Question-Metric) paradigm [23] or

one of its variations. GQM is based on the idea that

measurement should be goal-oriented, i.e., data must be

collected based on an explicitly documented rationale [12].

Thus, GQM addresses measurement planning by guiding

measures definition from established goals. Since GQM has

been successfully adopted in software measurement initiatives

for years, its usage by the proposals that address measurement

planning was expected.

All proposals support Data Collection and Data Analysis.

Regarding data collection, data are automatically captured by

the tools or input by using their interface. As for data analysis,

[11] supports the use of collected data to analyze software

reliability; [10], [12], [13], [17] and [19] allow to analyze

whether the established goals have been achieved; [14]

supports the analysis of customer satisfaction; and [17] and

[21] support analysis aiming at defect prediction.

With respect to the integrated tools, although we did not

list in this paper the tools involved in each proposal, they are

diverse. There are proposals integrating commercial tools (e.g.

[11], [13], [20]), open source tools (e.g. [15], [16], [18], [19],

[21]) and in-house developed tools (e.g. [10], [12], [20]). We

also noticed that some proposals focus specifically on

integrating existing tools (e.g. [11], [15], [16], [18], [19]),

while others address the development of a whole integrated

tool (e.g. [10], [20]). Moreover, we noticed that in some

initiatives ([11], [12], [13], [15], [16], [20], [21]) measurement

process support was the main motivation for integrating tools,

while in others ([10], [14], [17], [18], [19]) the measurement

support was achieved as a consequence of the tools

integration. For instance, in [18] tools are integrated to support

software development process monitoring and, as a

consequence of the integration, software measurement was

also supported. The variety of tools that can be used to support

measurement increases the relevance of integration in this

domain, because organizations could choose the tools that are

more suitable for their needs and work on their integration. .

Even though the integrated tools are diverse, it is possible

to notice a predominance of code-related tools. Code

Measurement, Issue Tracking, and Configuration Management

tools are integrated in several proposals (9, 7 and 6 proposals,

respectively). It might be a consequence of these types of tools

being prone to automatic collection of measures. Besides,

some of them depend on others to provide information. For

instance, since source code is usually stored in a Configuration

Management system, the presence of a Code Measurement

tool usually implies the presence of a Configuration

Management tool.

Considering that code-related tools were integrated in most

proposals, it was expected that code measures (e.g., cyclomatic

complexity, number of methods) would be addressed by most

proposals. 10 of the 12 studies address them. Taking the types

of integrated tools and measures into account, except [13] and

[20], which have a more comprehensive scope, the integration

initiatives usually address a specific measurement scope (e.g.

coding, customer support).

Analyzing the integration layers addressed, we noticed that

the proposals deal with data and message layer, while process

layer is not addressed. We believe this is due the fact that

process layer integration (commonly referred to as Business

Process Integration) constitutes the most complex integration

approach [3]. It views an enterprise/organization as a set of

interrelated business processes and not merely islands of

information, dealing with message flows, rules and process

execution. Message layer is addressed, but only by few

proposals. Message layer integration requires tool

communication by means of message exchange between the

tools. If the integrated tools are not able to communicate by

means of messages, integration in this layer demands extra

effort, especially if tools were not developed by the group

performing the integration (this is the case in most proposals).

In this sense, according to [20], a low level of integration is

preferred when integrating with commercial tools, because it

does not involve any code development or modification at the

commercial tools' side. All studies that integrate commercial

tools ([11], [12], [13], [20]) are limited to data integration.

As for semantic integration, only [16] considers semantic

aspects in the integration. Neglecting semantics during an

integration initiative is a serious issue, since many semantic

problems can occur, such as the ones called “false agreement”,

which are described in [28] and include: the use of equivalent

terms with different meaning; the use of equivalent terms with

partially equivalent meaning; the use of different terms with

equivalent meaning; and the use of different terms with a

certain degree of equivalence. For addressing these problems,

ontologies can be used to establish a common

conceptualization about the domain in order to support

communication and tools integration [24].

Since none of the proposals presented the method followed

to perform the integration, we concluded that they have used

ad-hoc approaches for integrating the tools. Not using a

systematic approach for performing the integration, despite the

existence of systematic approaches in the literature (e.g. [24],

[25], [26]), can be seen as a gap regarding methodological

aspects. Systematic approaches can structure the integration

process into different levels of abstractions and define

guidelines on how to perform the various integration activities.

This is essential for establishing an engineering approach for

application integration [27].

VI. FINAL CONSIDERATIONS

This paper presented the main results of a systematic

mapping about initiatives involving tools integration for

supporting software measurement. A total of 952 publications

were analyzed and 12 proposals involving tools integration for

supporting software measurement were found.

According to [29], a mapping study gives an idea of

shortcomings in existing evidence, which becomes a basis for

future studies. Therefore, the main objective of this mapping

was to analyze the proposals and provide a general view of the

current status of the research regarding tools integration for

supporting software measurement. Summarizing, the analyzed

proposals address measurement execution (data collection and

analysis), but most of them do not address measurement

planning. Integration in the data layer is most common,

although some proposals deal with integration in the message

layer. They predominantly integrate coding-related tools and

address code measures. Supporting maturity models/standards

have not been a concern. Finally, only one proposal considers

semantic aspects and, apparently, none of the proposals used a

systematic approach to perform integration.

This panorama reveals some gaps in the research regarding

tools integration for supporting software measurement. We can

highlight the following: (i) lack of concern with semantics; (ii)

limited coverage with respect to the measurement process or

the measure categories addressed by the integrated tool suite;

(iii) lack of alignment to quality-related standards and maturity

models; (iv) failure to consider a holist view of the (software)

process, leading to the absence of integration in the process

layer. Taking these gaps into account, we are now working on

an integration of measurement supporting tools following a

systematic approach aiming at overcoming these gaps.

ACKNOWLEDGMENT

This research is funded by the Brazilian Research Funding
Agency CNPq (Processes 485368/2013-7 and 461777/2014-2).

REFERENCES

[1] J. McGarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, and F.
Hall, “Practical Software Measurement: Objective information for
decision makers," Addison Wesley, Boston, USA, 2002.

[2] W. A. Florac, A. D. Carleton, “Measuring the software process:
statistical process control for software process improvement,"Addison
Wesley, Boston, USA, 1999.

[3] S. Izza, “Integration of industrial information systems: from syntactic to
semantic integration approaches,” Enterp. Inf. Syst., vol. 3, no. 1, pp. 1–
57, Feb. 2009.

[4] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering," TR EBSE-2007-01, School
of Computer Science and Mathematics, Keele University, 2007.

[5] ISO/IEC 15939, “Systems and Software Engineering – Measurement
Process”, 2007.

[6] M. Barcellos, R. A. Falbo, and A. R. Rocha, “Establishing a well-
founded conceptualization about software measurement in high maturity
levels,” in Proc. of the 7th International Conference on the Quality of
Information and Communications Technology, 2010, pp. 467–472.

[7] P. Wegner, “Interoperability,” in ACM Computing Survey, 28 (1), 1996,
pp. 285–287.

[8] J. C. Nardi, R. A. Falbo, and J. P. A. Almeida, “A panorama of the
semantic EAI initiatives and the adoption of ontologies by these
initiatives,” in Proc. of the IWEI 2013, LNBIP 144, Lecture Notes in
Business Information Processing, 2013, pp. 198–211.

[9] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion,” Requir. Eng., vol. 11, no. 1, pp. 102–107, Nov. 2005.

[10] V. R. Basili and H. D. Rombach, “The TAME project: towards
improvement-oriented software environments,” IEEE Trans. Softw. Eng.,
vol. 14, no. 6, pp. 758–773, Jun. 1988.

[11] J. Tian, J. Troster, and J. Palma, “Tool support for software
measurement, analysis and improvement,” J. Syst. Softw., vol. 39, no. 2,
pp. 165–178, Nov. 1997.

[12] L. Lavazza, “Providing automated support for the GQM measurement
process,” IEEE Softw., vol. 17, no. 3, pp. 56–62, 2000.

[13] S. Komi-Sirvio, P. Parviainen, and J. Ronkainen, “Measurement
automation: methodological background and practical solutions a
multiple case study,” in Proc. of the 7th International Software Metrics
Symposium, 2001, pp. 306–316.

[14] S. Chulani, B. Ray, P. Santhanam, and R. Leszkowicz, “Metrics for
managing customer view of software quality,” in Proc. of the 5th
International Workshop on Enterprise Networking and Computing in
Healthcare Industry (IEEE Cat. No.03EX717), 2003, pp. 189–198.

[15] G. de S. P. Moreira, R. P. Mellado, D. A. Montini, L. A. V. Dias, and A.
M. da Cunha, “Software product measurement and analysis in a
continuous integration environment,” in Proc. of the 7th International
Conference on Information Technology: New Generations, 2010, pp.
1177–1182.

[16] G. Ghezzi, H. C. Gall, “SOFAS: A Lightweight Architecture for
Software Analysis as a Service,” in Proc. of the Ninth Working
IEEE/IFIP Conference on Software Architecture, 2011, pp. 93–102.

[17] B. Caglayan, A. T. Misirli, G. Calikli, A. Bener, T. Aytac, and B.
Turhan, “Dione: an integrated measurement and defect prediction
solution,” in Proc. of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering - FSE ’12, 2012, pp. 1–4.

[18] M. Jureczko, J. Magott, “QualitySpy: a framework for monitoring
software development processes,” in Journal of Theoretical and Applied
Computer Science, v. 6, n. 1, 2012, pp. 35–45.

[19] A. Janus, R. Dumke, A. Schmietendorf, and J. Jager, “The 3C approach
for agile quality assurance,” in Proc. of the 3rd International Workshop
on Emerging Trends in Software Metrics (WETSoM), 2012, pp. 9–13.

[20] B. Keser, T. Iyidogan, and B. Ozkan, “ASSIST: an integrated
measurement tool,” in Proc. of the Joint Conference of the 23rd
International Workshop on Software Measurement and the 8th
International Conference on Software Process and Product Measurement,
2013, pp. 237–242.

[21] L. Madeyski, and M. Majchrzak,“Software measurement and defect
prediction with DePress extensible framework”. Foundations of
Computing and Decision Sciences, v. 39, n. 4, 2014, p. 249–270.

[22] CMMI-DEV, “Improving processes for better products and services,” in
CMMI for Development, Version 1.3, CMU/SEI-2010-TR33, SEI,
Carnegie Mellon University, Pittsburgh, 2010.

[23] V. R. Basili, H. D. Rombach, and G. Caldiera, “Goal Question Metric
paradigm”, Encyclopedia of Software Engineering, 2 Volume Set, John
Wiley & Sons, Inc., 2004.

[24] R. F. Calhau and R. A. Falbo, “An ontology-based approach for
semantic integration,” in Proc. of the 14th IEEE International Enterprise
Distributed Object Computing Conference, 2010, pp. 111–120.

[25] C. Liu, J. Wang, Y. Wen, and Y. Han, “A unified data and service
integration approach for dynamic business collaboration,” in IEEE 1st
International Conference on Services Economics, 2012, pp. 54–61.

[26] W. J. Yan, P. S. Tan, and E. W. Lee, “A web services-enabled B2B
integration approach for SMEs,” in Proc. of the 6th IEEE International
Conference on Industrial Informatics, 2008, no. Indin, pp. 774–779.

[27] J. C. Nardi, R. A. Falbo, and J. P. A. Almeida, “Foundational ontologies
for semantic integration in EAI: a systematic literature review,” in I3E
2013, IFIP Advances in Information and Communication Technology,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 238-249.

[28] S. V.Pokraev, “Model-driven Semantic Integration of Service-Oriented
Applications,” PhD thesis, University of Twente, 2009.

[29] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using mapping
studies as the basis for further research: a participant-observer case
study,” Journal of Information and Software Technology, 53, 2011, pp.
638-651.

