
Developers’ importance from the leader perspective

Guilherme Costantin Tângari
Faculdade de Ciência da Computação
Universidade Federal de Uberlândia

Uberlândia, Brazil
guilhermecostantin@mestrado.ufu.br

Marcelo de Almeida Maia
Faculdade de Ciência da Computação
Universidade Federal de Uberlândia

Uberlândia, Brazil
marcelo.maia@ufu.br

Abstract—Several companies use the amount of deliveries as a
metric of performance evaluation of the developer. However, the
productivity of a developer and his importance for the company
is not only related to the amount of lines of code produced. There
are a variety of factors that can contribute to the relevance of a
developer for a team. This paper aims at mapping some of these
factors, measuring those that are more important for companies
and propose an evaluation model of developer importance that
considers more than just deliveries. We have found that some
factors are more important than others and that there are minor
differences for different companies. We have also developed a
high accuracy classifier that can indicate the importance of the
developer based on a set of attributes.

Keywords—productivity, developers’ importance, pattern
recognition, human factors

I. INTRODUCTION

All kinds of companies have been investing in techniques
to increase productivity in order to increase competitiveness,
and this is no different in the software industry, which still
continues investing in new methods, tools and best practices
that could lead organizations to productivity improvement [1].

However, unlike hardware, which improves their price-
performance ratios by orders of magnitude per decade,
software productivity seems to have trouble to evolve in a
similar pace [2]. The current productivity rates are similar to
the rates of decades ago (one to two lines of code per man-
hour) [2]. Brooks et al. [3] states that there is no technical or
management technique that by itself promises one order-of-
magnitude improvement in software productivity, simplicity or
reliability.

Traditional productivity metrics for software development
are based either on lines of code (LOC) or function points (FP)
[4], for example, the amount of LOC or FP developers deliver
per hour. A slightly more abstract definition for productivity is
the ratio of delivered outputs to consumed inputs, where
outputs may be LOC, FP, or other relevant delivery, and inputs
are the resources used to produce that output, e.g., time, people
[2], [5], [6].

Nonetheless, the use of only these traditional metrics can
mislead the management of software teams. LOC does not take
into account the effort and knowledge required to write them.
Complex problems often require experienced developers to
solve them, and often, they do not require lots of LOC. In that
case, experienced developers would be penalized.

There are other notions of productivity that are not also
taken into consideration when evaluating just lines of code, for
example, developers with greater experience or with
knowledge in specific tools may be frequently consulted by
other developers to streamline and improve the development
process of the team as a whole, so the formers have an indirect
notion of productivity.

Talent retention and team motivation, for example, are two
fundamental issues for any software company [2], [7]–[11].
Software is made by people, and people, when have their work
recognized and well evaluated tend to produce more and better.
A performance evaluation that considers only one aspect, such
as the number of deliveries, and does not take into account tlhe
different levels of difficulty and the purpose of the code, so the
every day relationship with colleagues and the company would
be compromised by unfair assessment, demotivating
individuals and teams. Employee turnover its a common
problem in software companies [12] , and a high turnover rate
would lead to productivity losses, in addition to the increased
cost of hiring and training, and most importantly, the loss of
talents that search for recognition in other companies.

Several studies are devoted to discover the factors that have
influence in productivity of software development and
maintenance activities [1], [4], [7], [8]. Understanding those
factors and having some mechanism to evaluate productivity in
a fair way could provide to software team leaders a better tool
to evaluate and compare their developers. Several companies
are beginning to gain awareness of these issues and are
committed to improve the way they evaluate developer
performance. This work aims to investigate how team leaders
understand the notion of importance, indicating which factors
are most relevant in their developer overall assessment. We are
interested on the investigation of these questions:

1. What are the most important criteria used by leaders
while assessing developers?

2. It is possible to build a developer’s classifier with high
accuracy, using the proposed criteria? This question
can be refined in other two:

a. Is it possible to have a generic classifier, i.e.,
company-independent? or

b. Is it more appropriate to build customized
classifiers for each company?

(DOI Reference Number: 10.18293/SEKE2015-056)

As mentioned before, the performance of developers is
highly related with their productivity, within a classical concept
of the amount of deliveries. Nevertheless, managers and
leaders on their daily work with them have a different
perception of each one.

In this paper, we show an elicitation of factors, based on
previous studies, which can have an influence in the leader’s
evaluation. We conducted a survey with team leaders
representing software companies, where they evaluated their
developers based on those factors. The result was analyzed in
attempt to recognize a pattern in their evaluation. That way, we
identified factors that mostly influence the leaders evaluation
about their developers, and also built a high accuracy classifier
for developers’ importance.

 In the next section, we will present the factors that we will
use to achieve the developers importance classification, and the
studies from where those factors were retrieved. Section III
will present the methodology used to create and conduct a
survey with human subjects. Section IV presents the results,
and Section V discusses those results. Finally, Section VI
provides the conclusion.

II. IMPORTANCE FACTORS

 In this section, factors used to represent concrete evaluation
items for leaders about their developers are presented. Those
factors will be used to define the metrics under the Goal-
Question-Metric (GQM) approach used to design the survey
elaboration.

 Those factors were extracted from several studies available
in the literature and were grouped into categories that present
semantic affinity. Those categories will guide the formulation
of the questions in the GQM model.

TABLE I. ELICITATION OF THE IMPORTANCE FACTORS

Groups Importance factors References

Technical
characteristics

Past experiences

[5], [7], [8],
[10], [13]–[20]

Specialization (expert in some
technology or tool)
Generalization (diversity of skills)

Solve complex problems
Productivity (quantity of deliveries
per month)

Behavioral
characteristics

The main behavior of the developer
when faces a problem [5], [7], [8],

[10], [17], [18],
[19], [21],[22]

Communication with the team
members
Willingness to help a colleague

Individual
characteristics

Creativity

[23],[24]
Entrepreneurship

Pro-activity

Leadership

Commitment to
the team /
company

Planning and organization

[22], [25],[26]
Focus on the costumers

Focus on the results

Time of work in the organization

III. METHODOLOGY

To investigate the current practice of developers’

evaluation, we decided to perform a survey with human
subjects in real software companies to extract the desired
information and analyze it. In this survey, we ask the
respondent firstly to classify a subject developer and then fill
the rest of the survey with the respective developer’s
characteristics. To analyze the obtained data, we decided to
use automatic classification methods to get a clear view of
how those characteristics affect leaders’ classifications, and as
a product we still may have a classifier that can be used to
help leaders gain more insight about their teams’ productivity.

This section is aimed at explaining how the survey was
designed, and show how we conducted our data analysis
obtained from that survey, including the criteria analysis and
the classifier construction.

A. Survey

1) Goal-Question-Metric

We used an approach called Goal Question Metric (GQM)
[27] that helped us define our survey. GQM is a top-down
approach, that is based on the assumption that first, to measure
something, you need to specify goals, from what is possible to
derive questions that define those goals, and then specify the
metrics that need to be collected to answer those questions.

To fulfill the purpose of a goal, we have to determine three
coordinates:

a) Issue: The subject/matter you are dealing with.
b) Object (process): What is the central object of the

analysis.
c) ViewPoint: Under whom perspective the analysis is

being made.

TABLE II. shows our GQM model, with our purpose, the
questions derived from it and the metrics defined to answer
those questions.

For all those factors, the leader used a Likert scale with 5
options, ranging from “Very low” to “Very high”, except from
two factors: “The time of work in the organization”, that
receive a numeric value representing the months that the
developers work in the organization, and “The main behavior
of the developer when faces a problem”, where the leader have
to choose between one of the following options:

 Try to solve on your own (Introspective)
 Search in documentation or books (Introspective)
 Search or ask in Question and Answer sites and

forums (Comunicative)
 Ask helps for the team or leaders (Comunicative)

TABLE II. GOAL QUESTION METRIC

Goal

Purpose Measure

Issue the importance

Object of a developer

Viewpoint under the leader perspective

Question What is the technical-skills level of that developer?

Metrics

Productivity

Past experiences

Specialization (expert in some technology or tool)

Generalization (diversity of skills)

Solve complex problems

Question What is the social-skills level of that developer?

Metrics

The main behavior of the developer when facing a problem
a

Communication with the team members

Willingness to help a colleague

Question
What is the level of these behavior characteristics in the
developer’s profile?

Metrics

Leadership

Creativity

Entrepreneurship

Pro-activity

Question
How is the commitment of the developer with the
company?

Metrics

Planning and organization

Focus on the costumers

Focus on the results

Time of work in the organization
a

a. Factors that had different types of evaluation

2) Survey application

We applied the survey remotely, to give the freedom that
our respondent needs to answer the question. For that, we used
the Google Form tool.

We also, to preserve the companies’ privacy, we did not get
any kind of identification, both for the respondent and the
developer being analyzed. The only asked identification was
the company name from where those evaluations are. This was
necessary for a deeper investigation specific for cases where
companies reach the minimum of 10 developers evaluated.

3) Participant characterization

The survey was applied to software companies that has a
software development environment with a minimum
hierarchical structure where exists the role of leaders, or
managers, or chief engineers, etc. (for future references, we call
that person, the leader). All participant companies work in their
own products (they are not only software factories), but they
vary in size, considering amount of employees (developers),
sector of operation (ERP, Telecom, etc.) and may vary in used
technologies.

The respondents of the survey are team leaders. We
understand that they are the right people to do it because,
unlike the owner or higher level managers, they are close
enough to the daily work, and can judge who are the most
important developers and why, even if they do not use a formal
method to assess it. They should answer one assessment per
developer, i.e., if they evaluated 10 developers to reach the
minimum to have their company individually analyzed, they
answered 10 questionnaires.

B. Feature Selection

In order to conduct the analysis to determine which factors
are the most relevant and have major influence in the leader

evaluation, we use the WEKA[28] tool, an open-source
software for data mining and machine learning.

Many real world problems, like ours, have a lot of features
involved and only some of them are relevant to the target
concept [29], in our case, the importance of a developer. To
solve this issue, we will use a strategy called feature selection,
where we select a subset of features to focus our attention, and
ignore the rest to speed up learning, improve our classifier
quality and achieve the best accuracy of the learning algorithm
[29], [30].

The algorithm that we will use is called
GainRatioAttributeEval, which is a single-attribute evaluator,
that evaluates the attributes one by one independently and then
rank them. Our feature selection will make a choice based on
that ranking. That method does not eliminate the redundant
attributes (only the irrelevant ones), but that is not a problem
because we know all the attributes, and this kind of evaluator
does not need a search method, what makes it very fast.

C. Classification

As a result of our survey, one dataset with several leaders’
evaluations about the developers is generated. In this dataset
machine-learning algorithms are applied to generate a
classifier. The machine learning algorithms need two sets of
data: one for training and one for testing, to verify the accuracy
of the classifier. Fig. 1 shows the schema that best represent
this scenario.

To evaluate the performance of a classifier, we used 10-fold
cross-validation that divided the dataset in 10 equal parts
(called folds), take 9 pieces to use for training and use the last
piece for testing, and then do it 9 more times, always
alternating the piece used for testing, that way, a single fold
will be used 9 times for training and 1 for testing. The result
will be the average of the 10 runs.

Fig. 1. Machine Learning algorithms schema

The used machine-learning algorithms are J48, a tree
classifier, and Naïve Bayes, a bayesian classifier. There is no
strong reason to choose them, but they tend to produce high
quality classifiers in general, whenever possible.

 J48 is a variation of a famous system called C4.5 which is
described by Quinlan [28] that uses decision trees to build a
classifier (WEKA actually let us have a look in the tree
generated with all the weights).

Naïve Bayes is a probability method that has two
assumptions: that the attributes are equally important and that

they are statistically independent (this independence
assumption is never correct but the methods based on it often
works well in practice).

We will also use a third algorithm called
AttributeSelectClassifier, which actually use a method of
feature selection (in our case, Gain Ratio) and an algorithm to
perform the classification (in our case, J48 or Naïve Bayes).
This way to apply feature selection only selects features in the
training set, assuring we get more reliable results.

Finally, to conduct all those analysis, we will use a feature
from WEKA called EXPERIMENTER, that allow us to run the
same experiment more than one time and determine the mean
and standard deviation, to avoid a misleadingly high or low
accuracy based on the attribute selection to the training and
testing sets. It also let us to compare the results of different
algorithms.

IV. RESULTS

Following the steps presented in the previous section, we
show the results of the application of the survey, the feature
selection performed in the dataset generated by the survey and
the application of the classifiers and their accuracy in the
developers’ classification.

A. Survey

Firstly, we present the data achieved with the survey
application. Eleven respondents (leaders) provided 61 answers
(unique developers evaluated). In a few cases, some leaders
work at the same company, but they run different teams. There
were eight companies involved in the collected data.

We asked for the leaders to classify the developer in five
degrees of importance. Those degrees and the distribution of
the 61 developers among them are shown in Fig. 2.

Fig. 2. Distribution of developers per degree of the class

TABLE III. NEW DEVELOPER’S SET OF CLASSES

New class Original class

High importance
Very important

Important

Low importance

Average importance

Little important

Very little important

Analyzing the results of the survey, we came to the
conclusion that the leaders were conservative in some degree to

classify their developers in the lowest classification of
importance.

From this analysis, we decided to group the developers also
in only two classes based on the original five classes, as shown
in TABLE III. in order to understand a more general picture of
the intention of those leaders.

B. Feature Selection

As explained in the Section III.B, we used the algorithm
GainRatio to rank the proposed attributes, in order to proceed
with feature selection. TABLE IV. shows the rank ordered by
the Average merit (the rate that the attribute influences in the
classification) resulted of that algorithm application, using the
original set of classes (five classes) and TABLE V. show the
same view, now using the new set of classes (two classes).

TABLE IV. ATTRIBUTE RANKING (ORIGINAL SET OF 5 CLASSES)

Features Average merit

Capacity of solving complex problems 0.303

Subjective evaluation of the productivity 0.29

Proactivity 0.226

Past experiences 0.211

Generalization (diversity of skills) 0.202

Specialization (expert in some technology or tool) 0.2

Time of work in the organization 0.184

Creativity 0.18

Focus on the results 0.167

Focus on the customer 0.148

Main behavior of the developer 0.14

Communication with the team members 0.137

Planning and organization 0.122

Leadership 0.097

Entrepreneurship 0.087

Willingness to help a colleague 0.084

TABLE V. ATTRIBUTE RANKING (NEW SET OF 2 CLASSES)

Features Average merit

Proactivity 0.168

Subjective evaluation of the productivity 0.156

Capacity of solving complex problems 0.126

Focus on the results 0.112

Past experiences 0.107

Creativity 0.095

Planning and organization 0.09

Generalization (diversity of skills) 0.08

Specialization (expert in some technology or tool) 0.071

Focus on the customer 0.063

Time of work in the organization 0.063

Willingness to help a colleague 0.057

Leadership 0.052

Communication with the team members 0.039

Entrepreneurship 0.015

Main behavior of the developer 0.016

If we choose the three most relevant attributes, or expand
our selection and choose the first ten, we will see that, even in a
different order, they are the same, which supports our decision
to group the class values.

C. Classification (all companies)

Considering that attributes have been ranked, we applied
feature selection technique and use only the most relevant
attributes in the classification. To determine how many features
need to be selected to get a higher performance, we conducted
an exhaustive test (we ran the classifiers with a crescent
numbers of features selected, from 2 to 16) and chose the
configuration with better performance (8 attributes). As we
have two classes, we will show the results for the application of
the J48 and Naïve Bayes for both of them, selecting the 8 first
attributes more relevant and ignoring the rest.

TABLE VI. shows the results for the application of the
algorithms using the first classification schema (5 classes). As
we can see, J48 did not present good performance (close of
50% accuracy). Naïve Bayes had a better performance, but the
accuracy could be considered still low for our purposes.

Now using the reduced set classes, we achieved better
results, as expected, shown in TABLE VII. Again, Naïve
Bayes had a better performance than J48, achieving now a
relevant accuracy (85% of correctness).

TABLE VI. CLASSIFIERS APPLICATION (ORIGINAL SET OF CLASSES)

Algorithm Percent correct

J48 51.88%

Naïve Bayes 61.12%

TABLE VII. CLASSIFIERS APPLICATION (REDUCED NEW SET OF CLASSES)

Algorithm Percent correct

J48 75.88%

Naïve Bayes 85.21%

D. Classification (single company)

In our survey, out of the eight participant companies, 3 of
them achieved the minimum numbers of responses that would
allow an individual analysis of the company. We show the
results of that individual analysis for one company (to preserve
the company privacy, we call it Company A).

Company A evaluated 20 developers, and they presented
reasonable distribution of the developers across the new classes
(TABLE VIII.). TABLE IX. shows the attribute ranking for
this particular company (we can see that there is a few
differences from the relative generic attribute ranking in
TABLE V. , which is discussed in Section V).

In this particular case, we had large difference between J48
and Naïve Bayes in what refers to feature selection. The
selection did not produce a positive effect, and therefore
classification performed better with all the attributes (results
are shown in TABLE X.), and coincidently they both
presented the same accuracy. For this analysis, we considered
only the new classification that proved to improve the accuracy
of the classifiers.

TABLE VIII. DISTRIBUTION OF THE DEVELOPERS ACROSS THE REDUCED
NEW SET OF CLASSES

High importance 10

Low importance 9

TABLE IX. ATTRIBUTE RANKING (INDIVIDUAL COMPANY)

Features Average merit

Proactivity 0.323

Capacity of solving complex problems 0.298

Communication with the team members 0.254

Focus on the results 0.23

Creativity 0.206

Subjective evaluation of the productivity 0.187

Planning and organization 0.191

Specialization (expert in some technology or tool) 0.189

Past experiences 0.173

Entrepreneurship 0.171

Main behavior of the developer 0.172

Willingness to help a colleague 0.156

Focus on the customer 0.158

Leadership 0.137

Generalization (diversity of skills) 0.136

Time of work in the organization 0.123

TABLE X. CLASSIFIERS APPLICATION (INDIVIDUAL COMPANY)

Algorithm Percent correct

J48 (with 2 features) 79.50%

Naive Bayes (with all features) 79.50%

V. DISCUSSION

The first point considered in this discussion is the creation
of the reduced new set classes. As shown in TABLE III. based
on the original set of classes, that had five different classes, we
grouped those 5 classes in only 2, creating a new set of classes
that proved, as expected, to improve the performance of all the
classification algorithms applied. As we could observe in
TABLE IV. and TABLE V. , that this new reduced set of
classes did not change the importance of attributes. So, this
new classification scheme preserves the meaning of the
original classification performed by the leaders because of the
small variation in the attributes position. Moreover, we could
observe that the classifier accuracy is around 80%, which gives
a reasonable level of confidence on the coherence of the impact
of the respective relevant factors on the importance level of
developers.

The top 3 factors, which appear in both rankings, have a
positive correlation with the class, which means that the better
is the factor evaluation, the better is the position in the
developer’s importance classification. One of them is the
productivity of the developer, under the leader perspective,
where productivity represents the amount of work delivered.
This was not a surprise because, as we mentioned in the
beginning of the paper, because this is the classic metric to
evaluate the developer’s performance. On the other hand, the
other two features bring new information to the discussion.

Capacity to solve complex problems lead to the opposite
direction of the classic metric (amount of work delivered),
because it often leads to the production of a lower rate of
outputs (LOC or FP) over inputs (resources, time) consumed.
This is an important qualitative point to consider whenever
awarding high productive developers.

Proactivity is actually a required behavior characteristic of
teams involved in the solution of complex problems instead of
more canonical systems where the tasks are more predictable.
The human resources area can conduct better hiring processes
knowing that their software team leaders evaluated this as a
fundamental requirement for developers.

The classification results evaluating all companies together
with Naïve Bayes provided a classifier with 85.2% accuracy
that can be considered a successful and useful result. The use
of this classifier can help leaders conducting more coherent
analysis of the team profile.

When analyzing an individual company, we noticed some
major changes in some features’ position in the feature ranking
(TABLE IX.). Behavioral characteristics (creativity) and
attributes related to the developer’s commitment with the
company (focus on results) in some cases were more important
than the classic metric of productivity. We credit those
differences to the culture and values of that particular
company. So, different companies may assess the importance
factors with some variation.

Finally, it is important to point out some few threats of the
validity of this study. The limited number of developers and
companies involved in this study may limit the generalization
for other contexts. Nonetheless, we have observed several
intersections in different companies that mitigate part of this
threat. The classification provided by leaders tended to be more
positive, maybe because they would not like to say that they
maintain developers with low importance in their teams. The
reduced classification mitigates part of this threat.

VI. CONCLUSION

In this study, we provided a set of criteria used by the
leaders of IT companies to evaluate their developers, and also
ranked those criteria, finding that capacity of solving complex
problems, quantitative evaluation of productivity and
proactivity were generally the most important factors.

Moreover, we created a high accuracy classifier, which can
help, for example, the human resource managers to look for
candidates that have the necessary needed characteristics and
more potential to become an important part of the team.

A qualitative analysis, considering the culture of the
company and their values, and the application of that classifier
in the collaborators of open-source software repositories, to
validate the results or spot the differences, could be suggestions
of future work.

REFERENCES
[1] S. C. Sampaio, et al, “A Review of Productivity Factors and

Strategies on Software Development,” in 5th Proc. of ICSEA, 2010,
pp. 196–204.

[2] B. W. Boehm, “Improving Software Productivity,” Computer, vol.
20, no. 9, pp. 43–57, 1987.

[3] F. P. Brooks Jr, “No silver bullet-essence and accidents of software
engineering,” IEEE Comput., vol. 20, no. 4, pp. 10–19, 1987.

[4] S. Wagner and M. Ruhe, “A Structured Review of Productivity
Factors in Software Development Technical ,” 2008.

[5] C.Walston and C. Felix, “A method of programming measurement

and estimation,” IBM Syst. J., vol. 16. pp. 54–73, 1977.
[6] W. D. Yu, D. P. Smith, and S. T. Huang, “Software productivity

measurements,” in Proc. of COMPSAC’91, 1991, pp. 558–564.
[7] B. W. Boehm, et al, Software Cost Estimation with Cocomo II,

Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.
[8] P. D. Chatzoglou and L. A. Macaulay, “The importance of human

factors in planning the requirements capture stage of a project,” Intl
Journal of Project Management, vol. 15. pp. 39–53, 1997.

 [10] R. A. Scudder and A. R. Kucic, “Productivity Measures for

Information Systems,” Inf. Manag., v. 20, n. 5, pp. 343–354, 1991.
 [11] H. Sharp, et al, “Models of Motivation in Software Engineering,”

Inf. Softw. Technol., vol. 51, no. 1, pp. 219–233, 2009.
 [12] L. Wallace, M. Keil, and A. Rai, “Understanding Software Project

Risk: A Cluster Analysis,” Inf. Manag., vol. 42, no. 1, pp. 115–125,
2004.

[13] K. D. Maxwell and P. Forselius, “Benchmarking software
development productivity,” Software, IEEE, v. 17, pp. 80–88, 2000.

[14] R. D. Banker, S. M. Datar, and C. F. Kemerer, “A Model to

Evaluate Variables Impacting the Productivity of Software
Maintenance Projects,” Manag. Science, vol. 37. pp. 1–18, 1991.

[15] W. D. Brooks, “Software Technology Payoff: Some Statistical
Evidence,” J. Syst. Softw., vol. 2, no. 1, pp. 3–9, 1981.

[16] G. R. Finnie, G. E. Wittig, and D. I. Petkov, “Prioritizing software
development productivity factors using the analytic hierarchy
process,” J. Syst. Softw., vol. 22. pp. 129–139, 1993.

[17] B. Lakhanpal, “Understanding the factors influencing the

performance of software development groups,” Inf. and Softw.
Tech., v. 35. pp. 468–473, 1993.

[18] J. Vosburgh, et al, “Productivity factors and programming

environments,” in ICSE ’84 Proceedings of the 7th International
Conference on Software Engineering, 1984, pp. 143–152.

[19] C. Wohlin and M. Ahlgren, “Soft factors and their impact on time to
market,” Softw. Qual. J., vol. 4, pp. 189–205, 1995.

[20] C. Wohlin and A. Andrews, “Assessing Project Success Using

Subjective Evaluation Factors,” Softw. Qual. J., v. 9, pp. 43–70,
2001.

 [21] R. H. Rasch, “An Investigation of Factors That Impact Behavioral
Outcomes of Software Engineers,” in Proceedings of the 1991
Conference on SIGCPR, 1991, pp. 38–53.

[22] V. Lalsing, S. Kishnah, and S. Pudaruth, “People Factors in Agile

Software Development and Project Management,” Int. J. Softw.
Eng. Appl., vol. 3, pp. 117–138, 2012.

 [23] R. E. Boyatzis, “Competencies in the 21st century,” J. Manag. Dev.,
vol. 27, no. 1, pp. 5–12, 2008.

[24] A. Shirazi and S. Mortazavi, “Effective management performance a
competency-based perspective,” Int. Rev. Bus. Res. Pap., vol. 5, no.
1, pp. 1–10, 2009.

[25] C. Melo, et al, “Agile Team Perceptions of Productivity Factors,” in
Agile Conference, 2011, pp. 57–66.

[26] M. Coram and S. Bohner, “The impact of agile methods on software

project management,” in Proc. of IEEE ECBS ’05, 2005, pp. 363–

370.
[27] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question

metric approach,” Encycl. Softw. Eng., vol. 2, pp. 528–532, 1994.
[28] Mark Hall, et al (2009); The WEKA Data Mining Software: An

Update; SIGKDD Explorations, Volume 11, Issue 1
[29] K. Kira and L. A. Rendell, “The Feature Selection Problem:

Traditional Methods and a New Algorithm,” in Proc. of the Tenth
National Conference on Artificial Intelligence, 1992, pp. 129–134.

[30] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artif. Intell., vol. 97, no. 1–2, pp. 273–324, Dec. 1997.

