
(DOI reference number:10.18293/SEKE2015-054)

Towards a Metamodel Design Methodology
Experiences from a model transformation metamodel design

Magalhaães, A.P.; Maciel, R.S.P.; Andrade, A.

Science Computer Department

Federal University of Bahia

Salvador, Brazil

anapatriciamgalhaes@gmail.com

{ritasuzana, aline}@dcc.ufba.br

Abstract— Software engineering makes extensive use of models to

provide a better understanding of artifacts produced during

system development. Models are specified in modeling languages

such as UML or using Domain Specific Languages. In this

paradigm of development, metamodeling is essential because it is

usually used to specify the abstract syntax of these languages.

However, the design of metamodels is not a trivial task, it

requires expertise in specific domains, language definition and

abstraction capabilities. This paper provides a guide for

metamodel design towards a metamodel development

methodology based on some lessons learned from metamodel

design experiences.

Keywords- metamodel guide; metamodeling design; metamodel

methodology

I. INTRODUCTION

In software engineering models have been extensively used
to provide a better understanding of the artifacts used in system
development. A model can be seen as a set of elements that
describes a system in a specific purpose [1]. Models are
specified conform to modeling languages such as UML or
Domain Specific Languages (DSL) [17] and usually the
abstract syntax of modeling languages are specified as
metamodels. The design of a metamodel requires expertise in
metamodeling techniques and knowledge in the domain of the
language under construction as well as a good capacity of
abstraction [3].

Our research group had been working on many projects that
require the definition of metamodels [5][6][7]. In all of these
projects we have felt the need for a method to guide us in some
issues such as: how to define a metamodel concepts, how to
guarantee that a metamodel covers all the desired concepts of
the target domain; how to structurally organize the concepts;
and how to validate a metamodel.

Some work has been done in Domain Specific Language
creation [14][18], about strategies to specify structural aspects
of a metamodel [4], and metamodels pattern identification
[3][20]. However, most of them do not focus on aspects such as
concepts identification and metamodel validation. These
aspects are important to guarantee the coverage level of the
metamodel when instantiating models. Furthermore, the
existing works do not guide developers through the entire
development of the metamodel.

This paper presents a proposal to guide developers in
metamodel design based on our experiences in developing
metamodels. This guide puts together the tasks that our group
performed during the development of some metamodels (e.g.
how we selected metamodels concepts) and the lessons learned.
As these tasks started to be performed in a systemically manner
we organized them, step by step, towards a design metamodel
methodology. We aim to systematize the tasks involved in
metamodel development leveraging the quality of the produced
metamodels in terms of coverage of the concept definition,
metamodel detailing (e.g. definitions of concept attributes) and
organization of these concepts (e.g. use of specializations).

As we have recently designed a metamodel for
transformation domain [7], called MMT (MetaModel for
Transformation), we used this to explain the proposed guide.

The rest of this paper is organized as follows: section 2
presents the related works; section 3 presents the proposed
guide using the design of a transformation metamodel as an
example; section 4 presents the validation of the proposed
guide; and section 5 presents our conclusions.

II. RELATED WORKS

Nowadays, there are several approaches to help in
metamodel design. These approaches can be divided into
structural approaches and validation approaches.

In [4] the author gives guidelines for designing metamodels
focusing on structural modeling aspects. These guidelines
comprise rules to better organize the domain concepts (e.g.
how to specialize concepts with similar attributes and
associations). In the same vein [3] [20] propose design patterns
for metamodels. The authors analyze many different
metamodels and identify recurrent problems in the metamodel
structures, for example different concepts with the same
attributes or relationships. Patterns are suggested to solve these
problems e.g. the use of concept generalizations or
specializations. When developing a metamodel, developers
may use patterns to structure the domain concepts.

In [15] the authors propose a methodology for developing
metamodels focusing on simulation based on mathematical
statistics techniques. Therefore, this work has a different field
of study than ours whose principal objective is the definition of
metamodel constructors.

mailto:anapatriciamgalhaes@gmail.com

The work proposed in [26] uses Test-Driven Development
(TDD) to define and validate metamodels. It represents the
requirements of a metamodel as models and uses these models
as test cases to perform validations. From the outcome of these
validations it incrementally defines the metamodel. Differently,
we capture metamodel concepts through examples of models in
the referred domain and from comparison of metamodel
concepts to existing theories (e.g. taxonomy). Our validation
assesses metamodel expressiveness through instantiation of
models.

In [27] the authors use elements of generic programming to
give solutions for the specification of metamodels concerned to
reuse and modularization (e.g. it uses templates to define
patterns and libraries). In a different direction, our work
focuses on the definition of a guide do develop metamodels
based on traditional software development life cycle.

There are works focusing on the creation of Domain
Specific Language. The book [14] lists many definitions of
language, grammar, syntax and semantics, how to implement a
parser, what a semantic model is and other aspects related to
language creation. Similarly, [18] proposes guidelines for
DSLs creation related to concrete syntax (e.g. language
representation using textual or graphic notation, redundancies
control, and so on). In [16] the authors criticize the use of
languages such as MOF on metamodel creation due to the time
consumed on development and propose a DSL to design
metamodels; and [19] proposes the systematic use of examples
to increase quality in domain knowledge definition.

Therefore, these works usually focus on specific aspects of
metamodel design and do not provide an integrated solution
that covers the definition of metamodel concepts, structural
design and validation. Besides this, none of these works
provide a guide for developers on metamodel design tasks. Our
work aims to cover the development of metamodels from
concepts definition to validation. Furthermore, some of these
works can be integrated to our proposal as part of some tasks
(e.g. we used the guidelines proposed by [4] to better organize
the metamodel structural aspects).

III. METAMODEL DESIGN GUIDE

In the absence of a methodology that focuses on metamodel
design we began to define metamodels in our laboratory in an
ad hoc way generating releases incrementally. However, after
some development iterations we observed that the tasks
performed during the metamodel definition were almost the
same. As a result, we started executing them systematically.
We organized these tasks as a guide (specified using SPEM 2.0
metamodel) to help in metamodel development. An overview
of this guide is shown in Fig. 1, it comprises three phases: (i)
Conceptual Modeling; (ii) Design; and (iii) Validation. Each
phase can be executed in many cycles of iteration performing a
set of tasks.

Fig. 2 shows a work flow with the tasks of the Conceptual
Modeling phase: initially the Domain Knowledge and Concepts
Identification tasks are executed to select the relevant concepts
in order to initiate the metamodel definition (Create Metamodel
task). Then, this metamodel can be compared to an existing
theory (Theory Comparison task) and might be reviewed many

times (Metamodel Review task) until the definition of its first
release. When necessary it is also possible to return to Domain
Knowledge task to get some more examples.

Figure 1. Phases and tasks of the Metamodel development guide.

According to SPEM, a task can be performed in a set of
steps and may consume / produce work products. Besides this,
roles are responsible for the tasks. For each task of the guide
we specified all of its elements (steps, input and output work
products and roles). For example, the Domain Knowledge task
comprises two steps that are performed by the Domain
Specialist. This task generates a list of sources of knowledge
(e.g. languages and examples of diagrams from the application
domain) as output that will be used in the next task.

Figure 2. Conceptual Modeling workflow

This guide may be used in several domains. As our
laboratory works with Model Driven Development [2] and
model transformations, we used the design of a metamodel for
the transformation domain as an example to guide explanation.
In section 3(A) we briefly introduce the transformation domain
and then in the following subsections we detail each one of the
guide phases and tasks.

A. Designing a Metamodel for Transformations Domain

Model Driven Development (MDD) is a software
development approach that makes intensive use of models
instead of code. In MDD models are developed at a high
abstraction level and transformed through a transformation
chain until code. At the core of MDD is the transformation
chain which encapsulates the mapping strategies to transform
input into output models. The transformation chain comprises a

set of transformations responsible for automating/semi
automating the MDD software development process [2].

Transformations receive models as input and generate
models or texts as output [8]. Input and output models should
conform to metamodels. The design of a transformation
requires the definition of the relationships among elements of
the source metamodel to elements of the target metamodel. A
transformation itself may be specified as a model, called a
model transformation model [21], which also should conform
to a metamodel. In this scenario metamodels are necessary to:
model the input and output models; develop the transformation
chain (the relationships between source and target metamodel
elements); and to design the model transformation metamodel.

In this paper we show the design of the Metamodel for
Model Transformation (MMT) to illustrate our guide tasks.
MMT is defined to support the development of model
transformations at a high abstraction level. It comprises the
necessary concepts for transformation specification and design
independent of platform through a MDD approach to develop
model transformations. So transformations code can be
generated from the specification of transformation models.

B. Conceptual Modeling Phase

The main goal of the first phase of the guide, Conceptual
Modeling, is to identify the relevant concepts of the domain.
The result of this phase is the preliminary release of the
metamodel. It consists of five tasks: Domain Knowledge;
Concepts Identification; Create Metamodel; Theory
Comparison; and Metamodel Review.

The first task (Domain Knowledge) consists of learning
about the domain. Similar to the strategy used in [3] to identify
metamodeling candidates for patterns, the most popular
languages or some examples of applications designed in the
domain should be selected.

Considering our example, the design of the transformation
metamodel MMT, the languages initially selected were QVT
(query / view / transformation) [10], because this is the OMG
standard to design model transformations and ATL (Atlas
Transformation Language) [11] due to its wide use in MDD
projects to develop transformations.

 In the second task, Concepts Identification, we should
analyze the selected languages / application examples to
identify the commonalities and specificities of the domain. The
common concepts are then selected to be used in the
construction of the metamodel. In the design of the MMT
metamodel we had analyzed the constructors of the ATL and
QVT (Relation) languages to find their commonalities and
specificities. For example, in ATL a transformation is a Module
comprised of Rules. There is one kind of rule, named Matched
Rule, which is automatically executed when a source element
matches a target element. Similarly, in QVT a Transformation
comprises Rules that are specialized in Relational Rules for
declarative definitions. The Relational Rule can be defined as a
Top Relation to indicate that it must hold in order to be
executed. Comparing the concept of transformation in these
two languages, in MMT we defined both the Transformation
and the Relation concepts and for the Relation we added an

attribute (isRequired) that indicates when the Relation must
hold in a transformation execution.

In the third task, Create Metamodel, the previously selected
concepts were organized as classes and their associations,
generating the initial release of the metamodel. Attributes are
also identified for the concepts.

The following task, Theory Comparison, consists of
analyzing transformation theoretical concepts and comparing
them to the concepts used in the initial release of the
metamodel. Different theoretical approaches can be used in
comparison, such as taxonomies and ontologies.

In the design of MMT we used the taxonomy presented in
[9] as a reference to perform the comparison. This taxonomy
classifies the concepts of transformation domain and its
purpose is to address the essential characteristics of model
transformations and existing languages and tools. Table 1
illustrates part of the comparison done.

TABLE I. PART OF THE TAXONOMY COMPARISON

Taxonomy [9] Representation in MMT

Transformation type

(Model transformation

or Program

transformation)

Transformation was specialized in:

M2M Transformation for the model

transformation type;

M2T Transformation for the program

transformation type

Endogenous x

Exogenous

transformation

Endogenous transformation: use the same

metamodel on SourceModel and

TargetModel associations;

Exogenous transformation: SourceModel

and TargetModel are different metamodels

Reuse (generic reuse,

HOT, grouping,

composition,

decomposition)

Transformations are composed of other

transformations (auto association on M2M

transformation). It is possible to reuse

existing transformation (combining them)

to build new ones. It also allows the use of

high order transformation (HOT)

The first column lists the taxonomy concepts and the
second lists how MMT interprets these concepts. Cells in gray
emphasize the concepts of MMT that were modified in order to
suit the taxonomy. For example, in MMT the Transformation
concept was specialized as M2M Transformation and M2T
Transformation to support the two kinds of transformation
modeling present in the taxonomy.

After the comparison, the Metamodel Review task was
performed and some modifications were done in the
metamodel. In our example, MMT, an association was added to
the Transformation concept allowing transformation
composition and reuse and the Transformation concept was
specialized in M2M Transformation and M2T Transformation
as partially shown in Fig. 3.

C. Metamodel Design Phase

The main goal of this phase is to organize the concepts
defined for the initial structure of the metamodel. This phase
comprises four tasks: Structural Design; Constraint Definition;
Functional Test; and metamodel Review. A detailed release of
the metamodel should be generated at the end of this phase.

Figure 3. Part of MMT after conceptual modeling phase

The first task consists of the structural organization of the
metamodel. Many kinds of strategies can be applied in order to
structure the metamodel concepts, such as the use of packages
to aggregate reusable concepts, the definition of general
concepts to represent common attributes, etc. We recommend
the adoption of the strategies proposed by [4]. These strategies
guide metamodel developers in terms of: definition of packages
to enable reuse of concepts; specification of association, e.g.
how to define association member end features; specification of
common attributes; how to create generalizations; definition of
default values; when to use enumeration; and so on.

For the MMT metamodel many strategies from [4] were
used. For example, we first used the strategy Adding
Abstraction Package to group the constructors into two
packages separating them in abstraction levels MMTSpec and
MMTDesign. Then we used the strategies Abstracting Common
Attributes, Abstracting Common Associations and Generalizing
Common Attributes to identify constructors with the same
attributes and/or associations and create a generalization for
these common definitions (e.g. the Model concept was created
to generalize sourceModel and targetModel), we defined the
association end names and defined enumerations (Fig.4).

Figure 4. Part of MMT metamodel after Metamodel Design Phase

With the metamodel concepts defined and well-structured
the next task, Constraints Definition, consists of the
specification of the metamodel constraints using OCL (object
Constraint Language). For the MMT we defined constraints to
specify model / metamodel conformance.

Although we had defined the concepts based on the
available theory and have organized these concepts applying
structural techniques, we had never used MMT to model a
transformation yet. So, the last task of this phase, named
Functional Test, consist in specify an instance of the
metamodel and evaluate the effective use of the defined
concepts and relationships in the instanced metamodel.

For the MMT Functional Test we instantiated the
OO2RDBMS transformation which receives a class model as
input and generates a logical data base model as output.
Besides this we use UML diagrams stereotyped by MMT to
visually model the transformation. The adoption of UML was a
decision based on some premises: UML diagrams are well
known by system developers; UML has a large number of tools
to support the development tasks. The complete specification
can be seen in [7].

After the functional test we observed that MMT concepts
were almost sufficient to model the transformation. However,
we observed a deficiency in the low level design of this
transformation because we specified which elements of the
source metamodel were transformed into elements of the target
metamodel but we did not specify how this transformation
should be done. As a result the metamodel was modified again
to introduce the necessary elements for the lower level
specification (Metamodel Review task).

D. Metamodel Validation Phase

The main goal of this phase is to evaluate the metamodel
expressiveness in terms of coverage of the defined concepts. It
comprises four tasks: Validation Definition; Validation
Execution; Validation Analysis and Metamodel Review. The
first task of this phase, Validation Definition, starts with the
goal and the definition of the research questions. Any guideline
related to software engineering experimentation can be used in
this task, such as the guidelines presented in [23]. In the second
task, the validation is performed (Validation Execution task)
and according to the results (Validation Analysis) the
metamodel can be modified (Metamodel Review task).

Regarding the design of the MMT metamodel we used a
GQM template [22] (Fig. 5) to summarize goal definition and
defined the following questions: (Q1) Do the MMT
constructors sufficiently specify transformations written in
ATL/QVT? (Q2) Is it necessary to add new constructors in
MMT to enable the transformation specification written in
ATL/QVT?

Analyze the MMT constructors
For the purpose of evaluating the metamodel expressiveness
With respect to coverage level
From the perspective of transformation developers
In the context of existing transformation developed in ATL/QVT
languages

Figure 5. Experimental goal according to GQM template

The validation of MMT was executed over five months.
During this period seven transformations that had already been
developed in ATL / QVT language were specified using MMT.
The transformations were selected from web repositories such
as [24]. We performed the experiment in two stages (an initial
test and the main experiment) where some dependent variables
were measured, such as specification completeness and the
amount of used / new constructors. After the validation we
were able to conclude that MMT concepts covered most of the
transformation specification, although some points for
improvement were identified. For example, we observed that
MMT could implement the concept of transformation design
pattern proposed by [13] in order to simplify the specification.

Considering the results obtained, we performed the third
task of the Validation phase, Metamodel Review and modified
the metamodel (e.g, we added the Pattern concept in the
MMTLowDesign).

During Validation phase, developers might observe the
necessity of new attributes, associations or even new concepts
that should be added to the metamodel. Therefore, the
Validation phase can be done iteratively, instantiating the
metamodel in different models, until developers observe that
the amount of modifications decreases considerably. At this
point the metamodel is considered stable enough for use.

IV. METAMODEL DESIGN GUIDE VALIDATION

Methods and processes for validation which involve
humans are very challenging and they should be carried out in
phases. Each phase should be an evolution from the previous
one. So we first decided to evaluate the feasibility of the guide
in driving developers in metamodels design. We followed the
guidelines for software engineering experimentation presented
in [23] and used GQM template [22] to define the goal of the
experiment (Fig. 6).

Analyze feasibility of using the design metamodel guide
For the purpose of improving metamodel development
With respect to metamodel coverage and completeness
From the perspective of metamodel developers
In the context of model driven development

Figure 6. Goal definition according to GQM template

To reach our goal the following questions were defined:
Q1: Does the guide help developers in metamodel definition?
Q2: Does the guide improve the quality of the produced
metamodel? In relation to the quality, we checked the
coverage level of the defined concepts and the metamodel
completeness. Accordingly, the following null/alternative
hypotheses were formulated.

H10/H1: The use of the guide [does not
impact]0/[decreases] the participants difficulty in producing
metamodels.

H20/H2: The use of the guide [does not
impact]0/[improves] the coverage of the concepts of the
metamodels created by developers.

H30/H3: The use of the guide [does not
impact]0/[improves] the completeness of the class diagram
created to represent the metamodel.

To evaluate the proposed guide we performed a controlled
experiment to verify whether the guide improves metamodel
development in building metamodels. Therefore we defined
one independent variable, the modeling method, used to create
the metamodel which varies across two groups: the control
group, which developed metamodel in ad hoc way; and the
guide group, which developed metamodel using our guide. The
dependent variables are the metamodel coverage, the
metamodel completeness and the perceived difficulty in
metamodel development.

The experiment was performed over the period of 4 months
divided in two phases: Initially a pilot study was performed and
then the main experiment. The participants were undergraduate
students (four students in the pilot study) and master degree
students (twelve students in the main experiment). All of them
had knowledge in MDD and process specification using
languages such as SPEM. None of them had knowledge in
metamodel design. Students were arranged in two groups
according to the design method: the control group and the
guide group. The data presented in the rest of this section
relates to the main experiment.

As we had already developed a metamodel for the
definition of MDD processes in our laboratory [12] we used
this work as the problem domain in this experiment. To
perform the experiment students received some examples of
MDD processes and the SPEM specification. For the guide
group we also gave the proposed guide and asked them to
follow it. The experiment comprises three activities (related to
our guide phases): define metamodel concepts, specify
metamodel structure, validate metamodel. Students spent three
days (one day for each activity) to design the metamodel, and
each activity started for all students at the same time. We gave
a maximum of two hours a day to perform each activity and
measure how much time each student spent completing each
task. At the end of the third day the students were supposed to
have a metamodel representing MDD Process domain and an
instantiated model conformed to this metamodel. Finally,
participants answered a questionnaire that collected their
perceptions about the difficulty of performing the tasks.

The produced metamodels were analyzed by our research
group and compared to the reference metamodel, the
metamodel that we had already developed for this domain. This
comparison was based on a previously defined template and
aims to evaluate metamodel coverage and completeness. The
metamodel coverage was defined considering the amount of
concepts identified by developers for the domain and attributes
of each concept. The metamodel completeness was defined
considering the amount of structural aspects specified in
metamodels. We analyze the use of specializations,
associations between concepts, the use of patterns to name
variables, the use of enumerations and so on.

For the first activity, define metamodel concepts, we
observed that the control group (who designed the metamodel
in an ad hoc way) identified 66% of the concepts and the guide
group (who used our guide) identified 87%. Nevertheless, the
second group did it in greater detail (e.g. they also defined the
attributes of each concept) so that the coverage rate was higher
for the group that used our guide. For the second activity,

specify metamodel structure, we observed a big difference
between the metamodels produced by the two groups. In the
first group we noticed the absence of specializations,
enumerations and associations end role definitions which make
these metamodels more verbose and difficult to understand. As
a result the completeness rate for the control group was 45%
while for the guide group it was 81%. The third activity,
validate metamodel, was not so helpful for our evaluation
because all the participants could instantiate a model conforms
to their metamodel (it differs on the level of detail of each
instance according to the coverage/completeness of the
metamodel). Analyzing the perceiving difficulty reported by
the participants we noticed that metamodel design is still a
challenge due to the high level of abstraction needed in
definitions. We did not observed any big difference between
the two groups related to the time spent by each participant on
performing the three tasks in the experiment. However we
observed that the metamodel guide led to metamodels with a
high level of coverage and completeness.

To decrease any threat to validity some strategies were
adopted. With regard to participant knowledge we checked that
they were familiar with the MDD approach (and
metamodeling) as they were students doing an MDD course or
they had already participated in MDD projects. We used
randomization to assign participants to each group and
prevented communication between them. As far as the tasks
were concerned we gave all the participants the same amount
of time to perform them. Besides this the domain might be
another threat so we tried to choose a domain familiar to
software engineers.

Empirical assessment usually takes into account the amount
of data collected from the subjects. However, in the case of a
guide validation it is difficult to involve a great number of
people in case studies. A case study rather than a rigorous
experiment was the most suitable choice. We know that the
study results are limited and do not provide statistical evidence
to support general conclusions. However, we believe that it can
be considered an initial step in future case studies to be
performed in order to observe other aspects.

V. CONCLUSION

This paper reported our experience in metamodel design
through the definition of the MMT metamodel. From this
experience and some expertise in the domain of MDD and
software engineering we defined a guide for metamodel
developers that we believe can be used as a base for a
metamodel development methodology.

Two main difficulties were encountered in this work: the
metamodel conceptual modeling and the validation. To address
the first one we used a taxonomy and specific languages (e.g.
ATL) to identify the relevant concepts of the transformation
domain. Validating a metamodel is quite different from
validating a piece of software. Metamodel validation requires
instantiation examples. As a result alternatives were used in
validation (e.g. reverse engineering techniques) until we
considered the metamodel was stable enough.

We believe that the guide to develop metamodels generated
by our experience can be adapted and evolved to be used in the

design of other kinds of metamodels other than transformation
domains. We are now working on this generalization and on
case study scenarios to achieve this goal.

REFERENCES

[1] S. Mellor, A. Clark, T. Futagami “Model Driven Development” IEEE
Software,2003

[2] T. Stahl, M. Volter, J. Bettin, A. Haase, S. Helsen foreword by K.
Czarnecki “Model-Driven Software Development” Wiley, 2006.

[3] H. Cho, J. Gray “Design Patterns for Metamodels” SPLASH´11
workshops, Portland, Oregon, USA, october, 2011.

[4] A. Vieira, F. Ramalho “Identifying Guidelines for Constructing
Metamodels” In: III Brazilian Workshop on Model-Driven Software
Development, Natal, 2012.

[5] R.S.P. Maciel, R.A. Gomes, A.P. Magalhaes, B. Silva “Supporting
model-driven development using a process-centered software
engineering environment.” ASE, v1, p1, 2013.

[6] A.P. Magalhaes, J. David, R.S.P. Maciel “Modden: an integrated
approach for Model Driven Development and Software Product Line
Processes” in 5th SBCAR, São Paulo, 2011.

[7] A.P. Magalhaes, A. Andrade, R.S.P Maciel “MTP : Model
Transformation Profile” In : 7th SBCARS, Brasilia, 2013.

[8] M. Brambilla, J. Cabot, M. Wimmer “Model-Driven Software
Engineering in Practice” Morgan & Claypool Publishers, 2012.

[9] T. Mens, K. Czarnecki, P. Van Gorp “A Taxonomy of Model
Transformation” Dagstuhl Seminar Proceedings 04101, 2005.

[10] QVT specification - http://www.omg.org/spec/QVT/1.0/PDF/

[11] ATL Project - http://www.eclipse.org/m2m/atl/

[12] Maciel, R. S. P. ; Magalhães, A. P. ; “An Integrated Approach for Model
Driven Process Modeling and Enactment.” In: SBES , Fortaleza, Brazil
2009

[13] Iacob, M.; Steen, M.;Heerink, L. “Reusable Model Transformation
Pattern.” In 3M4EC´08, pages 1-10, 2008.

[14] Fowler, M. “Domain Specific Languages.” Addisson Wesley, 2011.

[15] Kleijnen, J.; Sargent,R. “A methodology for fitting and validating
metamodels in simulation.”European Journal of Operational Research,
pp. 14-29, 2000.

[16] Cuadrado, J.;Molina, J. ”Building Domain-Specific Languages for
Model-Driven Development”, Software IEEE 24.5, pp.48-55, 2007.

[17] Luoma, J.;Kelly, S.;Tolvanen, J. “Defining Domain-specific modeling
languages: collect experiences.” 4th Workshop on DSM, 2004.

[18] Karsai, G.Krahn, H.; Pinkernell, C.; Rumpe, B.;Shindler, M.; Volkel, S.
“Design Guidelines for Domain Specific Languages.”In proceedings of
Domain-Specific Modeling, 2009

[19] Bak, K.; Zayan, D.;Czarnecki, K.; Wasowski, A.; Rayside, D.
“Example-Driven Modeling. Model=Abstraction+Example.” ICSE,
2013, San Francisco, USA.

[20] Mernik, M.Sloane, A. “When and how to develop Domain Specific
Languages.” ACM Computing Surveys, Vol 37, Nr.4, pp.316-344, 2005.

[21] Bézivin, Jean et al. “Model Transformations? Transformation Models?”
Springer-Verlag Berlin Heidelberg, 2006

[22] Solingen, R. Basili, V.;Caldiera,G.; Rombach, H.D. Goal Question
Metric (GQM) Approach. John Wiley & Sons. Inc., 2002.

[23] Wohlin, C. Aurum, A. Towards a decision-making structure for
selecting a research design in empirical software Engineering. Empir
Software Eng DOI 10.1007/s 10664-014-9319-7. Springer, 2014

[24] SimpleGT, available in “http://soft.vub.ac.be/viewvc/SimpleGT/

[25] Mellor,S.; Clark, A.; Futagami, T. “Model Driven Development” IEEE
Software,2003

[26] Cicchetti A.; Ruscio, D.;Kolovos, D.S.; Pierantonio, A. A Test-driven
approach for metamodel development. Chapter of the book Emerging
Technologies for Evolution and Maintenance of Software Models, p.
319-342, IGI Global, 2012.

[27] Lara, J.; Guerra, E. Generic meta-modelling concepts, templates and
mixin layers. Models, 2010.

http://www.omg.org/spec/QVT/1.0/PDF/
http://www.eclipse.org/m2m/atl/
http://lattes.cnpq.br/9035802389892301

