
DOI reference number: 10.18293/SEKE2015-040

CQV-UML Tool: a tool for managing the impact of

change on UML models

Dhikra Kchaou
Mir@cl Laboratory,

 University Of Sfax, Sfax, Tunisia

Dhikra.kchaou@fsegs.rnu.tn

Nadia Bouassida
Mir@cl Laboratory,

 University Of Sfax, Sfax, Tunisia

Nadia.Bouassida@isimsf.rnu.tn

Hanêne Ben-Abdallah
King Abdulaziz University,

Jeddah, KSA

hbenabdallah@kau.edu.sa

Abstract— An automated change impact analysis and

management approach is vital to handle the complexity of

adapting software during its evolution. Such an approach

reduces the maintenance cost and provides for adequate

decision making when confronted with the choice of

accepting or ignoring changes. This paper presents a change

impact management approach between UML models. It

verifies the consistency and the quality of interdependent

diagrams after a change is handled. In addition, it calculates

the effort required in managing any change and displays a

report indicating to the designer all necessary modifications

to keep the design coherent. The approach is supported by

a toolset, called CQV-UML tool.

Keywords—change impact; consistency; quality; effort estimation

I. INTRODUCTION

With the continuous evolution of software systems, it comes
the need to automate the process of analysing and managing the
change impact both on the necessary model updates and quality.
Change impact analysis and management of interdependent
models while keeping their quality is necessary.

A change impact analysis (CIA) method must firstly
identify changes made by the designer. Such precise definition
provides for the identification of the change operations and the
elements affected directly by this change. Secondly, a CIA
method must provide for the needed traceability between the
different elements in order to analyse the impact of a change not
only in the changed model but also between the interdependent
models. Based on the identified change and the traceability
between elements, the violated consistencies must be detected
using a set of consistency rules. The objective of a change
impact management approach should cover not only the
detection of inconsistencies, but also the ability to provide for a
means to estimate both the effort required to handle a change
and its impacts on the quality of the various models. A tool that
automates this process while taking into account the quality of
the changed models and the effort needed represents a success
factor of a change management method.

Several change impact management methods for UML
diagrams have been implemented (e.g., [1], [3], [5]). They tried
to assist the designer in correcting inconsistencies caused by
change. However, these techniques do not evaluate the quality
of UML diagrams after evolution. In addition, the effort
estimation is not treated.

In this paper, we present the tool support CQV-UML tool to
automate the impact of changes on UML models. The tool aims
to produce a report with warnings about every change that may
deteriorate the quality of the model, recommendations about
how to make the design consistent, and the number of
corrections required to ensure the consistency of all the models.
The designer can use this report to decide about which changes
should be rethought and/or canceled. Moreover, assisted by a
set of quality rules based on metrics, the designer would have
an important support in producing a good quality design, which
is an essential determinant of the success of the software
project.

The remainder of the paper is organized as follows. Section
2 presents an overview of the existing change impact analysis
tools. Section 3 presents our change impact analysis and
management approach. Section 4 illustrates the usage of the
tool through the T-Rot example. Section 5 summarizes the
paper and outlines future work.

II. EXISTING UML CHANGE IMPACT ANALYSIS TOOLS

An idea that all researchers involved in change impact
analysis agree on is that a manual change impact analysis is too
expensive and error prone and that tool support is necessary. In
this section, we briefly present change impact analysis tools that
have been proposed in the literature. Essentially, we are
interested in tools for change impact management applied to
UML models.

For instance, Briand et al., [1] propose the iACMTool which
manage the change between class, sequence and state chart
diagrams by identifying specific change propagation rules for
all types of changes. In order to assist the designer to decide
about the change, they propose a measure of distance between
a changed element and potentially impacted elements to
prioritize the results of impact analysis. However, due to the
large number of UML model element types and the large
number of change types, the number of impact analysis rules is
quite large which makes the process of change impact not easy
to implement.

Egyed [3] extends the tool in order to assist the designer in
discovering unintentional side effects, locating choices for
fixing inconsistencies, and then in changing the design model.
In fact, for a given inconsistency and for each element in the
scope elements, the tool enumerates a list of choices to correct
the change. Since there is a large number of choices, the author
tries to reduce this list based on the reason of the inconsistency.
However, the number of choices as well as the choices

themselves may be ambiguous for the designer especially with
for large diagrams.

Keller at al., [5] present an inconsistency resolution
framework implemented as an Eclipse plug-in. The tool takes
as input one type of change applied to one or more UML model
element and outputs a set of impacted elements. In fact, for a
given changed element, the tool implements seven impact
analysis rules suitable for seven change types. The tool does not
give any support to help the designer to correct the change.

Overall, existing works try to detect inconsistencies caused
by changes in order to ensure the consistency within and inter
UML diagrams. However, they do not offer any assistance to
correct detected inconsistencies and to preserve the quality after
the change. In addition, they do not support the generation of
the corrected diagrams.

III. THE CHANGE IMPACT ANALYSIS AND MANAGEMENT

APPROACH

Our approach allows the identification and measurement of
potential side effects resulting from requirement/design
changes. Its first originality is that it provides traceability
between documented use case, class and sequence diagrams.
The second originality of our approach is that, besides verifying
the consistency of changed UML diagrams, it verifies their
quality using a set of metric based quality rules. The third
originality is that it measures the effort needed to manage
inconsistencies in order to assist the designer in deciding about
which changes should be rethought and/or canceled. The fourth
originality is that it is supported by a tool that automates all
steps and that automatically generates a new version of the
corrected diagrams after resolving the inconsistencies caused
by different changes.

A change impact analysis technique needs first of all a way
to specify changes. Thus, in a previous work [4], we defined a
MOF [2] based change meta-model that covers all change types
at a high level of abstraction. Being MOF-based, our change
meta-model defines all possible changes affecting the elements
independently of a particular modeling language. In addition, it
can be extended and adapted to define changes that affect any
MOF-based model and, in particular, UML models.

The second hurdle that change impact analysis and
management faces is the semantic and structural traceability
among the numerous elements of the different diagrams. For
this purpose, we propose a graph concept, called "model
dependency graph" that encodes the requirements (use case)
and design (class, sequence) diagrams in an integrated way. The
encoding uses the semantic traceability results and explicitly
represents the syntactic relationships among the diagrams'
elements. The model dependency graph provides for the needed
traceability to analyze systematically the impact of a change on
the consistency of the diagrams.

Inspired from the work of Lallchandani et al., [6] for static
slicing of UML models, the model dependency graph (MDG)
is constructed by transforming the use case, class and sequence
diagrams to graphs. In particular, our adaptation accounts for
the association relationships (not treated by Lallchandani et al.,
[6]). In addition, we integrated the documented use case

diagram to the MDG which is also not treated in by
Lallchandani et al., [6].

In our approach, the UML class diagram is transformed into
a Class Dependency Graph (CDG) and every UML sequence
diagram is transformed into a Sequence Dependency Graph
(SDG). Every UML use case diagram is transformed into a Use
Case Dependency Graph (UCDG) based on a structured use
case description [7]. To get all dependencies among the various
diagrams, the UCDG, CDGs and SDGs are merged into a
Model Dependency Graph (MDG).

To trace the change impact from the use case diagram across
the class and sequence diagrams, the CDG and SDGs are firstly
integrated into a single graph. The constructed MDG must be
completed with the requirements diagram, i.e., the documented
use case diagram. For this, we need to identify the
correspondence among the ordered actions (specified in the use
case scenarios) and the messages in the sequence diagrams. For
this purpose, we use an information retrieval technique: term
frequency – inverse document frequency (TF-Idf) [8] to
measure the cosine similarity measure [12] in order to
determine the most resembling message in the sequence
diagram to the query (i.e., action in the scenario) and
consequently to a use case. In our case, documents and queries
contain the set of grammatical units that compose a
message/action in SD/UC added to their synonyms extracted
from WordNet. The calculus of the different weights for the
terms is followed by the calculation of a similarity measure
which is the cosine.

After the cosine similarity calculation, the documents (i.e. the
actions in the UCs) that are similar to a query (i.e. messages in
SD) are linked together in order to construct the MDG. Note
that after this step, a validation step may be needed by the
designer since the results of the cosine similarity computation
may return several ranked possibilities. The designer should
validate/select one value that better fits his situation.

Once the change is detected and the traceability is
established, the consistency of changed diagrams is verified
based on a set of consistency rules. As an example of an inter-
diagram consistency rule, each operation in SD must be defined
in the receiver’s class in CD. A change may affect not only the
consistency of UML diagrams, but also their quality. Thus, in
addition to the preservation of the consistency of UML
diagrams, their quality must be evaluated and preserved after a
change is introduced. For instance, the deletion of a class that
had many important relationships with other classes, or that
participates in a design pattern [10] depreciates the quality of
the class diagram. The quality of software can be evaluated
using several metrics (cf., [9]) interpreted through a set of
thresholds (cf., [11]). In our approach, these metrics and their
thresholds are used to evaluate and/or to predict the quality
effects of a change in order to propose a set of recommendations
to the designer. For this objective, we propose a set of quality
rules. To preserve the intra-diagram quality after a change, we
calculate the CK metrics suite [9] before and after every change,
and based on their thresholds [11], we verify a set of quality
rules and we inform the designer about any violation. On the
other hand, in order to approximate the effort needed for change
impact management, we propose to calculate the number of

required modifications (NRM) necessary when correcting the
inconsistencies caused by an intra/inter diagram changes. The
NRM sums up the number of update/change operations needed
to correct a violated consistency rule.

To calculate NRM, we propose the new intra/inter diagram
metrics shown in Table 1. Note that the proposed thresholds for
these metrics will be defined using an empirical study in a
future work. For a given change, the NRM is the sum of the
metrics values, concerned by the change.

TABLE 1: METRICS USED TO MEASURE THE INTRA/INTER-DIAGRAM QUALITY

Metrics Definitions

In
tr

a
-d

ia
g
r
a
m

m
e
tr

ic
s

NAt/Op
Number of times an attribute (and operation) of a class

is used (called) in an operation.

NAtPr
Number of times an attribute is used as a parameter in an
operation.

NM2Ob Number of messages between two objects.

In
te

r
-d

ia
g
r
a
m

m
e
tr

ic
s

NCSD Number of times a class is used as an object in SDs.

NATSD Number of times an attribute is used in SDs.

NOpSD
Number of times an operation is used as a message in

SDs.

IV. CQV-UML TOOL: A TOOL SUPPORT FOR CHANGE

MANAGEMENT

To implement our change impact management approach,
we have developed a tool named CQV-UML Tool: a
Consistency and Quality Verification tool for UML diagrams.

A. Functional architecture

The principal activities performed by our tool are the change
detection, the consistency verification and quality verification.
The tool takes as input a set of UML models versions
corresponding to the original and changed diagrams modelled
using the CASE Tool: ARGOUML. The first step transforms
the XMI files corresponding to the design diagrams into XML.
The transformation is performed thanks to XSLT to obtain
reduced representations using the API JDOM. The aim of this
step is to eliminate all superfluous information, that is specific
to the CASE tool ARGOUML. Secondly, the list of changes is
recorded and displayed to the designer. Afterwards, the cosine
similarity measure is calculated and our graph based technique
(MDG) is implemented in order to establish the traceability
between the interdependent diagrams. Based on the achieved
traceability, the set of violated consistency and quality rules
corresponding to each change type is displayed to the designer.
Finally, after accepting the proposed correction, the corrected
diagram is generated.

B. CQV-UML tool application

To illustrate the various functionalities of the CQV-UML
Tool including the consistency and quality verification of the
different diagrams after evolution, let us consider a case study
where UML was used to develop a system for autonomous
navigation by the intelligent service robot, T-Rot. The use case
diagram comprises two use cases (Figure 1): “Navigation” and
“Obstacle Avoidance”. The “Navigation” use case textual
description is presented in Table 2. The sequence diagram SD
corresponding to the Navigation use case is presented in Figure

2. The class diagram CD of this example is presented in Figure
3.

Figure 1. Main use-case diagram of T-Rot system

Figure 2. SD1: the sequence diagram of the UC1 “Navigation”

Figure 3. The Robot system class diagram CD

The first step in our approach consists in detecting changes
for each UML diagram. The interface 1 of Figure 4 shows the
detected changes in the class diagram. By clicking on the
change (delete the Start() operation from the WheelActuator
class in the CD), the list of violated consistency rules in the top-
right of the screen shot are displayed. In fact, the change
violates the consistency rule: Each operation in SD must be
defined in the receiver’s class in CD since the deleted start()
operation exists in the SD1 between the Navigationcontrol
object and the WheelActuator object. This inconsistency is
detected thanks to the traceability obtained through the MDG.
The CQV-UML tool recommends the designer to correct this
inconsistency by deleting the message start() in SD1
corresponding to the deleted operation or undo the change. To
take the appropriate decision, the CQV-UML tool calculates the
number of required modification NRM needed to correct the
inconsistency. The NRM is calculated based on the metric
NOpSD: number of times the operation is used as a message in
SDs. The start() operation exist one time in the SD1, so, the
designer has one delete to do.

To manage the second change, the CQV-UML tool
calculates the similarity measure between the deleted action

commandlinecommandline NavigationcontrolNavigationcontrol WheelactuatorWheelactuator NavigationtimerNavigationtimer DestinationDestination

enterdestination()

start()

started

starttimer()

checkdestination()

yes

stoptimer()

notifystoppedmoving

stop

NSa3 in the Navigation use case and the list of messages in the
sequence diagram corresponding to the Navigation use case.
The interface 3 of Figure 4 presents the similarity results which
show that the NSa3 action corresponds to the
notifytostopmoving message in SD1. The system informs the
designer that the deleted action exists as a message in SD and
as an operation in CD and proposes to delete them.

TABLE2. “NAVIGATION” USE CASE DESCRIPTION (UC1)

The quality verification in the interface 2 of Figure 4 shows
that the deletion outputsto association from CD violates a
quality rule. In fact, the WheelActuator class becomes isolated.
The tool recommends to the designer to add an association or
to cancel the change.

When the designer accepts the proposed corrections, the
affected diagrams are modified and displayed to the designer.
The interface 4 of Figure 4 shows the generation of the
corrected class diagram.

V. CONCLUSION

This paper introduced an approach for change impact
management and its associated CQV-UML tool. The proposed
approach consists in managing the impact of changes affecting
elements in UML diagrams essentially use case, class and
sequence diagrams. The MDG graph is used to model the inter-

dependencies between the different diagram elements and as a
consequence to trace the impact of the change.

We are currently examining how to evaluate the proposed
approach on open-source systems and comparing the results of
our experiments with other existing approaches.

REFERENCES

[1] L. C. Briand, Labiche, Y. O'Sullivan, L. Impact Analysis and Change
Management of UML Models‖. In Proceedings of the International
Conference on Software Maintenance, 2003, pp. 276-280.

[2] OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1,
OMG Document Number: formal/2011-08-07,
http://www.omg.org/spec/MOF/2.4.1/PDF.

[3] A. Egyed, Fixing Inconsistencies in UML Design Models. Proceedings of
the 29th International Conference on Software Engineering, 2007, pp.
292-301.

[4] D. Kchaou, N. Bouassida, H. Ben-Abdallah, A MOF-based change meta-
model”, Proceedings of the International Arab Conference on Information
Technology, CCIS, Zarqa, Jordon, 2012.

[5] A. Keller, S. Demeyer, Change Impact Analysis for UML Model
Maintenance‖. Book chapter: Emerging Technologies for the Evolution
and Maintenance of Software Models, 2012, pp. 32-56.

[6] J.T. Lallchandani, R. Mall, Static Slicing of UML Architectural Models,
Journal of object technology, Vol. 8, No. 1, 2009, pp. 159-188.

[7] M. Ali, H. Ben-Abdallah, F. Gargouri, Towards a Validation Approach of
UP Conceptual Models, In : Proceeding of Consistency in Model Driven
Engineering in European Conference on Model Driven Architecture -
Foundations and Applications Nuremberg, Germany, 2005, pp. 143-154.

[8] H. Wu and R. Luk and K. Wong and K. Kwok. "Interpreting TF-IDF term
weights as making relevance decisions". ACM Transactions on
Information Systems, 26 (3). 2008.

[9] S.R. Chidamber, C.F. Kemerer, Towards a metrics suite for object
oriented design. In Conference proceedings of Object-oriented
programming systems, languages, and applications, 1991, pp. 197-211.

[10] Bouassida N., Ben-Abdallah, Issaoui I. Evaluation of an automated multi-
phase approach for pattern discovery ", International Journal of Software
Engineering and Knowledge Engineering, World Scientic, Vol 23, N10,
pp 1367-1398 (2013).

[11] E. Chandra, P. Linda, Class Break Point Determination Using CK Metrics
Thresholds‖, Global Journal of Computer Science and Technology, Vol.
10, 14, 2010, pp. 73-77.

[12] A. Singhal, Modern Information Retrieval: A Brief Overview. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering
24, 2013, pp. 35–43.

Figure 4: Snapshots of the CQVUML tool

Use case Navigation

Actor Commander

Precondition The robot system has the grid map and the current position.

PostCondition The robot system is at the destination and waiting for the

next destination

Extension

Point

[obstacles are recognized], use case « Obstacle Avoidance
»

Normal

Scenario NS

<NSa1><The user > <enters a destination >

<NSa2><The system> < commands the wheel actuator to
start moving to the destination >

< NSa3>< The wheel actuator > < notifies the system that

it has started moving >
< NSa4>< The system> <determines that it arrives at the

destination>

< NSa5>< The wheel actuator><notifies the system that it
has stopped moving >

Alternatives

Scenario AS

< If the system doesn’t arrive at the destination >

<AS1a1> <the system> < keeps moving >

