
Automatic Detection of Parameter Shielding for Test Case Generation∗

Jingjian Lin1,2, Jun Yan1, and Jifeng Xuan3,4

1Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China

3State Key Laboratory of Software Engineering, Wuhan University, China
4INRIA Lille - Nord Europe, France

Email: {linjingjian12,yanjun}@otcaix.iscas.ac.cn, jifeng.xuan@inria.fr

Abstract

Parameter shielding refers to the situation that one test
parameter disables others in test execution. The quality of
test case generation techniques is limited by the wide exis-
tence of parameter shielding. It is challenging to automat-
ically find out conditions that cause the parameter shield-
ing. This paper presents a novel approach for exploring the
shielding conditions of test parameters. Our approach exe-
cutes test inputs and collects runtime information of execu-
tion as features of test inputs. Then, a clustering algorithm
is used to group test inputs with similar runtime informa-
tion while a decision tree algorithm is built to extract the
conditions in the groups. Finally, our approach identifies
the shielding conditions based on the decision tree. Experi-
ments on seven programs show that our approach can effec-
tively detect the parameter shielding and the related condi-
tions.

Keywords: black-box testing, parameter shielding, clus-
tering, decision tree

1. Introduction

Software companies employ testing techniques as one
indispensable step for quality assurance. A Software Un-
der Test (SUT) has multiple input parameters and each pa-
rameter may lead to a large input space. In practice, it is
expensive to verify the correctness of SUT using exhaustive
testing [1], [2]. A variety of test case generation techniques
have been proposed to reduce the scale of test cases, such
as equivalence partitioning, boundary-value analysis, and
category-partition methods [3].

∗Corresponding author: Jifeng Xuan. This work is supported by Na-
tional Natural Science Foundation of China (under grant No. 91118007)
and INRIA Postdoctoral Research Fellowship.
DOI reference number: 10.18293/SEKE2105-039

In test case generation for a SUT with more than one
parameter, one parameter may be shielded by others. Pa-
rameter shielding refers to the situation that one parameter
disables other parameters in the SUT [4]. For example, if
an application opens a modal child window, all operations
to the parent window will be shielded; for many command-
line tools in Linux system, the parameter --help shields
all the other parameters. Parameter shielding results in the
redundancy and low quality for test cases generation. For
example, in combinatorial testing with Mixed Covering Ar-
ray (MCA), parameter shielding will make test case gen-
eration fail in exposing potential errors, which should be
detected if no parameter shielding exists [4]. Existing work
by Chen et al. [4] focuses on how to generate combinatorial
test cases under the scenario of shielding conditions. How-
ever, to the best of our knowledge, how to automatically
detect the parameter shielding has been unexplored yet.

We propose an approach to automatic parameter shield-
ing detection in this paper. This approach generates test
inputs and extracts function call information via dynamic
analysis tools. Cluster analysis groups inputs that show the
similar function calls while a decision tree algorithm iden-
tifies constraints of parameters in clusters. By analyzing the
result of the decision tree, we find out whether there exists
parameter shielding and extract the condition that causes the
parameter shielding. Experiments show that our approach
can effectively detect the parameter shielding and the relat-
ed conditions.

2. Background

2.1. Parameter shielding

Parameter shielding widely occurs in the case that sev-
eral parameters control the same or relevant program logics
[4]. However, in automatic testing, it is hard to be aware of

(DOI Reference Number: 10.18293/SEKE2015-039)



Table 1: 2-way test cases of the
example

test index a b c
t1 1 1 1
t2 1 2 2
t3 2 1 2
t4 2 2 1

Table 2: 2-way test cases under
parameter shielding

test index a b c
t1 1 1 1
t2 1 2 2
t3 2 1 #
t4 2 2 #

parameter shielding before test case generation. This may
fail to satisfy the requirements of a specific test case gen-
eration technique. Consider the following scenario of com-
binatorial testing, a SUT has three parameters a, b, and c
with valid values of {1,2}. Table 1 shows the test cases gen-
erated by 2-way testing. The technique, t-way testing, aims
to cover every possible combination value of no more than
t parameters [4], [1].

Assume that parameter c is shielded by a: when a==2,
c is disabled. Then test cases in Table 1 can be transformed
into cases in Table 2 (‘#’ means the parameter is disabled).
We find that test cases in Table 2 have not covered the fol-
lowing value pairs of b and c: 〈2, 1〉 and 〈1, 2〉, which are
originally covered in Table 1. In other words, when param-
eter a shields c, test cases cannot meet the requirements
of 2-way testing. Therefore, it is important to find out the
potential parameter shielding before test case generation.

2.2. Data mining

Data mining, aims to extract implicit, previously un-
known, and potentially useful information from databases
[5]. It is actually the process of finding the hidden data pat-
tern of the databases.

In this paper, we leverage clustering and classification
techniques to analyze runtime logs. The goal of clustering is
to discover similarities and differences among data patterns
in order to derive useful conclusions about similar clusters
[6]. According to a specific similarity measure, a data set is
divided into clusters; such division ensures that data inside
one cluster have a higher similarity than those in different
clusters [7].

The goal of classification is to predict categorical label-
s, such as “safe” or “risky” for the loan application data,
“yes” or “no” for marketing data [7]. Decision trees are a
typical family of classifiers on a target class in the form of
a tree structure. One main advantage of decision trees is to
produce a set of rules, which represents the branches and
nodes of the tree; such rules can be easily interpreted into
condition combinations, comparing with other basic classi-
fication techniques [8].

Input generation

Runtime 
information 

recording

Feature extraction

Clustering Classification

Decision 
tree

Shielding analysis

loop

Cluster

SUT

Figure 1: Process of parameter shielding detection

3. Approach

We propose an approach to automatically detecting pa-
rameter shielding. Figure 1 shows the process of our ap-
proach, which consists of six steps.

3.1 Input generation

In general, parameter shielding occurs when a parameter
value dominates a module or several parameters are sensi-
tive to the parameter orders. In our work, to detect parame-
ter shielding, we extract parameters in the same module and
generate test inputs for further test execution.

First, we generate test inputs, i.e., input vectors of actual
values for parameters, for every single parameter. We can
generate all values in the input space for parameters with s-
mall input space. For parameters with large input space, we
choose parameter values that generate different runtime be-
haviors, such that these values can be divided into different
clusters by clustering analysis. Values can be selected by e-
quivalence partitioning, boundary-value analysis etc. Based
on these selected values, we calculate all combination and
permutations of parameters. So the number of generated

test inputs is n! ×
n∏

i=1

vi, where n denotes the number of

parameters and vi denotes the number of values for the ith
parameter.

3.2. Runtime recording and feature extraction

We execute all generated inputs and extract their runtime
information. Using dynamic analysis tools such as Valgrind
[9],1 we are able to collect running information of SUT-
s, including the orders of function calls and the number of
function calls. Then, function call information is stored in
logs for feature extraction.

1http://valgrind.org/



We describe the two kinds of features in our experiments
as follows. The order of function calls refers to the index of
a function such as bar in the call chain of another function
such as foo during the test execution. For example, if foo
calls 10 functions in one execution and bar is the second
function called by foo, then the order of bar called by
foo is 2. Similarly, the number of function calls refers to
the count of a function such as bar called by foo during
execution. For example, if foo calls bar nine times, then
number of function calls of bar called by foo is 9.

1 def gen_func_call_pair(logs):
2 call_dict = dict()
3 for func in calling functions:
4 for subfunc in functions called by func:
5 if not call_dict[func]:
6 call_dict[func] = set()
7 call_dict[func].add(subfunc)
8 return call_dict
9 def gen_numeric(call_dict, log):

10 features = []
11 for func in call_dict:
12 for subfunc in call_dict[func]:
13 if subfunc is called by func in log:
14 feature func:subfunc = its calling order
15 else:
16 feature func:subfunc = -1
17 features.append(func:subfunc)
18 return features
19 def gen_featMat(logs):
20 call_dict = gen_func_call_pair(logs)
21 for log in logs:
22 features = gen_numeric(call_dict, log)
23 print features to file

Listing 1: Feature extraction of the orders of function calls

The order of function calls can be converted to numeric
features by the python-like pseudo code in Listing 1. Func-
tion gen func call pair scans logs that are record by
dynamic analysis tools and finds out the collection of func-
tions which called by the same function. Then we can ob-
tain all function call pairs. For example, funcA:funcB
means the order of funcB in the collection of function-
s which are called by funcA. Function gen numeric is
used for generating the number value of specific features.
It scans logs that record calling information of a specif-
ic input and calculates the feature values. Note that some
call pairs only occurs in some specific inputs. Thus, we
assign a specific value such as -1 to values of call pairs
which are not occurred. Function gen featMat calls
gen func call pair and gen numeric to generate
all values of features and write them to file. The feature
extraction for the number of function calls is similar to the
feature extraction for the order of function calls.

3.3. Clustering and decision tree algorithms

Based on the extracted features, we apply clustering al-
gorithms based on numeric distances to detect similar test
inputs [7]. Clustering, such as k-means and EM algorithm-
s [6], is used in our approach for grouping inputs which

generate similar program behaviors together in a cluster. In
our work, the k-means algorithm is used for clustering in
the implementation. Since we select values that conduc-
t different program behaviors, the inputs will be grouped
into different clusters. Recall the example in Table 1, as-
sume that all parameter values lead to different program be-
haviors. Then case 〈2, 1, 1〉 and 〈2, 1, 2〉 will be grouped
into different cluster. If c is disabled when a==2, then
case 〈2, 1, 1〉 and 〈2, 1, 2〉 will be grouped in the same clus-
ter, called cluster1. This cluster (cluster1) is deter-
mined by value of a and b only, meanwhile other clusters
are determined by values of all parameters. We can find out
the shielding condition by analyzing the clustering result.

To further “understand” clusters, we employ a deci-
sion tree algorithm to find out the conditions for parame-
ter shielding. Given clusters as well as their test inputs, we
treat a cluster, which a test input belongs to, as the label of
the test input. Then we have a data set of labeled test in-
puts. Based on this data set, we train a decision tree model
to build the relationship between features and their labels
(clusters). Decision trees are a typical kind of classification
algorithms, for example, ID3, C4.5, and CART [10]. C4.5
is used in our implementation.

3.4. Shielding analysis

When a parameter is shielded by others, the parameter
value will not affect the program behavior. In other words,
when a parameter is disabled, runtime behaviors of the SUT
are only determined by other parameters.

We can find the shielded parameter from decision tree
by the following steps: first, in a decision tree, we merge
paths (conditions) that come from the same cluster; second,
we find out parameters that do not exist in the conditions
of clusters. These parameters are the shielded parameters
while the identified conditions could be the shielding con-
ditions.

4. Experiments

Experiments are conducted on programs of different
types and scales. Table 3 lists seven programs in our experi-
ments. The experiments are implemented with open-source
data mining platforms, Weka.2

4.1 Program with enumeration inputs

Taking program ln as an example, three parameters -s,
-P, and -L are considered in the experiment. Parameter
-s is used for making symbolic links instead of hard links;
parameter -P is used for changing hard links directly into
symbolic links; and parameter -L is for changing hard links
into symbolic link references.

2http://www.cs.waikato.ac.nz/ml/weka/



Table 3: Seven SUTs in experiments

Name #Parameter #Feature #Input Kloc Description
1 ls 3 366 12 5.0 print a list of the current directory
2 cp 3 318 4 1.2 copy files or directories
3 ln 3 56 12 0.6 establish link to a file or directory
4 head 2 82 800 1.0 display the first few lines of a file
5 tail 2 108 800 2.3 display the last few lines of a file
6 bzip2 2 182 4 7.3 a compression program
7 ffmpeg 2 6358 200 892.5 solution to audio and video processing

Table 4 shows the classification result of ln. We can
find out that test inputs of -L and -PL belong to the same
cluster (cluster1), while inputs of -P and -LP belongs
to another cluster (cluster2). We can infer that when -P
is in front of -L, program behaviors are almost the same
as input -L. Thus, we conclude that -P is shielded if -P
is listed in front of -L. Similarly, -L is shielded when -L
is in front of -P. Meanwhile, all inputs that contain the pa-
rameter -s belong to the same cluster (cluster0), so we
can conclude that -P and -L are shielded when -s exists in
the inputs. We confirm the above conclusions by manually
verification.

4.2 Program with integer inputs

We discuss shielding of integer inputs in this subsection.
Figure 2 shows the decision tree of parameter -vframes
〈number〉 and -r 〈fps〉 of ffmpeg. Parameter -r
set the number of video frames to output and parameter
-vframes set frame rate of the input video. Since the
path of cluster0 is not divided by vframes, we can
conclude that when r ≤ 0, vframes is shielded. By man-
ually executing the program, we confirm that the conclusion
is correct.

Table 4: Classification result of ln with parameters -L, -P, and -s

cluster0 cluster1 cluster2
-s,-Ls,-sL,-Ps,-sP -L -P
-LPs,-LsP,-PLs -PL -LP
-PsL,-sPL,-sLP

Figure 2: Classification result of ffmpeg

Table 5: Classification results of cp, head, and bzip2

Name Parameter Cluster Condition

ls -g,-A cluster0 : −g,−gA,−Ag -g shields -A
cluster1 : −A

cp -s,-L cluster0 : −s,−sL,−Ls -s shields -L
cluster1 : −L

head/tail

-n〈lines〉 -c〈bytes〉
cluster0 : c ≤ 0

-c shields -ncluster1 : 0 < c ≤ 20
cluster2 : c > 20

-c 〈bytes〉 -n〈lines〉
cluster0 : n ≤ 0

-n shields -ccluster1 : 0 < n ≤ 9
cluster2 : n > 9

bzip2 -t,-d cluster0 : −t,−dt later parameter shields the former
cluster1 : −d,−td

4.3 Results for other programs

Table 5 shows other results of SUTs in Table 3. For all
these programs, we find that the shielding conditions are
correctly detected.

5. Conclusion

This paper proposes a novel approach to automatic de-
tection of parameter shielding for test case generation.Test
parameters shielded by others are found by clustering the
runtime information of the SUT. Experiments show that our
approach can effectively detect the parameter shielding for
various types of parameters. Meanwhile, shielding condi-
tions between parameters can also be detected in our ap-
proach. Our shielding detection approach can be used for
enhancing the quality of test cases and for reducing the test-
ing cost.

References
[1] J. Zhang, Z. Zhang, and F. Ma, Automatic Generation of Combinatorial Test

Data. Springer, 2014.

[2] J. Xuan and M. Monperrus, “Test case purification for improving fault localiza-
tion,” in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 52–63, ACM, 2014.

[3] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Computing
Surveys (CSUR), vol. 43, no. 2, p. 11, 2011.

[4] B. Chen, J. Yan, and J. Zhang, “Combinatorial testing with shielding parame-
ters,” in Software Engineering Conference (APSEC), pp. 280–289, 2010.

[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowl-
edge discovery in databases,” AI magazine, vol. 17, no. 3, p. 37, 1996.

[6] T. J. Oyana, “A new-fangled fes-k-means clustering algorithm for disease dis-
covery and visual analytics,” EURASIP Journal on Bioinformatics and Systems
Biology, vol. 2010, no. 1, p. 746021, 2010.

[7] M. Kantardzic, Data mining: concepts, models, methods, and algorithms. John
Wiley & Sons, 2011.

[8] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender systems hand-
book, vol. 1. Springer, 2011.

[9] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan Notices, vol. 42, pp. 89–100, ACM,
2007.

[10] S. Ruggieri, “Efficient c4. 5 [classification algorithm],” Knowledge and Data
Engineering, IEEE Transactions on, vol. 14, no. 2, pp. 438–444, 2002.


