

 DOI reference number: 10.18293/SEKE2015-038

TAGGINGSENSE: Method Based On Sensemaking

For Object-Oriented Source Code Comprehension

Daniel Schreiber
Post Graduate Program in Informatics

(PPGIa) - Polytechnic School

Pontifícia Universidade Católica do

Paraná – PUCPR

Curitiba, Brazil

xiraba@gmail.com

André Menolli
Computer Science Departament

Universidade Estadual do Norte do

Parná - UENP

 Bandeirantes, Brazil

menolli@uenp.edu.br

Sheila Reinehr, Andreia Malucelli
Post Graduate Program in Informatics

(PPGIa) - Polytechnic School

Pontifícia Universidade Católica do Paraná –

PUCPR

Curitiba, Brazil

sheila.reinehr@pucpr.br,

malu@ppgia.pucpr.br

Abstract— All software requires maintenance, either for error

correction or for implementing updates. However, maintenance is

often complex and expensive, and one of the main problems in the

high cost of maintenance is the difficulty of understanding the

source code of other authors. Thus, this research presents

TaggingSense, a method based on sensemaking that aims to reduce

object-oriented source code comprehension time on systems

maintenance. Through experimentation, it was possible to observe

knowledge extracted from the source code, processing, and

sharing, to be positively assisted in the source code maintenance

and comprehension process, thus bringing benefits such as

reduction time spent, quality, and greater security in the changes

made.

Keywords-knowledge;sensemaking;source code maintenance;

ontology.

I. INTRODUCTION

Software maintenance is one of the activities that consume
substantial resources in software projects. In the mid-1980s, the
total cost invested in maintenance and improvement accounted
for over 60% of the total cost of software systems [1]. In
contrast, in the 2000s, total maintenance cost exceeded more
than 90% [2]. Maintenance is inevitable because we must ensure
updated and efficient software, and this activity is performed for
various reasons, such as changes in requirements, bug fixes,
component modifications, software improvement, source code
optimization, and efficiency improvement, among others [3].

Among several proposed techniques and processes to
improve software maintenance, some studies explore cognitive
aspects related to software comprehension. With source code
being the main maintenance component, comprehension is the
predominant factor for providing effective software
maintenance, thus allowing the development of computerized
systems [4].

Software comprehension corresponds to activities that
people perform in order to understand, conceptualize, and reason
about software [5]. It is estimated that developers dedicate an
average of 40% to 90% of the maintenance effort to the software
comprehension process [6] [7]. One of the possible reasons for
difficulty in source code comprehension is the lack of
knowledge by people without experience, as well as by
programmers from other fields.

One method to build knowledge and make sense of things is
through sensemaking. Sensemaking is the process of turning
circumstances into situations that can be comprehended
explicitly in words, and that serves as a catalyst for actions [8].
Weick [8] considers labeling (assigning explicit names) an
essential step in sensemaking.

In maintenance activities, it is in the analysis and
comprehension stage that those involved do work to extract
knowledge and use it to continue with maintenance. During this
activity, the acquired knowledge is conserved in people's
memories, and such knowledge is divided into two classes:
syntactic and semantic [9]. Both semantic and syntactic
knowledge are directly and indirectly related to source code
comprehension. Many studies and models of comprehension
identified different types of knowledge, including knowledge of
programming, knowledge of real-world situations addressed by
software, and knowledge of the application domain [10].

After comprehension, the coding activity, a process through
which developers declare their intentions for the computer, is
performed. This activity implies high processing power and
storage in the memory of people, because, in addition to the
domain, developers need to visualize the organization of objects
and routines, as well as the data flow [11]. These challenges,
coupled with the effort applied to maintenance and the absence
of an ideal solution to these problems, led to the development of
this research. It is believed that a comprehension method applied
to the source code related to the extraction and dissemination of
knowledge can assist in the comprehension process, thus
reducing uncertainties and the time dedicated to maintenance
tasks.

Therefore, this study aims to develop a method based in
sensemaking to reduce object-oriented source code
comprehension time on system maintenance. More specifically,
it is intended to answer the following question: Is it possible to
reduce the time and effort of source code comprehension, and
thus increase the quality and efficiency of software
maintenance?

II. RELATED LITERATURE

Of all the activities involved in the process of maintenance,
comprehension is the most important, as it is considered to be
the essential basis for modifying a software product [12]. Studies

show that efforts applied on maintenance are mainly targeted to
the comprehension part [11].

Several works were developed related to software
maintenance and comprehension, not all of which are focused
on serving the same purpose. However, these studies use similar
techniques for working on the source code. For example, in
research [10], the complexity of understanding a program at the
time of maintenance was studied for the purpose of calculations
and estimates of effort metrics. Work [13] identified two levels
of comprehension: syntactic and semantic. The work proposed
in [14], by means of cataloging source code, already seeks to
discover programmers’ knowledge on application domain. [12]
explored a method for maintaining software engineering
artifacts "connected" through semantic connections, starting
from the source code, by means of ontologies. Work [15]
proposes a union of the ontology of code knowledge with
domain knowledge, and lastly, work [16] developed source code
and documentation ontology to assist in the comprehension
process through complex searches inferred on ontology
populated from text mining applied in the source code.

The use of ontologies has been significantly explored in
software maintenance activities for much of the works
highlighted here. Among the techniques for applying ontology
to the source code, this paper proposes a new approach: using
ontology as a consequence of the knowledge extracted from the
source code by using the sensemaking technique. Based on
sensemaking, we propose the development and implementation
of a method with the principle of formalizing and implementing
a folksonomy within the source code, so that it is possible to
extract knowledge and maintain it in a knowledge base, with the
goal of extracting and disseminating both domain knowledge
and the features contained in the source code.

III. TAGGINGSENSE METHOD

In this section, we present the “TaggingSense” method,
which supports the steps and the intrinsic processes involved in
source code comprehension during software maintenance. This
method combines the tagging concepts of folksonomy, and the
stages and processes identified by sensemaking, with the goal of
accelerating and improving the comprehension process of
unknown source codes.

A. Method Structure

From the eight stages of sensemaking (Organizes Flux,
Noticing and Bracketing, Labeling, Retrospective, Presumption,
Social and Systemic, Action, and Organizing through
Communication) conceived by [8], four activities have been
defined for the proposed method, and are described as follows:

 Observation: consists of the superficial analysis that a
programmer performs when starting the maintenance
activity. Owing to such observations, in this activity, the
programmer formulates ideas and structures based on
the experience of past projects.

 Extraction: activity related to the extraction and
development of knowledge contained in the source
code. This activity starts sensemaking. Knowledge is
formalized and archived by the programmer with the
source code.

 Organization: organizing and structuring the extracted
knowledge. This activity consists of provided support
and the support or rejection of raised ideas and
hypotheses in order to improve knowledge structuring.
It is in this activity that the programmer identifies
phenomena and observed patterns, improves
externalization, and catalogs the acquired knowledge.

 Collaboration: the main component of this activity is
communication. In this activity, the sharing and
development of knowledge with the group of people
involved in the process occurs through the exchange of
experience and the refinement of learning.

Based on the activities defined, details of the method and the
steps involved in each activity are described in Table I.

In total, four activities were created with a subtotal of 15
interrelated steps. Each activity has a purpose that serves as input
to generate a specific output. The outputs generated by the
activities are: (i) formulation and structuring of ideas and
hypotheses (observation activity): ideas are formulated and
structured tacitly, where externalization occurs in the execution
of the next stage; (ii) formalized knowledge (extraction activity):
transformation of tacit knowledge into explicit; (iii) restructured
and organized knowledge (organization activity): this activity
organizes knowledge in a structured way, and enriches existing
knowledge with more information; and (iv) knowledge base
(collaboration activity): this is the location where all knowledge
extracted from the source by one or more programmers is stored.

B. Knowledge Representation

The TaggingSense method proposes the use of a
folksonomy-based ontology for organizing and managing tags.
In [27], the authors defined folksonomy as the result of a
personal free marking (tag) of information and objects for
retrieval. The use of tags through folksonomy fits best to factor
a demonstration of human thought, compared with those
methods related to automatic extraction of text [17]. Through a
manual process, the user develops source code sensemaking and
identifies a topic/knowledge through tagging. In this process,
folksonomy is the result of the sensemaking process designed by
the user. One of the strengths of folksonomy is the free
assignment of words to features. Annotating a feature with
multiple keywords requires less cognitive effort than selecting a
single category [18].

Folksonomy is represented through ontology, which serves
as basis for supporting the processes. This helps to solve the
main problems of folksonomy, such as synonyms, ambiguities,
and searches. The main ontologies developed to support the
tagging process were evaluated, such as Newman [19], SCOT
[20], MOAT [21], Knerr [22], and NAO [23]. After analyzing
the available ontologies, the ontology of Knerr [22] was chosen,
due to its better compliance with the requirements of the
problem, its availability, and easy access to documentation of
their classes and properties.

TABLE I. TAGGINGSENSE METHOD ACTIVITIES AND STEPS

Activities Steps Description

Observation

Structure analysis Preliminary study of the structuring

of the source code.

Technical knowledge

and domain search
Improvement of technical
knowledge in relation to the source

code structure, such as

programming language, paradigms,
architecture, and standards, in

addition to complementary studies

related to the domain.

Extraction

Knowledge

extraction
Development of domain concepts.
Assimilation between domain issues

and technical issues related to the

source code.

Tagging Marking source code through tags.

Use of folksonomy to assist,

support, and organize tags created
during knowledge extraction.

Externalization Knowledge articulation occurs, i.e.,

transformation of tacit knowledge

into explicit or usable knowledge.
This task represents the continued

task of Tagging.

Guides Improvement of source code
tagging. Tagging is structured in a

way that helps programmers find

such markings in the source code
through waypoints.

Enrichment tags Development of new concepts

related to those already developed
and identified by means of tags.

Organization

Knowledge

refinement
Refinement of points related to

application domain. Revaluation

and continuation of “Knowledge
extraction” task of previous activity.

Tag re-evaluation Importance validation with project

and domain.

Redundant tags are eliminated;

common tags are reused in the

project.

Cataloging

standardization
Standardization between the terms
already created.

Release All new created tags have visibility

property set to private because they
are developed at this stage and can

change or be eliminated by the

creator.

Collaboration

Storage Throughout the process, extracted
knowledge is stored in a database

called knowledge base, through

ontologies meaning.

Sharing Database must be shared with

everyone specifically involved in

the process of project maintenance.

Refinement Enhancement and improvements in

tags created by other programmers.

Reuse Reuse of tags created by other

programmers.

IV. TAGGINGSENSE ENVIRONMENT

To support the TaggingSense method, we implemented an
environment to allow tagging the source code in order to assist
in its comprehension. The tagging process consists of manually
extracting source code knowledge, and adding it in the
folksonomy ontology. This information corresponds to
keywords for the tag, date, time, and creator, in addition to the
class, method, variable, or related code snippet, that can be

inserted to the same tag created for other individuals. This
environment was built as a plug-in for the Eclipse development
IDE (integrated development environment). In this environment,
interaction starts from the programmer’s comprehension of the
source code from the bottom to the top (“bottom-up”) of the
source code lines that represent the domain knowledge, through
the identification of relevant chunks. Chunks are code portions
that programmers can recognize. Large chunks contain several
smaller chunks [16].

After this step, it is necessary for the source code to be
processed and synchronized with the source code ontology. In
the environment, SCRO (Source-code Ontology) is used as the
source code ontology because it was created to support the main
tasks of software comprehension through the explicit
representation of conceptual knowledge found in the source
code [24]. This synchronization consists of the extraction of
information from the project’s source code, such as methods,
input and output values of each method, attributes, and classes,
and population of the source code ontology.

Once the source code ontology is populated, the next step is
to interact with the folksonomy ontology. This allows new
individuals created in this ontology through the creation of tags
by the programmer to be associated according to the instances of
individuals of the source code ontology. Lastly, the process
results in a knowledge base that contains all created tags and
their respective associations, derived from the domain
knowledge received from the source code. The knowledge base
consists of the very folksonomy ontology populated and inferred
by inference mechanisms. The environment implementation is
presented in the next subsection.

A. Environment Implementation

The environment was implemented according to the
assumptions of sensemaking, folksonomy, and knowledge base.
In addition, six implementation requirements were raised to
support the source code comprehension process. They are:

 Requirement 1: query and record domain information in
the folksonomy ontology. Information refers to the
knowledge acquired during the comprehension process,
and should be semantically linked to allow queries and
inferences (reasoning).

 Requirement 2: populating source code ontology. The
plug-in must provide a method for extracting semantic
information from the source code and automatically
populating the source code ontology.

 Requirement 3: populating folksonomy ontology.
Populating the domain ontology, which corresponds to
the tags created, must be performed manually. As a
result of sensemaking, the source code comprehension
process is best developed manually because it is at this
moment that the user assimilates and understands the
source code.

 Requirement 4: searches of instances in the ontology.

 Requirement 5: allows to create, connect, provide,
identify, query, and share tags during the source code
comprehension process.

 Requirement 6: integration with the working
environment.

In order to automatically extract the source code and allow
direct interaction with the user, the system was designed and
developed based on Eclipse 3.6 and Java 6 platform.

The source code ontology is automatically populated by the
plugin, through QDox library [25], whereas the tags
manipulation is manual, according to user action. The source
code is the only input software artifact, whereas the remaining
entries in the system are through manual intervention. Queries
by created and populated tags occur through SPARQL-DL with
OWL-API support library because there was no native support
for SPARQL queries during the development of this research.

Based on the requirements for extraction and manipulation
of gathered knowledge, the TaggingSense plug-in was
developed to manipulate ontologies and tagging in the source
code, with the following functionalities: (i) Display tags related
to the selected code: from a window, it is possible to analyze the
relationship between the programming-related object and the
associated domain concept (tag); (ii) Display tags in tree format:
from the list of tags, it is possible to find the source code related
to the selected tag; and (iv) Display use of all tags: list all public
tags created by any person, in addition to private tags authored
by the current user.

In addition to the features described, the plug-in allows the
addition of new tags and makes the tags public, thus allowing
other users to view the tags and use them collaboratively.

V. EXPERIMENT

To evaluate the feasibility of the method and the
environment, an experiment was proposed with the goal of
answering the initial question of this research: Is it possible to
reduce the time and effort of source code comprehension, and
thus increase the quality and efficiency of software
maintenance?

To evaluate the experiment, three criteria were defined: (i)
programmer behavior: evaluation based on observations from an
expert who accompanied the experiment; (ii) development time:
this was considered a metric to measure method efficiency; (iii)
quality of maintenance performed: an assessment as to whether
the requested improvements were implemented as expected.

To conduct the experiment, four IT professionals, who work
in a midsize software company, were selected. The selected
professionals belong to two distinct classifications: junior,
professionals with less than five years of experience in OOP
(Object-Oriented Programing), software architectures, design
patterns, organization and best coding practices; and senior,
programmers with equals or more than five years of experience
in system development with knowledge of working on large,
complex projects. The participants were requested to make two
improvements to an existing system that was unknown to them.
The system consisted of a salesforce automation project
developed in Java language for mobile devices. Its initial release
was designed to run on PALM OS, Windows Mobile, and
Android devices. The experiment was divided into three parts,
each part containing a specific purpose and applied to specific

participants, as summarized in Table II. In addition, a maximum
execution time for each maintenance task was stipulated.

TABLE II. EXPERIMENT DESCRIPTION

E
x

p
e
r
im

e
n

t
1

Participants Objective Procedure

Junior A

Senior A

Evaluate

understandin
g difficulty

and

comprehendi
ng source

code of other

authors.

Same activity for participants

with and without experience.
Activity consists of making

improvements to existing

system. For this experiment,
features for using tags were not

available, only features offered

by IDE.

Evaluation

Improvement

time and
location

E
x

p
e
r
im

e
n

t
2

Participants Objective Procedure

Junior B

Senior B

Evaluate

comprehensi

on of source
code of other

authors that

performed
tagging.

Same activity for both types of

participants. Source code is not

tagged, but developers are
allowed to add, share, and use

tags to assist maintenance

process.

Evaluation

Improvement

time and

location; name

and number of

new tags
created during

the process.

E
x

p
e
r
im

e
n

t
3

Participants Objective Procedure

Junior B
Senior B

Evaluate
comprehensi

on of project

already
tagged by

someone

familiar with
the project.

Repeat experiment 1 with
project already tagged. Those

involved should use tags as

guides to reach system critical
point, thus performing

maintenance at correct location.

Evaluation

Maintenance
time and

quality; number

of new tags
created.

A. Results

Analysis of the results was performed mainly in a
qualitatively manner. In this analysis, the purpose of the
experiments was considered, and the experiments were designed
so that a comparison could be made, as described in Table III.

In experiment 1, senior participant A showed difficulties
when attempting to find the location (class/method) that caused
the parameter to perform the validation requested for this
experiment. However, he was able to perform the experiment
successfully in 16 minutes, and executed the maintenance in the
expected class and method. Junior participant A could not find
the correct location of the maintenance in the stipulated time.
Even after being shown the location where the maintenance
should be performed, the participant failed to complete the task
successfully within the stipulated time because, although the
maintenance was performed correctly, the code was not
implemented in the expected method.

In experiment 2, junior participant B did not use the plug-in
as a support tool and could not find the correct method where the
improvement should be implemented. Senior participant B
achieved this improvement in 12 minutes, and did not need to
receive any type of help or advice. However, neither senior
participant B nor junior participant B implemented an
improvement on the desired method and class.

TABLE III. EXPERIMENT COMPARISON

Relationship Evaluation - Objective

Experiment 1

x

Experiment 2

Check maintenance performance without the use of tags

(experiment 1) and with the use of tags (experiment 2);
evaluate performance of maintenance performed between

junior programmers, among senior programmers, and

between junior and senior programmers.

Experiment 1

x

Experiment 3

Analyze performance of maintenance performed by

senior programmer without the use of tags and by junior
programmer with the use of tags.

Experiment 2

x

Experiment 3

Evaluate impact on improvement maintenance when

there are no tags; that is, comprehension is initiated
without the aid of previously created domain concepts

(experiment 2).

Evaluate impact on improvement maintenance when tags
are identified previously (experiment 3) and are available

to assist in the comprehension process.

In experiment 3, participants had access to the tags. Junior
participant B started the maintenance using the available tags.
Through the tags, the class attribute that had the value that
needed to be changed was easily deduced. After the locating task
was performed all locations that called the attribute in question
were searched by the programmer in the source code. Every item
in each code snippet that was located was verified against the
related tag. Junior participant B performed the activity in merely
eight minutes, without any type of help or support. Compared
with senior participant A who ran the same maintenance in
experiment 1 without the aid of tags, junior participant B was
faster because senior participant A performed the same
maintenance in 16 minutes. In turn, senior participant B, who
had access to the tags, implemented the proposed improvement
in four minutes; half the time displayed by junior participant B.
Table IV presents a summary of the maintenance time required
by senior and junior programmers.

TABLE IV. COMPARISON BETWEEN TIME OF SAME MAINTENANCE WITH AND

WITHOUT TAG

Participant Without tags With tags

Junior Group 30 min 8 min

Senior Group 16 min 4 min

VI. DISCUSSION

In experiments 1 and 2, tag features to be used in the
comprehension process were not available to programmers.
However, for experiment 3, the tags were made available to
assist in the comprehension process. From the results, it can be
concluded that sensemaking development is influenced heavily
by the availability of features. The group of junior programmers
who did not use tags required an average of 30 minutes to
perform the proposed maintenance. However, through the tags,
this time decreased to eight minutes, demonstrating a 74%
productivity improvement in performance.

In the same sense, the senior group performed the same
maintenance in 12 minutes, whereas by means of tags, this time
decreased to four minutes, showing a gain of 75% for this class
of developers

In experiment 2, wherein the tags were not available, but the
possibility of creating and using them was offered, only the

group of senior participants benefitted. However, the tags
created were used as waypoints (identification of locations), and
as memorization topics that were extracted from the source code.
Thus, the created tags helped in source code navigation, assisting
developers to locate code among the many classes and methods,
avoiding them to get lost on source code navigation.

In contrast, in the experiment where the tags were already
created and available, only the group of juniors added a new tag.
The new tag served the same objective as for the other group,
that is, as a waypoint.

We can conclude that in unfamiliar environments, extracting
source code knowledge is easier for more experienced
developers precisely because they have more experience. It was
also observed that in environments where knowledge of the code
was already present, senior programmers did not process new
knowledge, whereas junior programmers were led by the
existing tags, and even added a new related tag. The failure to
process new knowledge puts in evidence the conclusion of the
study by [26], which showed that there is no interest on the part
of software engineers to study application domain knowledge
when performing specific maintenance, where only knowledge
related to software engineering (programming, development
environment, and application implementation) are considered.
The authors in [26] concluded that developers cultivate past
knowledge, and searching for new knowledge is a costly process
that is performed only when there is a clear need for the
programmer and there is no easier alternative. According to [26],
software engineers attempt to understand only what is necessary
for a system to solve the current problem, and then tend to forget
the details of what they learned.

Senior programmers in experiment 2 showed an average of
60% higher performance in the same experiment performed by
the group of junior programmers. In this experiment, only the
senior programmers used the feature for extracting knowledge
from the source code. This justifies the fact that sensemaking is
best developed when there already exist foundations and past
experience [8].

However, as already discussed, in an environment where the
knowledge contained in the source code is extracted previously
by an expert with greater knowledge, and is made available via
tags for those with less experience, a significant gain in
performance is demonstrated.

Thus, we can conclude that the proposed method for
extracting and sharing knowledge of the source code is
sufficiently effective for improving overall performance of the
development team.

VII. CONCLUSIONS

The software maintenance field is complex, mainly because
it is dependent on a source code comprehension process, an
activity that involves greater cognitive effort of the people
involved. Several studies have been developed to facilitate code
comprehension. However, this process can still be improved.
Knowledge extracted directly from the source code through
sensemaking is rich in important and valuable details that can be
applied to source code comprehension. This knowledge can be
best utilized when stored by means of ontologies and
disseminated to more people using Semantic Web. With this

process, the knowledge can not only be extracted, but also shared
with those involved, thus benefitting the entire team. Through
the results of our experiments, we demonstrated that the
proposed TaggingSense method is viable because we were able
to conclude that knowledge extraction, processing, and sharing
assists positively in the process of source code maintenance and
comprehension, thus obtaining benefits such as reduced time,
increased quality, and greater security in the changes made. We
also showed that our proposed method can guide programmers
to the exact location of the improvement required, thus causing
maintenance to not occur in wrong places that could affect the
quality of the program or open the possibility for security
breaches. Thus, the main issue of this research could be
answered: it is possible to reduce the time and effort for source
code comprehension during maintenance. However, we plan to
extend the study to a larger number of participants. We also
intend to evaluate the reaction of programmers with different
educational backgrounds, as well as evaluate the question of the
impact of personal and organizational culture and customs.

REFERENCES

[1] M. Zelkowitz, A. Shaw, and J. Gannon, Principles Of Software

Engineering And Design. Prentice Hall Inc., , 1979, pp 157 – 178.

[2] L.Erlikh, "Leveraging Legacy System Dollars For E-Business," It
Professional, Ieee, vol. 2, n. 3, 2000, pp. 17 – 23.

[3] B. B. Argawal, and S. P. Tayal, Software Engineering. Laxmi
Publications: New Delhi, 2007.

[4] A. Mayrhauser, and A. Vans, "Program Comprehension During Software
Maintenance And Evolution, " Ieee Computer vol. 28, 1995, pp. 44 – 55.

[5] W. Meng, J. Rilling, Y. Zhang, R. Witte, S. Mudur, and P. Charland, "A
Context-Driven Software Comprehension Process Model," Ieee Software
Evolvability Workshop, 2006.

[6] A. De Lucia, A. R. Fasolino, and M. Munro, "Understanding Function
Behaviours Through Program Slicing, " In 4th Ieee Workshop On
Program Comprehension, Ieee, 1996, pp. 9 – 18.

[7] A.Telea, and V. Lucian, "Visual Software Analytics For The Build
Optimization Of Large-Scale Software Systems, " Computational
Statistics, vol 26, n. 4, 2011, pp. 635 – 654.

[8] K. E. Weick, K. M. Sutcliffe, and D. Obstfeld, "Organizing And The
Process Of Sensemaking, " Organization Science, 2005, pp. 409 – 421.

[9] B. Shneiderman, Designing The User Interface: Effective Strategies For
Effective Human-Computer Interaction, 2rd ed. Addison Wesley, 1992.

[10] J. Yang, D. Hendrix, K. Chang, and D. Umphress, "An Empirical
Validation Of Complexity Profile Graph, " In Proceedings Of The 43rd
Annual Southeast Regional Conference, Acm, vol 1, 2005, pp. 143 – 149,
2005.

[11] C. L.Corritore, and S. Wiedenbeck, "Mental Representations Of Expert
Procedural And Object-Oriented Programmers," In A Software
Maintenance Task. In International Journal Of Human-Computer Studies,
vol 50, n. 1, 1998, pp. 61 – 83.

[12] R. Witte, Y. Zhang, and J. Rilling, "Empowering Software Maintainers
With Semantic Web Technologies," Springer-Verlag Berlin, n. 4519,
2007, pp. 37 – 52.

[13] C. Dasgupta, "That Is Not My Program Investigating The Relation
Between Program Comprehension And Program Authorship," In Acm Se
'10 Proceedings Of The 48th Annual Southeast Regional Conference,
Acm, n. 103, 2010.

[14] R. Sindhgatta, "Identifying Domain Expertise Of Developers From
Source Code, " In Proceeding Of The 14th Acm Sigkdd International
Conference On Knowledge Discovery And Data Mining, Acm, 2008, pp
981-989.

[15] H. Zhou, F. Chen, and H. Yang, "Developing Application Specific
Ontology For Program Comprehension By Combining Domain Ontology
With Code Ontology, " In Quality Software, 2008. Qsic '08. The Eighth
International Conference, Ieee, 2008, pp. 225 – 234.

[16] Y. Zhang, An Ontology-Based Program Comprehension Model. Doctoral
Thesis, University Of Concordia, Canada, 2007.

[17] H. Al-Khalifa, and H. Davis, " Exploring The Value Of Folksonomies For
Creating Semantic Metadata, " International Journal On Semantic Web &
Information Systems, vol 1., n. 3, 2007, pp. 13 – 39.

[18] R. Sinha, "Tagging From Personal To Social: Observations And Design
Principles," In Tagging Workshop, World Wide Web Int. Conf., 2006.

[19] R. Newman, Tag Ontology Design. Available On
<Http://Www.Holygoat.Co.Uk/Projects/Tags/>. Accessed On 27 March
2012.

[20] H. L. Kim, A. Passant, J. G. Breslin, S. Scerri, and S. Decker, "Review
And Alignment Of Tag Ontologies For Semantically-Linked Data In
Collaborative Tagging Spaces, " In Proceeding Of The 2nd International
Conference On Semantic Computing, Ieee, 2008. pp. 315 – 322.

[21] A. Passant, "Using Ontologies To Strengthen Folksonomies And Enrich
Information Retrieval In Weblogs: Theoretical Background And
Corporate Use-Case," In International Conference On Weblogs And
Social Media, Boulder, United States, 2007.

[22] T. Knerr, "Tagging Ontology—Towards A Common Ontology For
Folksonomies," Available On
<Http://Tagont.Googlecode.Com/files/Tagontpaper.Pdf>. Accessed On
27 March 2012.

[23] S. Scerri, M. Sintek, and L. Van Elst, " Handshuch, S. Nepomuk
Annotation Ontology (Nao)," Available On
<Http://Www.Semanticdesktop.Org/Ontologies/Nao/>. Accessed On 28
March 2012.

[24] A. Alnusair, "Scro – Source-Code Ontology," Available
On<Http://Www.Indiana.Edu/~Awny/Index.Php/Research/Projects-
Tools/15-Research/Ontologies/10>. Accessed On 22 February 2012.

[25] Qdox: Qdox Java Parser Extractor. Available On
<Http://Qdox.Codehaus.Org/>. Accessed On: 31 May 2012.

[26] M. R. Ramal, R. M Meneses, and N. A. Anquetil, "Disturbing Result On
The Knowledge Used During Software Maintenance, " In 9th Working
Conference On Reverse Engineering, Ieee, 2002, pp. 277 – 286.

[27] V. Wal, "Explaining And Showing Broad And Narrow Folksonomies, "
Available On
<Http://Www.Personalinfocloud.Com/2005/02/Explaining_And_.Html>
. Accessed On 10 November 2011.

