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Abstract—The slow intelligence system (SIS) technology is 
a novel technology for the design of a complex information 
system that is aware of the environment through multiple 
sensors and capable of improving its performance over 
time. In this paper we describe a practical slow intelligence 
system test bed where super-components can be specified 
to describe interactions among components. These super-
components are automatically transformed into time 
controllers for components so they can be managed by the 
SIS test bed. We illustrate our methodology on personal 
healthcare system design using this SIS test bed enhanced 
with super-components. 
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I. Introduction  
 
The slow intelligence system (SIS) is a general-purpose 
system characterized by being able to improve its performance 
over time in iterative computation cycles through a process 
involving enumeration, propagation, adaptation, elimination 
and concentration. An SIS continuously learns, searches for 
new solutions and propagates and shares its experience with 
peers [1]. 

 

The slow intelligence system (SIS) technology is a novel 
technology for complex information system design and a base 
for Environment-Aware Software Engineering (EASE), 
which is the methodology and practice to design and/or 
improve a complex information system that is aware of the 
environment through sensors and capable of improving its 
performance over time in a changing environment. Such 
complex information systems have the following 
characteristics: connected, multiple sourced, knowledge-based, 
personalized, hybrid and prodigious. 
 
The design of complex information systems faces the 
following challenges: (1) the operating environment, 
individual/collective user behavior and underlying technology 
base of such complex information systems are constantly 
changing; (2) there is never a stable and static solution for an 
“optimal” complex information system; and (3) there are no 
general techniques for the design of complex information 
systems.  We believe that the SIS technology can be exploited 
to address these challenges. 
 

There are many interesting theoretical issues concerning the 
design of slow intelligence systems [1]. To make the SIS 
technology useful to the practitioners, in this paper we 
describe a practical test bed for Slow Intelligence Systems 
enhanced with super-components, i.e., multiple components 
that can be activated either sequentially or in parallel and have 
complex interactions to search for better solutions. 
Furthermore these super-components can be automatically 
transformed into time controllers for components so they can 
be efficiently managed by the SIS test bed. 

  

This paper is organized as follows.  Section 2 introduces the 
essential characteristics of an SIS test bed enhanced with 
super-components.  To illustrate our methodology, the 
essential components and super-components of a personal 
healthcare system are described in Sections 3 to 7.  
Background for slow intelligence system is presented in 
Section 8. Further research issues and applications of the SIS 
test bed to the design and analysis of sentient networks are 
discussed in Section 9. 
 

II. SIS Test Bed with Super-Components  
 
To design SIS-based systems, a practical SIS test bed is 
illustrated in Figure 2.1.  The SIS test bed is a component-
based software system.  The center-piece of the test bed is the 
SIS server responsible for specification/creation/management 
of components and passing messages to/from components in 
the test bed.  This test bed is implemented in Java and can run 
either under Windows or in the Eclipse environment. 

 

Figure 2.1. A slow intelligence system test bed. 

 
The essential components of the basic SIS test bed include the 
Graphical User Interface (GUI) to interact with the end user, 
the InputProcessor to process input data from sensors and 
transform them into XML formatted messages, the Uploader 
to upload messages to the Internet, the Propagator to 
communicate with other SISs to propagate information and the 
SIS operators suite (Enumerator, Adaptor, Eliminator and 
Concentrator) to generate, adapt, eliminate and concentrate 
solutions. For the advanced SIS test bed enhanced with super-
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components, there is also a Time Controller to initiate and 
control iterative computation cycles through guard predicates. 
The control and management of heterogeneous sensors 
requires a slow intelligence system with iterative computation 
cycles so that different sensors with different characteristics 
such as resolution, sampling rate, accuracy, etc. can be 
monitored and properly dealt with.  During each computation 
cycle, the SIS operators suite is employed to optimize the 
processing of application data obtained from the environment 
through multiple sensors.  The Time Controller determines the 
invocation and timing of the components in the computation 
cycles.  A super-component is therefore a structured set of SIS 
operators to perform the computation cycles under the control 
of the Time Controller. A formal model of the computation 
cycle is introduced in [10].  To specify and create a super-
component, a Create-Super-Component (CSC) message can be 
sent to the SIS server.  An example of the CSC message 
structure is shown in Table 2.1. 

 

Table 2.1.  The Create-Super-Component message structure. 

In the above CSC message, the component description can 
be in the form of a PNML specification (if the computation 
model is a Petri net) or an XML document (if UML diagrams 
such as sequence diagrams, etc. are employed).  In Table 2.2 a 
simple example of a (partial) PMNL specification of a super-
component is shown. 
 
After a super-component is formally specified (such as Table 
2.2), the Time Controller and other components of the super-
component can be automatically generated from this 
specification.  As mentioned above the super-component is 
controlled by the Time Controller, which sends messages to 
the constituent components to coordinate their execution.  
When a computation cycle is completed, the Time Controller 
decides whether to start another iteration of the computation 
cycle, or send messages to other super-components (or 
ordinary components) of the SIS system, depending on the 
guard predicate. 
  
Multiple super-components with their respective Time 
Controllers may co-exist in an SIS system and interact with 
one another.  The SIS server enhanced by the SC transformer 
is illustrated in Figure 2.2. All input messages except the new 
message 21 to create super-component are sent to the original 
SIS server.  The new message 21 is processed by SC 
transformer that generates the Time Controller and sends a 
message 20 to SIS server to create the Time Controller 
component. 

 

 
Table 2.2.  A partial PNML specification. 

 

Figure 2.2.  A super SIS server. 
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To illustrate the practical application of this methodology, an 
experimental personal healthcare system is shown in Figure 
2.3.  Although this is a specific application it nevertheless 
exhibits many important characteristics of a complex 
information system.  Foremost among these characteristics is 
that heterogeneous multiple sensors are  constantly changing 
due to technological advances or other reasons.  Each monitor 
in a personal healthcare system can be a simple component in 
the simplest case, but more often than not it is a super-
component to perform iterative computation cycles for the 
personal healthcare system. With our approach, the 
specification and upgrade of a super-components due to 
technological advances can be easily accomplished. 
 

 
Figure 2.3.  A personal healthcare system. 

 
In the following sections we will describe the super-
components, monitors and other novel components of the 
experimental personal healthcare system. 
 
 

III. Temperature/Blood Pressure Super-
Component 

 
A personal healthcare system can assist a senior citizen who 
may not be computer-literate to deal with various monitors. 
For example, a Temperature Monitor can prevent a senior 
citizen from suffering from freezing or burning temperatures, 
and a Blood Pressure Monitor can monitor the person’s blood 
pressure. With super-components, these monitors can 
exchange messages and work together to determine whether 
there is a need to send an alert message via the Internet to the 
Emergency Management System (EMS) or the responsible 
physician in case of an emergency. The situation is illustrated 
by Figure 3.1, which is a sub-network of Figure 2.3.  The 
interacting monitors are in yellow color. 

Once the SIS system is running, the GUI component is 
launched and the temperature settings such as start-monitor-
time, end-time, refresh-time, high-temperature threshold and 
low-temperature-threshold can be set or adjusted, as shown in 
Figure 3.2. 
 

 

Figure 3.1. Interactions among Temperature and Blood 
Pressure Monitors. 

 

 

Figure 3.2. Temperature settings. 
 

The Blood Pressure Monitor can then be launched to check 
whether the person’s blood pressure is normal. In addition to 
working individually, these monitors can work together as a 
super-component to detect more complex conditions and 
upload and send Complex Alert messages to EMS as shown in 
Figure 3.3, where the e-mail contains the alert message that 
the blood pressure may not be normal perhaps due to the rising 
ambient temperature. 
 

Figure 3.3. Complex alert from Blood Pressure Monitor and 
Temperature Monitor. 

In Figure 3.4, the Petri-net description of a super-component 
involving the Temperature Monitor and the Blood Pressure 
Monitor is shown. The corresponding PNML specification can 
then be transformed into Time Controller to coordinate the 
interacting components. 
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Figure 3.4. The Temperature/Blood Pressure super-component. 
 

IV. Kinect/EKG Super-Component 

A Kinect monitor is a component that accepts a series of 
messages from the Kinect sensor and sends out alerts to 
certain components when an emergency happens. The Kinect 
sensor and monitor together can detect and analyze motion 
patterns such as a person’s fall (see Figure 4.1 and Figure 4.2), 
and the fall detection algorithm is incorporated into the Kinect 
monitor. 
 

 
Figure 4.1. Skeleton figure of a person standing. 

 

 

Figure 4.2. Skeleton figure of a person falling. 
 

To achieve fall detection, we need to estimate the real-time 
position of the person. Kinect SDK software based upon 
Kinect sensor can track a person’s skeleton consisting of more 
than 20 joints. Once we get a series of skeletons, we can easily 
extract the coordinates of joints. A frame is generated for each 
time interval, so we can calculate the difference between two 
consecutive frames and the speed of movement. 

 
In the experimental personal healthcare system, we try to first 
track head movement and then estimate the positions of other 
joints to detect the motion of a person and in particular the fall 
of a person. When the position of the head cannot be reliably 
estimated, we can still use other available information to 
detect the person’s movement pattern. We currently don’t deal 
with multiple persons. 

  

Fall detection alone is meaningless if it cannot be propagated 
and acknowledged by other components. We can send this 
information to the Uploader, which is the component 
responsible for collecting information from all other 
components and informing EMS and the physician in charge, 
and possibly building a knowledge base along the way. We 
can also send this information to other monitors responsible 
for the monitoring of different type of sensors so that they can 
make more accurate decisions. Likewise the Kinect monitor 
can also receive information from other monitors and work in 
a similar way. 

 
As an example of such complex communication, if a 

person falls and the Kinect monitor also receives alerts from 
EKG monitor, it could mean this patient not only fell but also 
suffered heart problems.  An alert can be generated either by 
Kinect monitor or EKG monitor or both, depending on the 
messaging sequence. 

 

V. Location Monitor 

In this section we discuss a Location Monitor for the SIS 
personal healthcare system, whose objective is to process the 
information about the location of the person, to track the 
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person’s movements in real-time and to act accordingly in 
case of an emergency. 
 
Dementia is a broad category of brain diseases. The number of 
patients, who suffer from dementia, is increasing in the United 
States of America for the last couple of years. Thus the mortal 
rate of fatalities, caused by dementia is increasing as well. The 
most common type of dementia is Alzheimer’s disease. Some 
of the other more popular types are vascular dementia, 
Dementia with Lewy, Frontotemporal labor degeneration, 
mixed dementia, Parkinson’s disease and Creutzfeldt-Jacob 
disease. One in three seniors dies with Alzheimer’s or another 
dementia. The statistics shows that 15.4 million caregivers 
provided an estimated of 17.5 billion hours of unpaid care, 
valued at more than 216 billion USD in 2012 [2]. 
 
The physicians measure what they call Clinical Dementia 
Rating (CDR), which changes between zero and three or more. 
The first stage is called CDR =0. There is no impairment for 
the patient at this stage. The next one is called Questionable 
Impairment; the value of CDR for it is -0.5. The third one is 
called Mild impairment and it is the last one, where the patient 
is capable of taking care of himself/herself. The value for it is 
1. At this stage the patient gets geographically lost. For all 
CDR values beyond that point (2 and 3 – moderate and severe 
impairment), the person should have a personal caregiver.  On 
the other hand, for all cases of CDR with value 1 or less, an 
automated monitor, such as the Location Monitor, can take 
over the responsibility of tracking the movements of the 
person and his/her location. 

The Location Monitor communicates directly with four other 
components of the SIS Personal Healthcare System – GUI 
component, Input Processor component, Uploader and 
Hospital Finder component.  The Location Monitor introduces 
four new messages to the system – GPS Reading, GUI 
Address Request, GPS Coordinates Request and GPS 
Coordinates Response. Location Monitor is using two 
different APIs of Google, Directions API and GmailAPI, to 
provide the desired functionality. The developers of Google 
Inc. provided a Java wrapper library for those APIs to be used.  
 
Three basic scenarios involve the Location Monitor. The first 
one is the supply of data about the current location of the 
patient. The Input Processor receives the raw data from a 
sensor, which typically is a smart phone, which has a GPS 
receiver and some capability of reporting the data, obtained 
from the receiver, back to the system – Wi-Fi connection, 
GPRS, WCDMA, LTE or a combination of them.  The Health 
Sensor sends the raw information, marshaled in a Sensor Data 
Input message. The Input Processor module processes it and 
sends the information further to the Location Monitor.  The 
next scenario covers the case, when a physician sends the 
destination of the person to Location Monitor, which starts 
tracking the person.  The third scenario involves the delivery 
of the last location of the patient, known by Location Monitor, 
to other components of the SIS system. 
 

Once the Location Monitor receives an Address Request 
message, it contacts the Google Maps, using Directions API in 
order to receive a route for the person from his/her current 
location to the destination, received in the GUI Address 
Request message. The route contains a polyline, which is the 
smoothened polyline, which pins the route on the map. The 
Location Monitor tracks the location of the person for 
deviations from the received predefined route in the following 
way - upon every receiving of new location data information 
(i.e. GPS Reading message), the Monitor determines if the 
point, representing the received coordinates is within no more 
than 0.2 miles distance from every rectangle, formed by two 
consecutive points of the polyline of the route. 
 
In case the location is outside the boundaries, the Location 
Monitor sends a short text message (SMS) to the person, 
informing him/her to stay where he/she is and letting him/her 
know that the help is on the way. An alert message is also sent 
to the uploader module and a mail is sent to the EMS and the 
physician on duty. 
 
The Location Monitor was tested in SIS test bed for the 
Personal Healthcare system. The GPS Reading messages as 
well as the GUI Address Request messages were emulated 
with the Universal Interface component.  

VI. Hospital Finder 
Since there are an increasing number of sensors utilized to 
monitor the health conditions of senior citizens in today’s 
world, it is possible to receive alert messages instantly when a 
person is in a dangerous state. This Hospital Finder component 
reacts to these messages by locating the person on the map, 
providing directions from the nearest hospitals to the person, 
and providing the contact information of these hospitals in 
order to rescue the person in a timely fashion.  This 
component fits well with the rest of the Personal Healthcare 
System, and provides a useful enhancement that could 
potentially help save human lives.  In what follows we will 
explain the system model of this Hospital Finder component 
and give an example of its operation using a real life scenario. 
The following scenario will utilize the Location Monitor 
component that monitors the person’s location when he or she 
is out for a walk, and generates alert message 38 if the 
person’s route drastically changes in an unexpected way. 
 
When the Hospital Finder component receives alert message 
38, it quickly reacts and opens the map based Graphical User 
Interface (GUI).  The operator who is monitoring the person’s 
health using the SIS system at this point knows that the person 
is in an emergency state. The operator should be looking for 
the closest hospitals to deliver help to the patient immediately. 
  
The map-based GUI of the Hospital Finder component offers a 
variety of ways of locating the person. In this specific scenario, 
assuming the person has a GPS sensor with him/her, the 
easiest way to locate the person is by clicking the “Acquire 
GPS location” button. The other options include locating the 
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person (a) by address, (b) by coordinates, (c) by position on 
the map and (d) by GPS coordinates and so on. 
  
In order to place the person’s location on the map, the operator 
clicks the button “Acquire GPS location”. The person’s 
location is immediately requested with message 47 
(Coordinates Request). The Location Monitor component 
receives this message and quickly sends the person’s last 
location reading from the GPS sensor back to the Hospital 
Finder component. The incoming message 48 (Coordinates 
Response) is handled by the Hospital Finder component by 
populating the Latitude and Longitude fields on the map-based 
GUI, and placing an icon of the person on the map: 
 

 
Figure 6.1. The person’s last known location is displayed. 

Now, since the operator has received the person’s location, he 
or she can click the “Search” button next to the person’s 
coordinates to find the closest hospitals:  

 

Figure 6.2. Closest hospitals with routes are displayed. 

When the search button is clicked, the GUI requests the three 
nearest hospitals using the Google Maps Places API from the 
Google database. When the locations are received, the 
Hospital Finder component requests the directions from 
Google using the Google Maps Directions API to get to the 
person from these hospitals. As soon as the directions are 
received, the Hospital Finder component draws them on the 
map, and displays an information window above each one of 
the hospitals stating the distance and the time that it would 
take to get to the person from each hospital. 

VII. Recommender Engine 
The Recommender Engine for the Personal Healthcare System 
is capable of making elaborate decisions and proactively 
generate alert messages. This way, unwanted situations can be 
avoided in which the person may be in a state of imminent 
health deterioration. In what follows we will describe the 
design of the Recommender Engine, and usage scenarios in a 
real-life situation. 
 
The Recommender engine waits for messages produced by 
sensors and mediated by the InputProcessor. Specifically, in 
its current state the Recommender Engine receives messages 
from: (a) blood pressure, (b) blood sugar, (c) EKG, and (d) 
SPO2 sensors. In the event that the Recommender Engine 
detects an imminent dangerous state, it produces alert 
messages and disseminates them in the SIS system. 
  
The different components inside the Recommender Engine are 
as follows. First, the message parsing interface is responsible 
for handling input messages and produce alerts in the SIS 
network. The data transformation logic receives sensor data 
and turns them into a binary form that is readable by the 
recommender logic. The latter is responsible for building 
prediction models in order to implement the prediction logic 
needed for identifying dangerous situations in a proactive 
manner. Finally, the Recommender Engine keeps an internal 
storage module for storing user-defined Rules (conditions 
under which an alert should be generated) and pre-computed 
Prediction Models.  Information are stored in the form of 
tuples (records) so that the system is able to predict dangerous 
situations.  

 
The Recommender Engine works by using Collaborative-
Filtering Algorithms to predict users' preferences. This 
approach is more generic compared to the Context-based 
approach of other recommendation systems. Hence, it can be 
easily modified to work with different scenarios. The only 
information to be stored should be tuples of the form: 

user-id, item-id, preference 
 
The user-id refers to a user showing interest (or a general 
connection) for a specific object (item-id). The interest can 
represent any kind of connection among two entities. For 
instance, it can represent how much a user likes a product, or it 
can represent that a user has had a characteristic represented 
by a specific id (object). Preference models the intensity of the 
connection of a user with an object. A preference can take 
values from 1 to 5, but it can also have a binary interpretation 
if a binary recommendation system is needed (i.e. yes or no 
answer). By forming the data accordingly, one can 
approximate any kind of situation and have the Recommender 
Engine produce successful predictions. 
 
The Recommender Engine can be used when we need to 
predict dangerous situations for people.  For any person we 
have sensor input for blood pressure, blood sugar, SPO2 and 
an EKG. The Engine's responsibility is to combine readings 
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from the aforementioned sensors, and by consulting user-
defined rules, produce alert messages to the system.  The 
Apache Mahout library (http://mahout.apache.org), which is a 
complete framework for recommendation systems, is used in 
implementation. Three scenarios are presented, each using 
different rules: 
1. A patient is in alert if blood pressure and blood sugar are 
in near-dangerous levels. 
2. A patient is in alert if blood pressure and SPO2 levels are 
in near-dangerous levels. 
3. A patient is in alert if blood pressure, blood sugar and 
SPO2 levels are in neardangerous levels. 

The Alert message produced by the Recommender Engine has 
the following form: 

Name Value MsgID 64 
Descriptiom Recommender System Alert 
AlertType Recommender Alert 
DateTime Current Date (i.e. “2014-10-30 15:05:10”) 

 

VIII. Related Work 
The slow intelligence approach was first proposed by Shi-Kuo 
Chang [1].  In this section we will briefly review recently 
published papers in this area. The visual specification of 
component-based Slow Intelligence Systems is described in 
[3]. This work introduces the visual description of super-
components by Petri nets or other UML diagrams.  It provides 
the foundation of the present work. Component-based Slow 
Intelligence Systems has been applied to many areas, 
including social influence analysis [4, 5], topic and trend 
detection [6], high dimensional feature selection [7], image 
analysis [8], swimming activity recognition [9], and most 
recently pet care systems [10] and energy control systems [11].  
In [10] the notion of an abstract machine for computation 
cycle was introduced. Our current approach is based upon it. 

IX. Discussion 
 
The super-component transformation algorithm can be 
extended to handle parallel/distributed processing of super-
components in multiple computation cycles. At the 
implementation level we introduce one additional pair of tags, 
<parallel> and </parallel>, into the pnml specification to 
signify levels of parallel computation. Therefore the SC 
translator will append the super-component type as the suffix 
to the message that this transition represents. For example if 
the original message id is 1002 and a super-component 
<parallel> 03</parallel> is specified inside the related pair of 
transition tags of message 1002, then this message will 
become 1002.03.  We can extend this technique to define 
messagetype.SCsubtype.SCtype and so on, so that messages 
are exchanged at different levels. At the theoretical level, we 
envision complex information systems as iterative slow 
intelligence systems with multiple and interacting computation 
cycles. In Wiener’s Theory of General Resonance, he 
envisioned the interaction of multiple computation cycles. We 

can call such general systems Sentient Nets. With the above 
proposed different levels of computation cycles and messages, 
we propose to continue the investigation of the properties of 
such general systems. 
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