
1

A Slow Intelligence System Test Bed
 Enhanced with Super-Components

Shi-Kuo Chang, Sen-Hua Chang, Jun-Hui Chen, Xiao-Yu Ge, Nikolaos Katsipoulakis, Daniel Petrov and Anatoli Shein
Department of Computer Science

University of Pittsburgh, Pittsburgh, USA
{schang, sec104, juc52, xig34, nik37, dpp14, aus4}@pitt.edu

Abstract—The slow intelligence system (SIS) technology is
a novel technology for the design of a complex information
system that is aware of the environment through multiple
sensors and capable of improving its performance over
time. In this paper we describe a practical slow intelligence
system test bed where super-components can be specified
to describe interactions among components. These super-
components are automatically transformed into time
controllers for components so they can be managed by the
SIS test bed. We illustrate our methodology on personal
healthcare system design using this SIS test bed enhanced
with super-components.

Keywords- slow intelligence system, environment-aware
software engineering, super-component, SIS test bed,
personal healthcare system.

I. Introduction

The slow intelligence system (SIS) is a general-purpose
system characterized by being able to improve its performance
over time in iterative computation cycles through a process
involving enumeration, propagation, adaptation, elimination
and concentration. An SIS continuously learns, searches for
new solutions and propagates and shares its experience with
peers [1].

The slow intelligence system (SIS) technology is a novel
technology for complex information system design and a base
for Environment-Aware Software Engineering (EASE),
which is the methodology and practice to design and/or
improve a complex information system that is aware of the
environment through sensors and capable of improving its
performance over time in a changing environment. Such
complex information systems have the following
characteristics: connected, multiple sourced, knowledge-based,
personalized, hybrid and prodigious.

The design of complex information systems faces the
following challenges: (1) the operating environment,
individual/collective user behavior and underlying technology
base of such complex information systems are constantly
changing; (2) there is never a stable and static solution for an
“optimal” complex information system; and (3) there are no
general techniques for the design of complex information
systems. We believe that the SIS technology can be exploited
to address these challenges.

There are many interesting theoretical issues concerning the
design of slow intelligence systems [1]. To make the SIS
technology useful to the practitioners, in this paper we
describe a practical test bed for Slow Intelligence Systems
enhanced with super-components, i.e., multiple components
that can be activated either sequentially or in parallel and have
complex interactions to search for better solutions.
Furthermore these super-components can be automatically
transformed into time controllers for components so they can
be efficiently managed by the SIS test bed.

This paper is organized as follows. Section 2 introduces the
essential characteristics of an SIS test bed enhanced with
super-components. To illustrate our methodology, the
essential components and super-components of a personal
healthcare system are described in Sections 3 to 7.
Background for slow intelligence system is presented in
Section 8. Further research issues and applications of the SIS
test bed to the design and analysis of sentient networks are
discussed in Section 9.

II. SIS Test Bed with Super-Components

To design SIS-based systems, a practical SIS test bed is
illustrated in Figure 2.1. The SIS test bed is a component-
based software system. The center-piece of the test bed is the
SIS server responsible for specification/creation/management
of components and passing messages to/from components in
the test bed. This test bed is implemented in Java and can run
either under Windows or in the Eclipse environment.

Figure 2.1. A slow intelligence system test bed.

The essential components of the basic SIS test bed include the
Graphical User Interface (GUI) to interact with the end user,
the InputProcessor to process input data from sensors and
transform them into XML formatted messages, the Uploader
to upload messages to the Internet, the Propagator to
communicate with other SISs to propagate information and the
SIS operators suite (Enumerator, Adaptor, Eliminator and
Concentrator) to generate, adapt, eliminate and concentrate
solutions. For the advanced SIS test bed enhanced with super-

(DOI Reference Number: 10.18293/SEKE2015-029)

2

components, there is also a Time Controller to initiate and
control iterative computation cycles through guard predicates.
The control and management of heterogeneous sensors
requires a slow intelligence system with iterative computation
cycles so that different sensors with different characteristics
such as resolution, sampling rate, accuracy, etc. can be
monitored and properly dealt with. During each computation
cycle, the SIS operators suite is employed to optimize the
processing of application data obtained from the environment
through multiple sensors. The Time Controller determines the
invocation and timing of the components in the computation
cycles. A super-component is therefore a structured set of SIS
operators to perform the computation cycles under the control
of the Time Controller. A formal model of the computation
cycle is introduced in [10]. To specify and create a super-
component, a Create-Super-Component (CSC) message can be
sent to the SIS server. An example of the CSC message
structure is shown in Table 2.1.

Table 2.1. The Create-Super-Component message structure.

In the above CSC message, the component description can
be in the form of a PNML specification (if the computation
model is a Petri net) or an XML document (if UML diagrams
such as sequence diagrams, etc. are employed). In Table 2.2 a
simple example of a (partial) PMNL specification of a super-
component is shown.

After a super-component is formally specified (such as Table
2.2), the Time Controller and other components of the super-
component can be automatically generated from this
specification. As mentioned above the super-component is
controlled by the Time Controller, which sends messages to
the constituent components to coordinate their execution.
When a computation cycle is completed, the Time Controller
decides whether to start another iteration of the computation
cycle, or send messages to other super-components (or
ordinary components) of the SIS system, depending on the
guard predicate.

Multiple super-components with their respective Time
Controllers may co-exist in an SIS system and interact with
one another. The SIS server enhanced by the SC transformer
is illustrated in Figure 2.2. All input messages except the new
message 21 to create super-component are sent to the original
SIS server. The new message 21 is processed by SC
transformer that generates the Time Controller and sends a
message 20 to SIS server to create the Time Controller
component.

Table 2.2. A partial PNML specification.

Figure 2.2. A super SIS server.

3

To illustrate the practical application of this methodology, an
experimental personal healthcare system is shown in Figure
2.3. Although this is a specific application it nevertheless
exhibits many important characteristics of a complex
information system. Foremost among these characteristics is
that heterogeneous multiple sensors are constantly changing
due to technological advances or other reasons. Each monitor
in a personal healthcare system can be a simple component in
the simplest case, but more often than not it is a super-
component to perform iterative computation cycles for the
personal healthcare system. With our approach, the
specification and upgrade of a super-components due to
technological advances can be easily accomplished.

Figure 2.3. A personal healthcare system.

In the following sections we will describe the super-
components, monitors and other novel components of the
experimental personal healthcare system.

III. Temperature/Blood Pressure Super-
Component

A personal healthcare system can assist a senior citizen who
may not be computer-literate to deal with various monitors.
For example, a Temperature Monitor can prevent a senior
citizen from suffering from freezing or burning temperatures,
and a Blood Pressure Monitor can monitor the person’s blood
pressure. With super-components, these monitors can
exchange messages and work together to determine whether
there is a need to send an alert message via the Internet to the
Emergency Management System (EMS) or the responsible
physician in case of an emergency. The situation is illustrated
by Figure 3.1, which is a sub-network of Figure 2.3. The
interacting monitors are in yellow color.

Once the SIS system is running, the GUI component is
launched and the temperature settings such as start-monitor-
time, end-time, refresh-time, high-temperature threshold and
low-temperature-threshold can be set or adjusted, as shown in
Figure 3.2.

Figure 3.1. Interactions among Temperature and Blood
Pressure Monitors.

Figure 3.2. Temperature settings.

The Blood Pressure Monitor can then be launched to check
whether the person’s blood pressure is normal. In addition to
working individually, these monitors can work together as a
super-component to detect more complex conditions and
upload and send Complex Alert messages to EMS as shown in
Figure 3.3, where the e-mail contains the alert message that
the blood pressure may not be normal perhaps due to the rising
ambient temperature.

Figure 3.3. Complex alert from Blood Pressure Monitor and
Temperature Monitor.

In Figure 3.4, the Petri-net description of a super-component
involving the Temperature Monitor and the Blood Pressure
Monitor is shown. The corresponding PNML specification can
then be transformed into Time Controller to coordinate the
interacting components.

4

Figure 3.4. The Temperature/Blood Pressure super-component.

IV. Kinect/EKG Super-Component

A Kinect monitor is a component that accepts a series of
messages from the Kinect sensor and sends out alerts to
certain components when an emergency happens. The Kinect
sensor and monitor together can detect and analyze motion
patterns such as a person’s fall (see Figure 4.1 and Figure 4.2),
and the fall detection algorithm is incorporated into the Kinect
monitor.

Figure 4.1. Skeleton figure of a person standing.

Figure 4.2. Skeleton figure of a person falling.

To achieve fall detection, we need to estimate the real-time
position of the person. Kinect SDK software based upon
Kinect sensor can track a person’s skeleton consisting of more
than 20 joints. Once we get a series of skeletons, we can easily
extract the coordinates of joints. A frame is generated for each
time interval, so we can calculate the difference between two
consecutive frames and the speed of movement.

In the experimental personal healthcare system, we try to first
track head movement and then estimate the positions of other
joints to detect the motion of a person and in particular the fall
of a person. When the position of the head cannot be reliably
estimated, we can still use other available information to
detect the person’s movement pattern. We currently don’t deal
with multiple persons.

Fall detection alone is meaningless if it cannot be propagated
and acknowledged by other components. We can send this
information to the Uploader, which is the component
responsible for collecting information from all other
components and informing EMS and the physician in charge,
and possibly building a knowledge base along the way. We
can also send this information to other monitors responsible
for the monitoring of different type of sensors so that they can
make more accurate decisions. Likewise the Kinect monitor
can also receive information from other monitors and work in
a similar way.

As an example of such complex communication, if a

person falls and the Kinect monitor also receives alerts from
EKG monitor, it could mean this patient not only fell but also
suffered heart problems. An alert can be generated either by
Kinect monitor or EKG monitor or both, depending on the
messaging sequence.

V. Location Monitor

In this section we discuss a Location Monitor for the SIS
personal healthcare system, whose objective is to process the
information about the location of the person, to track the

5

person’s movements in real-time and to act accordingly in
case of an emergency.

Dementia is a broad category of brain diseases. The number of
patients, who suffer from dementia, is increasing in the United
States of America for the last couple of years. Thus the mortal
rate of fatalities, caused by dementia is increasing as well. The
most common type of dementia is Alzheimer’s disease. Some
of the other more popular types are vascular dementia,
Dementia with Lewy, Frontotemporal labor degeneration,
mixed dementia, Parkinson’s disease and Creutzfeldt-Jacob
disease. One in three seniors dies with Alzheimer’s or another
dementia. The statistics shows that 15.4 million caregivers
provided an estimated of 17.5 billion hours of unpaid care,
valued at more than 216 billion USD in 2012 [2].

The physicians measure what they call Clinical Dementia
Rating (CDR), which changes between zero and three or more.
The first stage is called CDR =0. There is no impairment for
the patient at this stage. The next one is called Questionable
Impairment; the value of CDR for it is -0.5. The third one is
called Mild impairment and it is the last one, where the patient
is capable of taking care of himself/herself. The value for it is
1. At this stage the patient gets geographically lost. For all
CDR values beyond that point (2 and 3 – moderate and severe
impairment), the person should have a personal caregiver. On
the other hand, for all cases of CDR with value 1 or less, an
automated monitor, such as the Location Monitor, can take
over the responsibility of tracking the movements of the
person and his/her location.

The Location Monitor communicates directly with four other
components of the SIS Personal Healthcare System – GUI
component, Input Processor component, Uploader and
Hospital Finder component. The Location Monitor introduces
four new messages to the system – GPS Reading, GUI
Address Request, GPS Coordinates Request and GPS
Coordinates Response. Location Monitor is using two
different APIs of Google, Directions API and GmailAPI, to
provide the desired functionality. The developers of Google
Inc. provided a Java wrapper library for those APIs to be used.

Three basic scenarios involve the Location Monitor. The first
one is the supply of data about the current location of the
patient. The Input Processor receives the raw data from a
sensor, which typically is a smart phone, which has a GPS
receiver and some capability of reporting the data, obtained
from the receiver, back to the system – Wi-Fi connection,
GPRS, WCDMA, LTE or a combination of them. The Health
Sensor sends the raw information, marshaled in a Sensor Data
Input message. The Input Processor module processes it and
sends the information further to the Location Monitor. The
next scenario covers the case, when a physician sends the
destination of the person to Location Monitor, which starts
tracking the person. The third scenario involves the delivery
of the last location of the patient, known by Location Monitor,
to other components of the SIS system.

Once the Location Monitor receives an Address Request
message, it contacts the Google Maps, using Directions API in
order to receive a route for the person from his/her current
location to the destination, received in the GUI Address
Request message. The route contains a polyline, which is the
smoothened polyline, which pins the route on the map. The
Location Monitor tracks the location of the person for
deviations from the received predefined route in the following
way - upon every receiving of new location data information
(i.e. GPS Reading message), the Monitor determines if the
point, representing the received coordinates is within no more
than 0.2 miles distance from every rectangle, formed by two
consecutive points of the polyline of the route.

In case the location is outside the boundaries, the Location
Monitor sends a short text message (SMS) to the person,
informing him/her to stay where he/she is and letting him/her
know that the help is on the way. An alert message is also sent
to the uploader module and a mail is sent to the EMS and the
physician on duty.

The Location Monitor was tested in SIS test bed for the
Personal Healthcare system. The GPS Reading messages as
well as the GUI Address Request messages were emulated
with the Universal Interface component.

VI. Hospital Finder
Since there are an increasing number of sensors utilized to
monitor the health conditions of senior citizens in today’s
world, it is possible to receive alert messages instantly when a
person is in a dangerous state. This Hospital Finder component
reacts to these messages by locating the person on the map,
providing directions from the nearest hospitals to the person,
and providing the contact information of these hospitals in
order to rescue the person in a timely fashion. This
component fits well with the rest of the Personal Healthcare
System, and provides a useful enhancement that could
potentially help save human lives. In what follows we will
explain the system model of this Hospital Finder component
and give an example of its operation using a real life scenario.
The following scenario will utilize the Location Monitor
component that monitors the person’s location when he or she
is out for a walk, and generates alert message 38 if the
person’s route drastically changes in an unexpected way.

When the Hospital Finder component receives alert message
38, it quickly reacts and opens the map based Graphical User
Interface (GUI). The operator who is monitoring the person’s
health using the SIS system at this point knows that the person
is in an emergency state. The operator should be looking for
the closest hospitals to deliver help to the patient immediately.

The map-based GUI of the Hospital Finder component offers a
variety of ways of locating the person. In this specific scenario,
assuming the person has a GPS sensor with him/her, the
easiest way to locate the person is by clicking the “Acquire
GPS location” button. The other options include locating the

6

person (a) by address, (b) by coordinates, (c) by position on
the map and (d) by GPS coordinates and so on.

In order to place the person’s location on the map, the operator
clicks the button “Acquire GPS location”. The person’s
location is immediately requested with message 47
(Coordinates Request). The Location Monitor component
receives this message and quickly sends the person’s last
location reading from the GPS sensor back to the Hospital
Finder component. The incoming message 48 (Coordinates
Response) is handled by the Hospital Finder component by
populating the Latitude and Longitude fields on the map-based
GUI, and placing an icon of the person on the map:

Figure 6.1. The person’s last known location is displayed.

Now, since the operator has received the person’s location, he
or she can click the “Search” button next to the person’s
coordinates to find the closest hospitals:

Figure 6.2. Closest hospitals with routes are displayed.

When the search button is clicked, the GUI requests the three
nearest hospitals using the Google Maps Places API from the
Google database. When the locations are received, the
Hospital Finder component requests the directions from
Google using the Google Maps Directions API to get to the
person from these hospitals. As soon as the directions are
received, the Hospital Finder component draws them on the
map, and displays an information window above each one of
the hospitals stating the distance and the time that it would
take to get to the person from each hospital.

VII. Recommender Engine
The Recommender Engine for the Personal Healthcare System
is capable of making elaborate decisions and proactively
generate alert messages. This way, unwanted situations can be
avoided in which the person may be in a state of imminent
health deterioration. In what follows we will describe the
design of the Recommender Engine, and usage scenarios in a
real-life situation.

The Recommender engine waits for messages produced by
sensors and mediated by the InputProcessor. Specifically, in
its current state the Recommender Engine receives messages
from: (a) blood pressure, (b) blood sugar, (c) EKG, and (d)
SPO2 sensors. In the event that the Recommender Engine
detects an imminent dangerous state, it produces alert
messages and disseminates them in the SIS system.

The different components inside the Recommender Engine are
as follows. First, the message parsing interface is responsible
for handling input messages and produce alerts in the SIS
network. The data transformation logic receives sensor data
and turns them into a binary form that is readable by the
recommender logic. The latter is responsible for building
prediction models in order to implement the prediction logic
needed for identifying dangerous situations in a proactive
manner. Finally, the Recommender Engine keeps an internal
storage module for storing user-defined Rules (conditions
under which an alert should be generated) and pre-computed
Prediction Models. Information are stored in the form of
tuples (records) so that the system is able to predict dangerous
situations.

The Recommender Engine works by using Collaborative-
Filtering Algorithms to predict users' preferences. This
approach is more generic compared to the Context-based
approach of other recommendation systems. Hence, it can be
easily modified to work with different scenarios. The only
information to be stored should be tuples of the form:

user-id, item-id, preference

The user-id refers to a user showing interest (or a general
connection) for a specific object (item-id). The interest can
represent any kind of connection among two entities. For
instance, it can represent how much a user likes a product, or it
can represent that a user has had a characteristic represented
by a specific id (object). Preference models the intensity of the
connection of a user with an object. A preference can take
values from 1 to 5, but it can also have a binary interpretation
if a binary recommendation system is needed (i.e. yes or no
answer). By forming the data accordingly, one can
approximate any kind of situation and have the Recommender
Engine produce successful predictions.

The Recommender Engine can be used when we need to
predict dangerous situations for people. For any person we
have sensor input for blood pressure, blood sugar, SPO2 and
an EKG. The Engine's responsibility is to combine readings

7

from the aforementioned sensors, and by consulting user-
defined rules, produce alert messages to the system. The
Apache Mahout library (http://mahout.apache.org), which is a
complete framework for recommendation systems, is used in
implementation. Three scenarios are presented, each using
different rules:
1. A patient is in alert if blood pressure and blood sugar are
in near-dangerous levels.
2. A patient is in alert if blood pressure and SPO2 levels are
in near-dangerous levels.
3. A patient is in alert if blood pressure, blood sugar and
SPO2 levels are in neardangerous levels.

The Alert message produced by the Recommender Engine has
the following form:

Name Value MsgID 64
Descriptiom Recommender System Alert
AlertType Recommender Alert
DateTime Current Date (i.e. “2014-10-30 15:05:10”)

VIII. Related Work
The slow intelligence approach was first proposed by Shi-Kuo
Chang [1]. In this section we will briefly review recently
published papers in this area. The visual specification of
component-based Slow Intelligence Systems is described in
[3]. This work introduces the visual description of super-
components by Petri nets or other UML diagrams. It provides
the foundation of the present work. Component-based Slow
Intelligence Systems has been applied to many areas,
including social influence analysis [4, 5], topic and trend
detection [6], high dimensional feature selection [7], image
analysis [8], swimming activity recognition [9], and most
recently pet care systems [10] and energy control systems [11].
In [10] the notion of an abstract machine for computation
cycle was introduced. Our current approach is based upon it.

IX. Discussion

The super-component transformation algorithm can be
extended to handle parallel/distributed processing of super-
components in multiple computation cycles. At the
implementation level we introduce one additional pair of tags,
<parallel> and </parallel>, into the pnml specification to
signify levels of parallel computation. Therefore the SC
translator will append the super-component type as the suffix
to the message that this transition represents. For example if
the original message id is 1002 and a super-component
<parallel> 03</parallel> is specified inside the related pair of
transition tags of message 1002, then this message will
become 1002.03. We can extend this technique to define
messagetype.SCsubtype.SCtype and so on, so that messages
are exchanged at different levels. At the theoretical level, we
envision complex information systems as iterative slow
intelligence systems with multiple and interacting computation
cycles. In Wiener’s Theory of General Resonance, he
envisioned the interaction of multiple computation cycles. We

can call such general systems Sentient Nets. With the above
proposed different levels of computation cycles and messages,
we propose to continue the investigation of the properties of
such general systems.

References
[1] Shi-Kuo Chang, "A General Framework for Slow
Intelligence Systems", International Journal of Software
Engineering and Knowledge Engineering, Volume 20, Number
1, February 2010, 1-16.

[2] Alzheimer’s Disease Facts and Figures,
www.alz.org/downloads/facts_figures_2013.pdf, 2013.

[3] Shi-Kuo Chang, Yingze Wang and Yao Sun, "Visual
Specification of Component-based Slow Intelligence Systems",
Proceedings of 2011 International Conference on Software
Engineering and Knowledge Engineering, Miami, USA, July
7-9, 2011, 1-8.

[4] Shi-Kuo Chang, Yao Sun, Yingze Wang, Chia-Chun Shih
and Ting-Chun Peng, "Design of Component-based Slow
Intelligence Systems and Application to Social Influence
Analysis", Proceedings of 2011 International Conference on
Software Engineering and Knowledge Engineering, Miami,
USA, July 7-9, 2011, 9-16.

[5] Yingze Wang and Shi-Kuo Chang, "User Profile
Visualization to facilitate MSLIM-model-based Social
Influence Analysis based upon Slow Intelligence Approach",
Proceedings of 2014 International Conference on Software
Engineering and Knowledge Engineering (SEKE 2014),
Vancouver, Canada, July 1-3, 2014.

[6] Ji Eun Kim, Yang Hu, Shi-Kuo Chang, Chia-Chun Shih
and Ting-Chun Peng, "Design and Modeling of Topic/Trend
Detection System By Applying Slow Intelligence System
Principles", Proc. of DMS2011 Conference, Florence, Italy,
Aug. 18-20, 2011, 3-9.

[7] Yingze Wang and Shi-Kuo Chang, "High Dimensional
Feature Selection via a Slow Intelligence Approach", Proc. of
DMS2011 Conference, Florence, Italy, Aug. 18-20, 2011, 10-
15.

[8] Shi-Kuo Chang, Li-Qun Kuang, Yao Sun and Yingze
Wang, .Design and Implementation of Image Analysis System
by Applying Component-based Slow Intelligence System.,
Proc. of DMS2012 Conference, Miami, USA, Aug. 9-11, 2012.

[9] Wen-Hui Chen and Shi-Kuo Chang, "Swimming Activity
Recognition Based on Slow Intelligence Systems", Proc. of
SEKE2013 Conference, Boston, USA, June 27-29, 2013.

[10] S. K. Chang, W. H. Chen, Bin Kao, L. Kuang, and Y. Z.
Wang, “The design of pet care systems based upon slow
intelligence principles,” Int’l Journal of Software Engineering
and Knowledge Engineering, 2014.

[11] Wen-Hui Chen and Shi-Kuo Chang, "Applications of
Slow Intelligence Frameworks for Energy-Saving Control",
Proceedings of 2014 International Conference on Software
Engineering and Knowledge Engineering (SEKE 2014),
Vancouver, Canada, July 1-3, 2014.

